

Recent Studies on Multiple-Quark States at BESIII

Dong Wei

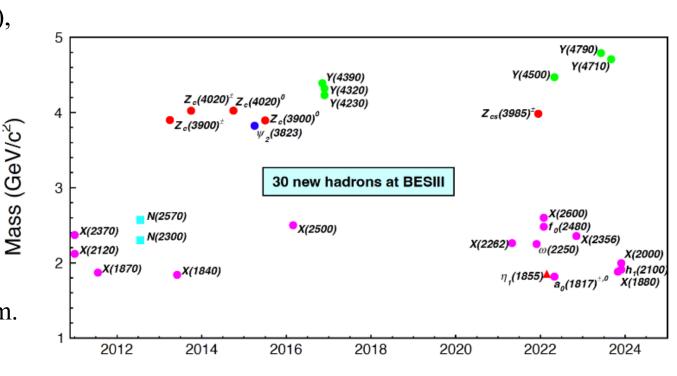
Nankai University, IHEP (On behalf of the BESIII Collaboration)

THE 23rd INTERNATIONAL CONFERENCE ON FEW-BODY PROBLEMS IN PHYSICS (FB23)

Sept. 22 -27, 2024 • Beijing, China

Outline

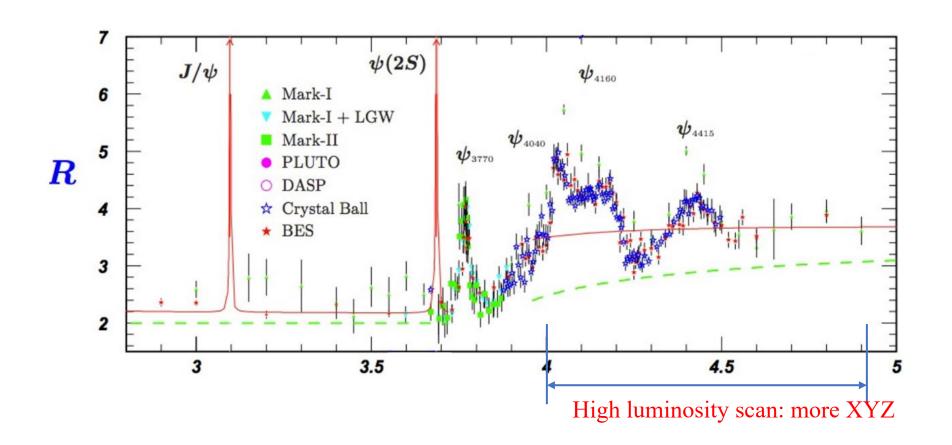
- Introduction
- $e^+e^- \rightarrow K^+K^-\psi(2S)$
- $e^+e^- \to D_s^+D_{s1}(2536)^- + c.c. \& D_s^+D_{s2}^*(2573)^- + c.c.$
- $e^+e^- \rightarrow K^- \overline{\Xi}^+ \Lambda/\Sigma^0 + c.c.$
- Summary



Introduction

- In last twenty years, a series of vector charmonium-like states, such as Y(4230), Y(4390), and Y(4660), etc., have been discovered.
- These states exceeds the predictions of the quark potential model, are viewed as good exotic candidates with complex internal structure (tetraquarks, molecule, hybrid ...).
- Further investigations on the line shapes of the cross sections will shed light on the nature of them. This talk will report three relevant studies about hidden-charm, open-charm, and baryon-involved.

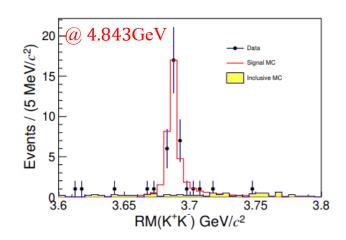
New hadrons discovered at BESIII



Introduction

BESIII Data

$e^+e^- \rightarrow K^+K^-\psi(2S)$


• Cross section of $e^+e^- \to K^+K^-\psi(2S)$ is first measured with 2.5fb⁻¹ data collected at $\sqrt{s} = 4.66$ to 4.95 GeV.

- ➤ Vector charmonium-like states
- ➤ Hidden-charm open-strange tetraquark candidates
- The measurements are carried out using several partial reconstruction techniques.

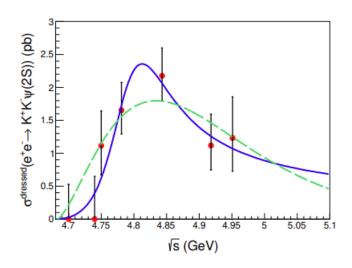
Reaction chain:

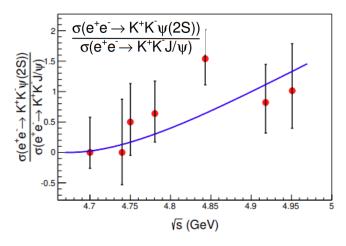
Decays
$e^+e^- \to K^+K^-\psi(2S)$
$e^+e^- \to K^{\pm}Z_{cs}^{\mp}, Z_{cs}^{\mp} \to K^{\mp}\psi(2S)$
$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-, J/\psi \pi^0 \pi^0$
$\psi(2S) \to J/\psi\eta$
$\psi(2S) \rightarrow e^+e^-, \mu^+\mu^-$
$J/\psi \rightarrow e^+e^-, \mu^+\mu^-$

A distinct $\psi(2S)$ signal peak is evident.

	Nobs	$N_{\rm sdb}$	$N_{\rm sig}$	ϵ	σ^B
4700	29	3	27.5	0.286	1.49 ± 0.29
4740	17	1	16.5	0.292	3.08 ± 0.77
4750	22	1	21.5	0.291	1.79 ± 0.39
4780	50	5	47.5	0.294	2.69 ± 0.40
4843	23	6	20	0.287	1.03 ± 0.25
4918	6	1	5.5	0.288	0.67 ± 0.30
4950	8	1	7.5	0.286	1.18 ± 0.44

The signal yield is obtained by counting method.

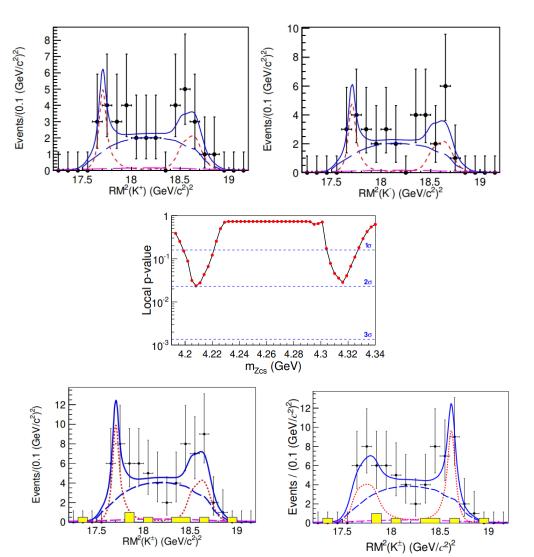

$$e^+e^- \rightarrow K^+K^-\psi(2S)$$



- A study of the cross section line shape has been performed.
 - Assuming the observed signals are from a vector resonance *Y* decay.
 - A phase space modified Breit-Wigner function is applied to describe the energy-dependent dressed cross section.

$$BW(s) = \frac{M}{\sqrt{s}} \cdot \frac{\sqrt{12\pi\Gamma_{tot}\Gamma_{ee}\mathcal{B}_{Y\to K^+K^-\psi(2S)}}}{s - M^2 + iM\Gamma_{tot}} \cdot \sqrt{\frac{\Phi(\sqrt{s})}{\Phi(M)}}$$

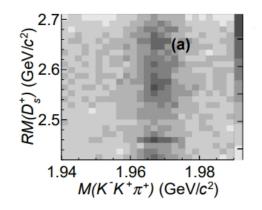
- It is difficult to indicate the source of the observed $e^+e^- \rightarrow K^+K^-\psi(2S)$ signals due to the low statistics.
- The ratio of the phase space of the three-body $K^+K^-\psi(2S)$ to K^+K^-J/ψ reactions also has been studied.
 - The measured ratio at $\sqrt{s} = 4.843$ GeV has about a 2σ statistical deviation from that of phase space, and implied new source of $K^+K^-\psi(2S)$ exist.

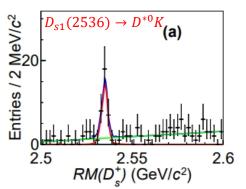

$e^+e^- \rightarrow K^+K^-\psi(2S)$

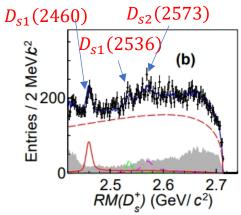
- Study of intermediate states in the $K^+K^-\psi(2S)$ system.
 - A simultaneous fit is perform to extract the Z_{cs}^{\pm} signal yield.

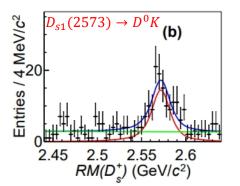
> The masses around 4.205 GeV and 4.315 GeV give the minimum local p-values, local significances about 2σ.

 \triangleright The mass of the Z_{cs} is assumed to be around 4.208 GeV and 4.316 GeV with a reflection at higher mass.

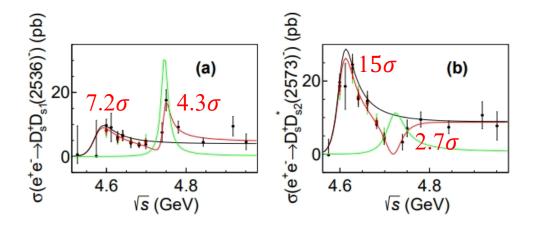



$e^+e^- \rightarrow D_s^+D_{s1}(2536)^- \& D_s^+D_{s2}^*(2573)^-$




- Measurements of cross section of $e^+e^- \to D_s^+ D_{s1}(2536)^- + c.c.$ and $e^+e^- \to D_s^+ D_{s2}^*(2573)^- + c.c.$ with 6.6fb⁻¹ data collected at $\sqrt{s} = 4.53$ to 4.95 GeV.
- The absolute branching fractions of $D_{s1}(2536)^- \to \overline{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \to \overline{D}^0K^-$ are measured for the first time.
 - ► Distributions of RM(D_s^+) versus M($K^+K^-\pi^+$) from data at $\sqrt{s} = 4.680$ GeV.

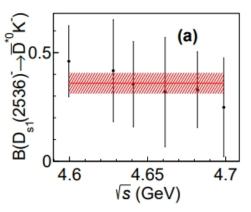
- Measurement method:
 - \triangleright Inclusive method: recoil $D_s^{\pm} \to D_{sj}^{\mp}$
 - Exclusive method: recoil $D_s^{\pm} K^{\mp} \to D^{*0}(\overline{D}^{*0})$ or $D^0(\overline{D}^0)$

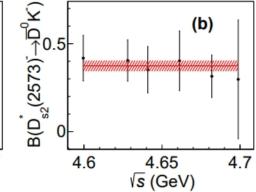

$e^+e^- \rightarrow D_s^+D_{s1}(2536)^- \& D_s^+D_{s2}^*(2573)^-$

• A study of the cross section line shape has been performed.

$$\sigma(\sqrt{s}) = |BW_0(\sqrt{s})e^{i\phi_0} + BW_1(\sqrt{s})e^{i\phi_1}|^2$$

- ➤ The 1st structure with mass around 4.60 GeV, consistent with early Belle measurement.
- The 2nd structure with mass around 4.75 GeV, maybe the same as those in $K^+K^-J/\psi \& D_s^*D_s^*$.



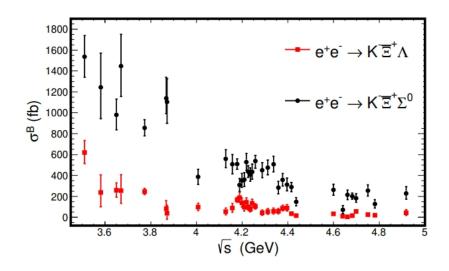

The absolute branching Fractions.

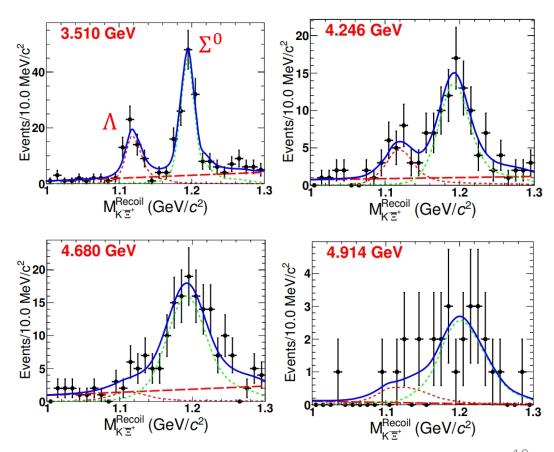
$$\begin{split} L_i(\sigma_{i,j}^{\text{inc}}, \delta_{i,j}^{\text{inc}}, \sigma_{i,j}^{\text{exc}}, \delta_{i,j}^{\text{exc}}; \sigma_{i,j}, \mathcal{B}_i) &= \\ \prod_{j=1}^6 L_{i,j}^{\text{inc}}(\sigma_{i,j}^{\text{inc}}, \delta_{i,j}^{\text{inc}}; \sigma_{i,j}) L_{i,j}^{\text{exc}}(\sigma_{i,j}^{\text{exc}}, \delta_{i,j}^{\text{exc}}; \sigma_{i,j}, \mathcal{B}_i), \end{split}$$

BF
$$(D_{s1}(2536)^- \to \overline{D}^{*0}K^-) = (35.9 \pm 4.8 \pm 3.5)\%$$

BF $(D_{s2}^*(2573)^- \to \overline{D}^0K^-) = (37.4 \pm 3.1 \pm 4.6)\%$

Better understanding the inner structure.

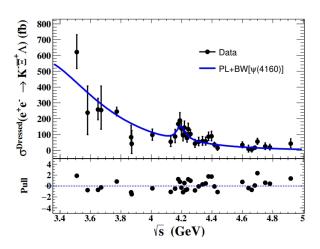


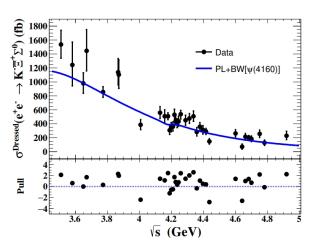

$$e^+e^- \rightarrow K^-\bar{\Xi}^+\Lambda/\Sigma^0$$

- Cross section of $e^+e^- \to K^-\bar{\Xi}^+\Lambda/\Sigma^0$ is measured with 25fb⁻¹ data collected at $\sqrt{s}=3.51$ to 4.91 GeV.
 - \triangleright A partial-reconstruction technique is employed. (recoil $K^{-}\bar{\Xi}^{+}$)

$$M_{K^-\bar{\Xi}^+}^{\rm recoil} = \sqrt{(\sqrt{s} - E_{K^-\bar{\Xi}^+})^2 - |\vec{p}_{K^-\bar{\Xi}^+}|^2}$$

$e^+e^- \to K^- \overline{\Xi}^+ \Lambda/\Sigma^0$


- A study of the cross section line shape has been performed.
 - Assuming the $e^+e^- \to K^-\bar{\Xi}^+\Lambda/\Sigma^0$ signals are produced by a resonance decay and the continuum process.


$$\sigma^{\text{dressed}}(\sqrt{s}) = \left| c_0 \frac{\sqrt{P(\sqrt{s})}}{\sqrt{s}^n} + e^{i\phi} \text{BW}(\sqrt{s}) \sqrt{\frac{P(\sqrt{s})}{P(M)}} \right|^2,$$

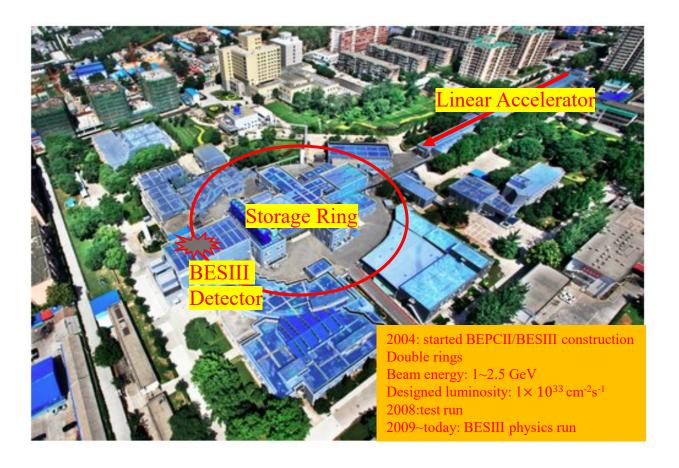
$$\text{BW}(\sqrt{s}) = \frac{\sqrt{12\pi\Gamma_{ee}\mathcal{B}\Gamma}}{s - M^2 + iM\Gamma}.$$

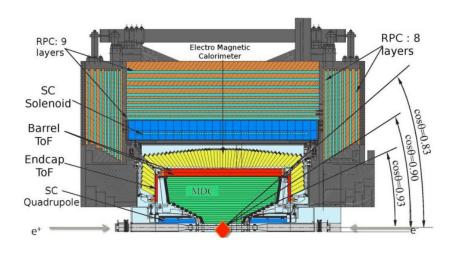
$K^-ar\Xi^+\Lambda$										
Resonance	$\Gamma_{ee}\mathcal{B}~(10^{-3}\mathrm{e}$	φ (1	rad)	$\chi^2/n.d.f$	$S(\sigma)$					
	I	II	I	II	χ /n.a.j	5 (0)				
$\psi(3770)$	$21.0 \pm 3.7 \ (< 25.0)$	1.7 ± 0.5	-1.9 ± 0.3	-2.8 ± 0.2	1.8	0.5				
$\psi(4040)$	$45.0 \pm 6.3 \ (< 62.0)$	5.1 ± 2.3	-1.3 ± 0.1	-1.3 ± 0.1	1.4	2.8				
$\psi(4160)$	2.1 ± 0.2	1.5 ± 0.4	-1.6 ± 0.1	-1.3 ± 0.2	1.1	4.4				
$\psi(4230)$	$21.3 \pm 1.5 \ (< 24.9)$	0.6 ± 0.3	-1.8 ± 0.1	2.5 ± 0.3	1.5	2.8				
$\psi(4360)$	$28.9 \pm 2.7 \ (< 35.8)$	0.6 ± 0.1	-1.8 ± 0.1	-2.9 ± 0.1	1.6	1.7				
$\psi(4415)$	$9.3 \pm 2.3 \ (< 14.3)$	1.7 ± 1.1	-1.9 ± 0.1	-2.3 ± 0.2	1.6	1.2				
$\psi(4660)$	$6.8 \pm 3.5 \ (< 13.0)$	0.8 ± 1.5	-1.6 ± 0.1	-1.6 ± 0.1	1.7	1.2				

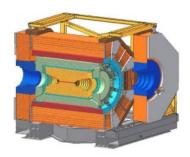
► Evidence is found for the $\psi(4160) \to K^- \bar{\Xi}^+ \Lambda$ decay with a significance of 4.4σ.

Summary

- Data samples with energies ranging from 3.51 to 4.95 GeV was used to conduct a series of cross section measurements, including open-charm, hidden-charm, and baryon final states:
 - $\checkmark e^+e^- \to K^+K^-\psi(2S)$, is observed for the first time, no significant Z_{cs}^{\pm} signals are observed.
 - ✓ $e^+e^- \to D_s^+ D_{s1}(2536)^- \& D_s^+ D_{s2}^*(2573)^-$, first structure consistent with Y(4626)/Y(4620), second structure could be Y(4710)/Y(4790).
 - \checkmark $e^+e^- \to K^-\bar{\Xi}^+\Lambda/\Sigma^0$, evidence for $\psi(4160) \to K^-\bar{\Xi}^+\Lambda$ is found for the first time with a significance of 4.4 σ .
- **BEPCII** will increase the luminosity at $\sqrt{s} = 4.70$ GeV by a factor of 3, more exciting results on the way!


Thanks for your attention!


Back Up


Beijing Electron Positron Collider II (BEPCII)

Beijing Spectrometer (BESIII)

A general purpose spectrometer

