Status of the CEPC Project

Haijun Yang (for the CEPC study group)

THE 23rd INTERNATIONAL CONFERENCE ON FEW-BODY PROBLEMS IN PHYSICS (FB23)

Sept. 22 - 27, 2024 • Beijing, China

Outline

- From Higgs discovery to Higgs factory
- Introduction to CEPC
 - Goal and major milestones
 - Consensus on Higgs Factory
- CEPC Status and Progress
 - Physics Program
 - > Accelerator R&D
 - Detector R&D
- Project Planning and Development
- > Summary

Higgs discovery to precision measurements

Discovery of Higgs boson Phys. Lett. B 716 (2012) 1-29 Phys. Lett. B 716 (2012) 30-61 Science 338 (2012) 1569-1575 Science 338 (2012) 1576-1582

2012: Higgs mechanism explains the mass origin of SM particles

2013: Nobel Prize in Physics

Higgs Property Measurement

Nature 607, 52-59 (2022) Nature 607, 60-68 (2022)

Higgs discovery to precision measurements

CEP

Particle Physics after the Higgs Discovery

SM is a complete and self-consistent theory after the Higgs discovery. But it doesn't accommodate dark matter and dark energy -> New physics ?

Dark matter and dark energy ~ 95%

Higgs boson: a new force carrier

Higgs boson:

- Explains mass origin
- Only SM particle with spin 0
- A new force carrier

Higgs boson: a portal to new physics

Circular Electron Positron Collider (CEPC)

- □ The CEPC was proposed by the Chinese HEP community in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as a Higgs / Z / W factory.
- To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of new physics beyond the SM.
- □ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

http://cepc.ihep.ac.cn/

CEPC Major Milestones

First CEPC IAC Meeting (2015.9)

Public release: November 2018

IHEP-CEPC-DR-2018-01 P-CEPC-DR-2018-02 HEP-AC-2018-01 CEPC CEPC **Conceptual Design Report** Conceptual Design Report Volume I - Accelerator Volume II - Physics & Detector arXiv: 1809.00285 arXiv: <u>1811.10545</u> 222 The CEPC Study Group The CEPC Study Group August 2018 October 2018 Editorial Team: 43 people / 22 institutions/ 5 countries

9

CEPC Major Milestones

10

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP CEPC Accelerator TDR released in December, 2023

CEPC

Technical Design Report

Accelerator

arXiv:2312.14363 1114 authors 278 institutes (159 foreign institutes) 38 countries 1090 pages

> The CEPC Study Group December 2023

Distribution of CEPC Project TDR cost of 36.4B RMB (~4.6B Euro)

Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

Total	364	100%	
Project management	3	0.8%	
Accelerator	190	52%	
Conventional facilities	101	28%	
Gamma-ray beam lines	3	0.8%	
Experiments	40	11%	
Contingency (8%)	27	7.4%	

Global HEP Consensus on Higgs Factories

The scientific importance and strategical value of e⁺e⁻ Higgs factories is clearly identified.

China JAHEP Japan

Europe

2013, 2016: China Xiangshan Science Conference concluded that CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

2017: Japan Association of High Energy Physicists (JAHEP) proposes to construct A 250 GeV center of mass ILC promptly as a Higgs factory.

2020: European Strategy for Particle Physics, An electron-positron Higgs factory is the highest priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

2022, ICFA "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals

P5 report, USA, 2023

Recommendation 6

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

The panel would consider the following:

1. The level and nature of US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.

2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.

3.A plan for the evolution of the **Fermilab accelerator complex** consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

Comparison of Higgs factories: Circular vs Linear

CEPC has strong advantages among mature e⁺e⁻ Higgs factories (design report delivered)

I uminosity per IP $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	Operation mode					
Luminosity per ir (10 cm s)	Н	Z	W	tī		
CEPC (TDR, 30 MW)	5	115	16	0.5		
CEPC (TDR, 50 MW)	8.3	192	26.7	0.8		
FCC-ee (FS MTR, 50 MW)	≥ 5.0	140	20	1.25		

Versus FCC-ee

- Earlier data: collisions expected in 2030s (vs. ~ 2040s)
- Large tunnel cross section (ee & pp coexistence)
- Lower construction cost

Versus Linear Colliders

- Higher luminosity / precision for Higgs & Z
- Potential upgrade for pp collider

CEPC Physics Program

- Measurements of Higgs, EW, flavor physics & QCD at unprecedented precision
- BSM physics (e.g. dark matter, EWPT, LLP, ...) up to ~ 10 TeV scale

Operation mode		ZH	Z	W+M-	tī
\sqrt{s} [GeV]		~240	~91	~160	~360
R	un Time [years]	10	2	1	~5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.6
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	22	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC: Higgs Properties

> CEPC has significantly better precision on Higgs properties than that of HL-LHC

Higgs				
Observable	HL-LHC Projection	CEPC Precision		
M_H	20 MeV	3 MeV		
Γ_{H}	20%	1.7%		
σ (ZH)	4.2%	0.26%		
$B(H \rightarrow bb)$	4.4%	0.14%		
$B(H \to cc)$	-	2.0%		
$B(H \rightarrow gg)$	-	0.81%		
$B (H \rightarrow WW)$	2.8%	0.53%		
$B(H \rightarrow ZZ)$	2.9%	4.2%		
$B (H \rightarrow \tau \tau)$	2.9%	0.42%		
$B (H \rightarrow \gamma \gamma)$	2.6%	3.0%		
$B (H \rightarrow \mu\mu)$	8.2%	6.4%		
$B (H \to Z\gamma)$	20%	8.5%		
$B_{upper}(H \rightarrow inv.)$	2.5%	0.07%		

《Precision Higgs Physics at CEPC》 Chinese Physics C, 43 (2019) 043002

> CEPC has better EW precisions than current value by 1-2 order of magnitude

	W, Z and Top	1	
Observable	Current Precision	CEPC Precision	
M_W	9 MeV	0.5 MeV	
Γ_W	49 MeV	2 MeV	
M_{top}	760 MeV	O(10) MeV	
M_Z	2.1 MeV	0.1 MeV	
Γ_Z	2.3 MeV	0.025 MeV	LEP combination
R_b	3×10^{-3}	2×10^{-4}	D0 PBI 108 (2012) 151804
R_c	1.7×10^{-2}	1×10^{-3}	CDF Science 376 (2022) 6589
R_{μ}	2×10^{-3}	1×10^{-4}	LHCb JHEP 01 (2022) 036
$R_{ au}$	1.7×10^{-2}	1×10^{-4}	ATLAS arxiv:2403.15085, subm.
A_{μ}	1.5×10^{-2}	3.5×10^{-5}	CMS This Work
A_{τ}	4.3×10^{-3}	7.0×10^{-5}	
A_b	2×10^{-2}	2×10^{-4}	
N_{ν}	2.5×10^{-3}	2×10^{-4}	

CDF (2022) : 80433.5 \pm 9.4 MeV CMS(2024) : 80360.2 \pm 9.9 MeV SM Prediction : 80354 \pm 7 MeV

> CEPC: expected W mass resolution < 1MeV</p>

CEPC: Flavor Physics

Tera-Z → B factory

Mode	LEP bound (95% CL)	LHC bound (95% CL)	CEPC/FCC-ee
$BR(Z \to \mu e)$	1.7×10^{-6} [2]	7.5×10^{-7} [3]	$10^{-8} - 10^{-10}$
$BR(Z \to \tau e)$	9.8×10^{-6} [2]	5.0×10^{-6} [4, 5]	10^{-9}
$BR(Z \to \tau \mu)$	1.2×10^{-5} [6]	6.5×10^{-6} [4, 5]	10^{-9}

b-hadrons	Belle II $(50+5 \text{ ab}^{-1})$	LHCb (300 fb^{-1})	Tera- Z
B^0, \bar{B}^0	$5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}	1.2×10^{11}
B^{\pm}	$5.7 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}	1.2×10^{11}
$B_{s}^{0}, \bar{B}_{s}^{0}$	$6.0 \times 10^8 (5 \text{ ab}^{-1} \text{ on } \Upsilon(5S))$	1×10^{13}	3.1×10^{10}
B_c^{\pm}	-	1×10^{11}	1.8×10^8
$\Lambda_h^0, \bar{\Lambda}_h^0$	-	2×10^{13}	2.5×10^{10}
$c(\bar{c})$	2.6×10^{11}	$\gtrsim 10^{14}$	2.4×10^{11}
τ^{\pm}	9×10^{10}	-	7.4×10^{10}

Lepton Flavor Violation (FLV)

CEPC: BSM Physics

Higgs: Dark Matter Portal

CEPC has significantly better detection sensitivity for DM than HL-LHC
 Complementary to direct DM search experiments for mass below 10 GeV

Higgs: EW Phase Transition

→ CEPC can study EWPT via hZZ coupling measurement which may help to understand the matter-antimatter asymmetry, its detection sensitivity is about one order of magnitude better than that of the HL-LHC.

CEPC Accelerator Design and Layout

- 100 km double ring design (30 MW SR, upgradable to 50MW, ttbar)
- Switchable operation for H, Z, W and top modes (bypass scheme)
- Shared tunnel: compatible design for booster, CEPC and SppC

H/W/Z/tt switchable bypass scheme

arXiv:2312.14363 20

CEPC Accelerator Parameters

	Higgs	Z	W	$t\bar{t}$	
Number of IPs	2				
Circumference (km)		1	0.00		
SR power per beam (MW)			30		
Half crossing angle at IP (mrad)		1	6.5		
Bending radius (km)		1	0.7		
Energy (GeV)	120	45.5	80	180	
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1	
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6	
Piwinski angle	4.88	24.23	5.98	1.23	
Bunch number	268	11934	1297	35	
Bunch spacing (ns)	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)	
Bunch population (10 ¹¹)	1.3	1.4	1.35	2.0	
Beam current (mA)	16.7	803.5 84.1		3.3	
Phase advance of arc FODO (°)	90	60	60	90	
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71	
Beta functions at IP β_x / β_v (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7	
Emittance $\varepsilon_x/\varepsilon_v$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7	
Betatron tune n_x/n_y	445/445	317/317	317/317	445/445	
Beam size at IP s_x/s_y (um/nm)	14/36	6/35	13/42	39/113	
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9	
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20	
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.7	1.2/2.5	2.0/2.6	
Beam-beam parameters x_x / x_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1	
RF voltage (GV)	2.2	0.12	0.7	10	
RF frequency (MHz)	650				
Longitudinal tune n _s	0.049	0.035	0.062	0.078	
Beam lifetime (Bhabha/beamstrahlung) (min)	39/40	82/2800	60/700	81/23	
Beam lifetime (min)	20	80	55	18	
Hourglass Factor	0.9	0.97	0.9	0.89	
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5	

21

CEPC Key Technology R&D Platform

Accelerator key technology R&D platform was established:

- SRF cavity and module
- High precision magnet
- Vacuum assembly & coating

- High efficiency Klystron
- Mechanics and alignment
- Beam test facility

CEPC R&D: High Q SRF Cavities

baking

- > 1.3 GHz 9-cell SRF cavity for booster: $Q_0 = 3.4E10 @ 26.5 MV/m$
- > 650 MHz 2-cell SRF cavity for collider ring: $Q_0 = 6.0E10 @ 22.0 MV/m$
- > 650 MHz 1-cell SRF cavity for collider ring: $Q_0 = 6.0E10 @ 31.0 MV/m$

CEPC Booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects

Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spec	LCLS-II-HE Spec
Average usable CW <i>E</i> _{acc} (MV/m)	23.1	3.0×10 ¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m

CEPC R&D: High Efficiency Klystrons

- The 1st Klystron prototype, achieved efficiency ~ 62%
- The 2nd Klystron prototype was tested in Feb. 2024, achieved efficiency ~ 77.2%
- The 3rd Klystron prototype (MBK) with manufacture underway, design efficiency is ~ 80.5%
- High efficiency Klystron helps to reduce electricity consumption

The 1st Klystron (tested)

The 3rd multi-beam Klystron (MBK) under fabrication

SPPC R&D: HTS SC Magnet

- > 2023: SC dipole magnet, field reached 14T @ 4.2K
- > 2024: aiming for 16T @ 4.2K (the world record)

16T dipole (LTS+HTS)

Completion of SC magnet (2023.8)

2028 year

CEPC R&D: Accelerator Key Technologies

✓ Specification Met

Prototype Manufactured

Accelerator	Fraction
✓ Magnets	27.3%
✓ Vacuum	18.3%
✓ RF power source	9.1%
✓ Mechanics	7.6%
✓ Magnet power supplies	7.0%
✓ SC RF	7.1%
✓ Cryogenics	6.5%
\checkmark Linac and sources	5.5%
✓ Instrumentation	5.3%
✓ Control	2.4%
Survey and alignment	2.4%
✓ Radiation protection	1.0%
✓ SC magnets	0.4%
✓ Damping ring	0.2%
	27

Key technologies R&D span over all components listed in CDR.

About 10% remaining (eg. RF power source, control, alignment,

SC magnets, machine integration) to be completed by 2026.

CEPC Accelerator EDR

CEPC Accelerator EDR tasks start with 35 WGs aiming for key issues.

CEPC Accelerator Main EDR Development: SRF

The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

CEPC Magnets' Automatic Production Lines in EDR

To reduce the fabrication cost of the magnets of CEPC, automatic magnet production lines will be demonstrated in EDR and used during construction

Jan.-Sept. 2024 : Complete the CEPC booster magnet automatic fabrication facility design.Oct. 2024-Jun. 2025: Complete the small scale demonstration facility for booster iron core fabrication.

CEPC Accelerator Main EDR Development: Klystrons

CEPC Accelerator EDR

CEPC Alignment and Installation Plan in EDR

Detector dummy coil development

Leak detection before vacuum

impregnation

CEPC MDI in EDR

impregnation

CEPC Tunnel Mockup for Installation in EDR

A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

34

CEPC Detector Concepts → New Design

CEPC New Detector Design

Goal: with PFA calorimeters to improve boson mass resolution (BMR) from 4% → 3%。

Calorimeter	World-class	New design
PFA ECAL	\sim 15-20% / vE	\sim 3% / vE
PFA HCAL	\sim 50-60% / vE	\sim 40% / ve

 Silicon tracker with TPC / DC: to improve track reconstruction & PID
 PFA ECAL with crystal: to improve π⁰, γ energy resolution
 PFA HCAL with scintillating glass:

to improve hadron energy resolution

CEPC Detector R&D: Silicon, TPC, DC Prototypes

Test beam @ DESY

2nd testbeam: April 11-23 2023 DESY test beam in Germany (4-6 GeV electron)

Vertex detector prototype testbeam

1st testbeam: Dec 12-22 2022 DESY test beam in Germany (4-6 GeV electron)

TaichuPix Beam Telescope testbeam

2023 DESY test

Excellent collaboration with DESY testbeam team

Goal: $3\sigma \pi/K$ separation up to ~20 GeV/c.

- Cluster counting method, or dN/dx, measures the
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak

IHEP and Italian INFN groups have close collaboration and regular meetings.

K/ π separation vs momentum (θ =90°) dEids to t

Momentum (GeV/c)

dNick truth

Test of Prototype TPC

GEM-MM cathode TPC Prototype + UV laser beams

Low power FEE ASIC

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

 $\sigma_{\rm u}$ < 100 μ m for drift length of 27cm

IHEP joined the TB (led by INFN group) in 2021 and 2022

CEPC Detector R&D: Calorimeter Prototypes

Det	Technology		Det	Technology
×	JadePix			Crystal ECAL
irte	TaichuPix			Stereo Crystal ECAL
I Ve	CPV(SOI)		5	Scint+W ECAL
ixe	Stitching		lete	Si+W ECAL
4	Arcadia	ri	rim	Scint+Fe AHCAL
	CEPCPix		Calc	ScintGlass AHCAL
DIG	Silicon Strip			RPC SDHCAL
r &	TPC			MPGD SDHCAL
cke	Drift chamber			DR Calorimeter
Tra	PID drift chamber		c	Scintillation Bar
-	LGAD ToF		Inol	RPC
mi	SiTrk+Crystal ECAL		2	^μ -Rwell
Lu	SiTrk+SiW ECAL			HTS / LTS Magnet
	CEPC SW			MDI & Integration
	TDAQ			

- Large number of detector technology options and R&D projects on-going, they are not at similar level of maturity.
- Need to converge technology options towards a CEPC reference detector TDR
 - Start preparation in Jan. 2024
 - ✤ A draft version of TDR in Dec. 2024
 - ✤ Official release of TDR in Jun. 2025

> Intl. detector collaborative efforts

- DRD collaboration (DRD1-8), more than 130 colleagues from 11 Chinese institutes joined so far.
- HL-LHC detector R&D efforts help to prepare teams for CEPC detectors.

CEPC International Collaboration

CEPC attracts significant International participation

- Both CDR and TDR have significant intl. contributions
- > 20+ MoUs signed with Intl. institutions and universities
- Intl. collaborative efforts: DRD & HL-LHC detector R&D
- CEPC International Workshop since 2014
- Annual working month at HKUST-IAS since 2015
- EU-US versions of CEPC Workshop since 2018

Next CEPC Workshop

CEPC International Workshop at Hangzhou, Zhejiang U., Oct. 23-27, 2024 China announced 144-hour visa-free transit policy for 54 selected countries

International Workshop on The High Energy Circular Electron Positron Collider

October 23 - 27, 2024, Hangzhou, China

The purpose of this international workshop is to convene a global community of scientists to explore the physical potential of the Circular Electron Positron Collider (CEPC). The event aims to foster international collaboration in optimizing accelerators and detectors, as well as to intensify research and development (R&D) efforts in key technologies. Additionally, the workshop will delve into the exploration of industrial partnerships, focusing on the R&D of technologies and preparation for their industrialization.

Scientific Program Committee

	INFN/Pisa U.Melbourne	Janbei Liu Tao Elius	USTC
Maria Enrica Biagini	INFINITE AND A	Zhen Liu	U.Minnesota
Daniela Bortofetto	U. ContoTd		
Shikma Bressler		Bruce Meilado	U.Wits,iThemba LABS
Philip Burrows	U.Oxford	Carlo Pagani	INFN/Milano
Joao Guimaraes da Costa		Michael Ramsey-Musolf	
		Matthias Schott	JGU
	UCLab/Orsay	Maksym Titov	(e)
JierGao		Makoto Tobiyama	KEK
Paolo Giacomelli		Yeshinobu Unno	
Sebastian Grinstein		Pierre Vedrine	CEA
Garam Hahn	POSTECH	Alessandro Vicini	INFN/Milano
Xiaogang He	TOU SITU	Liantao Wang	U.Chicago
Sven Heinemeyer	IET/CSIC=	Xueging Yan	PKU
Wenhui Huang	THU	Haijun Yang	SJTU, TDLI
Hassan Jawahery	U.Marvland	Jingbo Ye	IHEP
Elji Kako	KEK	Hwidong Yoo	Yonsei Univ.
Imad Laktineh	IP2I/Lyon	Frank Zimmermann	CERN
Eugene Levichev	BINP		
Local Organizing Cor	nmittee		
Kal Chen	- CONU	Xiaolong Wang	FDU
Gang Li	IH SP.	Yusheng Wu	
Hengneti	SCNU	Meng Xiao	210-
Peilianta	UCAS	Lilio Yang	20
Shu Li	TER/STU		2,00
			NIU
Yuhui Li	JHEP	Lei Zhang	100
Yuhui Li Mangi Ruan	THEP	Lei Zhang Liming Zhang	THU
Yuhui Li Manqi Ruan Xiaohu Sun	IHEP IHEP PKU	Lei Zhang Liming Zhang Qidong Zhou	
Yuhui Li Manqi Ruan Xiaohu Sun Kai Wang	IHEP IHEP PKU ZJU	Lei Zhang Liming Zhang Qidong Zhou Hongbo Zhu (chair)	-THU
Yuhui Li Manqi Ruan Xiaohu Sun Kai Wang	IHEP IHEP PKU ZJU	Lei Zhang Liming Zhang Qidong Zhou Hongbo Zhu (chair)	-THU SDU ZJU
Yuhui Li Mangi Ruan Xiaohu Sun Kai Wang	IHEP IHEP PKU ZJU	Lei Zhang Liming Zhang Qidong Zhou Hongbo Zhu (chair)	THU SDU ZJU
Yuhui Li Manqi Ruan Xiaohu Sun Kai Wang Secretaries	JHEP IHEP PRU ZJU	Lei Zhang Liming Zhang Oldong Zhou Hongbo Zhu (chair)	THU SDU ZU
Yuhut Li Mangi Ruan Xiaohu Sun Kai Wang Secret aries Li Jielin Gao Yaru Wu Hongjuan	JHEP IHEP PKU ZJU	Lei Zhang Uming Zhang Qidong Zhou Hongbo Zhu (chair)	THU SDU ZU

Industrial Partners and Suppliers Worldwide

- CAS is planning for the 15th 5-year plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- > High energy physics and nuclear physics is one of eight groups (fields).
- > CEPC is ranked No. 1, by every committee (2 domestic and 1 international).
- > A final report was submitted to CAS for consideration, this process is within CAS, and the following national selection process will be decisive.

CEPC Planning and Schedule

2012.9	2015.3	2018.11	2023.12	2025.6	2027	15 th five year plan (2026-2030)
proposed	Pre-CDR	CDR	Acc. TDR	Det. TDR	EDR	Start of construction

CEPC EDR Phase: 2024-2027

- CEPC Accelerator EDR starts with 35 WGs in 2024, to be completed in 2027
- CEPC Reference Detector TDR will be released by June, 2025
- CEPC proposal will be submitted to the Chinese government for approval in 2025
- Upon approval, establish at least two international collaborations on experiments
- CEPC construction starts during the 15th five-year plan (2026-2030, e.g. 2027)
- CEPC construction complete around
 2035, at the end of the 16th five-year plan

CEPC	Project Timeline	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	20
	Technical Design Report (TDR)					1	5 1	th	F١	•		 6 †	th	F١	(
lerator	Engineering Design Report (EDR) R&D of a series of key technologies Prepare for mass production of devices though CIPC		2023														
Acce	Civil engineering, campus construction					2026											
na	ature																
Expl	ore content Y About the jour	nal	~	Pu	blis	h wi	th u	s ~		Sul	oscri	ibe					

<u>nature</u> > <u>news</u> > article

NEWS | 17 June 2024 | Correction <u>18 June 2024</u>

China could start building world's biggest particle collider in 2027

The US\$5 billion facility would be cheaper, bigger and faster to build than a similar one proposed by European scientists.

Summary

- CEPC addresses many most pressing and critical science problems in particle physics.
- Accelerator design and technology R&D are reaching maturity, TDR completed, enters EDR phase, ready for construction in 3-5 years.
- Reference detector TDR under preparation, to be completed by the mid-2025 for the proposal of China's 15th 5-year plan.
- Contributions from international colleagues for both accelerator EDR and reference detector TDR are warmly welcome.
- CEPC schedule will follow the 15th 5-year plan, call for international collaborations and proposals once CEPC is approved.
- > CEPC will offer the worldwide HEP community an early Higgs factory.

Acknowledgement

Thanks to CEPC team for enormous efforts and achievements Special thanks to CEPC IAC, IARC and TDR review committee

High Energy Photon Source (HEPS)

To be completed in 2025, great training and preparation for CEPC → towards a green accelerator

Experience at HEPS

- Solar panel:10 MW → 10% saving
- Permanent magnet: 5.6 GWh saving/year
- Hot water (13 MW @ 42 °C) for heating

Solar panel on the roof of HEPS

CEPC vs FCC-ee

Table 1: Luminosity per IP $(10^{34} \text{ cm}^{-2}\text{s}^{-1})$

		Operatio	on mode	
	Н	Z	W	tī
CEPC (TDR, 30 MW)	5	115	16	0.5
CEPC (TDR, 50 MW)	8.3	192	26.7	0.8
FCC-ee (FS MTR, 50 MW)	≥ 5.0	140	20	1.25

Table 2: Integrated Luminosity per Year per IP (ab⁻¹/yr/IP)

	Operation mode				
	Н	Z	W	tĪ	
CEPC (TDR, 30 MW)	0.65	15	2.1	0.065	
CEPC (TDR, 50 MW)	1.1	25	3.5	0.1	
FCC-ee (FS MTR, 50 MW)	0.6	17	2.4	0.15	

Table 3: Total Integrated Luminosity per Year (ab^{-1}/yr)

	Operation mode				
	Н	Z	W	tī	
CEPC (TDR, 30 MW, 2 IPs)	1.3	30	4.2	0.13	
CEPC (TDR, 50 MW, 2 IPs)	2.2	50	6.9	0.2	
FCC-ee (FS MTR, 50 MW, 4 IPs)	2.4	68	9.6	0.6	

Table 4: Total Number of Events over the Machine Lifetime

	Operation mode					
	Н	Z	W	tī		
CEPC (TDR, 30 MW)	$2.6 imes 10^6$	2.5×10^{12}	$1.3 imes 10^8$	$0.4 imes 10^6$		
CEPC (TDR, 50 MW)	$4.3 imes 10^6$	4.1×10^{12}	2.1×10^{8}	$0.6 imes 10^6$		
FCC-ee (FS MTR, 50 MW)	$2 imes 10^6$	$5 imes 10^{12}$	> 1 × 10 ⁸	$2 imes 10^6$		

CEPC Accelerator: Plasma Injector

Witness beam

CEPC Plasma Injector Scheme From 10 GeV \rightarrow 30 GeV \rightarrow TR \geq 2

Simulation results show that it works on paper with reasonable error tolerances for both electron & positron beams injected to booster

PWFA/LWFA TF based on BEPC-II Linac and HPL has founded by CAS, 120M RMB in Sept. 2023

CEPC Site Selection

CEPC Concepts

CEPC Key Scientific Issues and Technologies Route

CEPC Team

CEPC Organization

Table 7.2: Team of Leading and core scientists of the CEPC Name Brief introduction Role in the CEPC team The leader of CEPC, chair of the SC Yifang Wang Academician of the CAS, director of IHEP Professor of IHEP Xinchou Lou Project manager, member of the SC Yuanning Gao Academician of the CAS, head Chair of the IB, member of the SC of physics school of PKU Professor of IHEP Jie Gao Convener of accelerator group, vice chair of the IB, member of the SC Haijun Yang Professor of SJTU Deputy project manager, member of the SC Jianbei Liu Professor of USTC Convener of detector group, member of the SC Professor of USTC Convener of theory group, member Hongjian He Managemen team, eading scien Joao Guimaraes da Costa Professor of IHEE Convener of detector group Jianchun Wang Professor of IHEP Convener of detector group Yuhui Li Professor of IHEP Convener of accelerator group Chenghui Yu Professor of IHEP Convener of accelerator group Professor of IHEP Jingyu Tang Convener of accelerator group Professor of SJTU Convener of theory group Xiaogang He Jianping Ma Professor of ITP Convener of theory group

Nun

• Institution Board: 32 institutes, top universities/institutes in China

- Management team: comprehensive management experience at construction projects of BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/...
- Accelerator team: fully over all disciplines with rich experiences at BEPCII, HEPS...
- Physics and Detector team: fully over all disciplines with rich experiences at BESIII, Daya Bay, JUNO, ATLAS, CMS, LHCb ...

					Number	Sub-system	Conveners	Institutions	Team (senior starr)
	Table 7.3: Team	of the CEPC accelerator sys	tem		1	Pixel Vertex	Zhijun Liang, Qun Ouyang,	CCNU, IFAE, IHEP, NJU,	~ 40
		-				Detector	Xiangming Sun, Wei Wei	NWPU, SDU, Strasbourg,	
ıber	Sub-system	Convener	Team (senior staff)		2	Silicon	Harald Fox, Meng Wang,	IHEP, INFN, KIT, Lan-	~ 60
	Accelerator physics	Chenghui Yu, Yuan Zhang	18			Tracker	Hongbo Zhu	caster, Oxford, Queen Mary,	
2	Magnets	Wen Kang, Fusan Chen	12					RAL, SDU, Tsinghua, Bris-	
3	Cryogenic system	Rui Ge, Ruixiong Han	11					USTC, Warwick, Sheffield,	
ł	SC RF system	Jiyuan Zhai, Peng Sha	12					ZJU,	
5	Beam Instrumentati	scelerator	+ ~300	det	ect	Ostras dS		renty DESY,	~ 30
5	SC magnets			111.71				INFN, NIKHEF, THU	
7	Power supply ~ 4	BinChen, Fengli Long	LLCV RE2	III/J		Nagret	Fe nen i Ning	IHEP	~ 10
3	Injection & extraction	Jinhui Chen			5	Calorimetry	Roberto Ferrari, Jianbei Liu,	CALICE Collab., IHEP,	~ 40
)	Mechanical system	Jianli Wang, Lan Dong	ICE CEP		JŮL		Paolo Giacomelli, Liang Li.	FDU. IHEP. INFN. SITU	~ 20
, _	Wieenamear system	Shahiri Wang, Lan Dong	-		• •		Xiaolong Wang	120,11121,1111,0010	
0	Vacuum system	Haiyi Dong, Yongsheng Ma	5		7	Physics	Mangi Ruan, Yaguan Fang	THEP FDU SITU	~ 80
1	Control system	Ge lei, Gang Li	6			1 Ilyoneo	Liantao Wang, Mingshui		
2	Linac injector	Jingyi Li, Jingru Zhang	13				Chen		
3	Radiation protection	Zhongjian Ma	3		8	Software	Shengseng Sun, Weidong	IHEP, SDU, FDU,	~ 20
	Sum		117				Sum		~ 300

......

Table 7.4: Team of the CEPC detector system

T

CEPC International Committees

CEPC Organization

-	•	-
Name	Affiliation	Country
Tatsuya Nakada	EPFL	Japan
Steinar Stapnes	CERN	Norway
Rohini Godbole	CHEP, Bangalore	India
Michelangelo Mangano	CERN	Switzerland
Michael Davier	LAL	France
Lucie Linssen	CERN	Holland
Luciano Maiani	U. Rome	San Marino
Joe Lykken	Fermilab	U.S.
lan Shipsey	Oxford/DESY	U.K.
Hitoshi Murayama	IPMU/UC Berkeley	Japan
Geoffrey Taylor	U. Melbourne	Australia
Eugene Levichev	BINP	Russia
David Gross	UC Santa Barbara	U.S.
Brian Foster	Oxford	U.К
Marcel Demarteau	ORNL	USA
Barry Barish	Caltech	USA
Maria Enrica Biagini	INFN Frascati	Italy
Yuan-Hann Chang	IPAS	Taiwan, China
Akira Yamamoto	КЕК	Japan
Hongwei Zhao	Institute of Modern Physics, CAS	China
Andrew Cohen	University of Science and Techbnology	Hong Kong, China
Karl Jakobs	University of Freiburg/CERN	Germany
Beate Heinemann	DESY	Germany

International Advisory Committees

International Accelerator Review Committee

- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/University of Hamburg & Oxford University
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

International Detector R&D Review Committee

- Jim Brau, USA, Oregon
- Valter Bonvicini, Italy, Trieste
- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku
- IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, operating since 2015
 IARC & IDRC: leading experts of this field, provide guide to the project director

CEPC R&D: Calorimeters with PFA

Crystal ECAL

Energy resolution $\sim 3\%/\sqrt{E} \oplus \sim 1\%$

Features:

- Good energy resolution
- > 3D shower info. with limited readout channel
- Shower separation < 4 cm</p>

Main issues for R&D

Jet reconstruction and PFA algorithm

Scintillation Glass HCAL Energy resolution $\sim 40\%/\sqrt{E} \oplus \sim 2\%$ Features:

Large sampling ratio at low cost

Main issues for R&D

high density, high light yield, radiation hardness, production

Glass Scintillator Studies

The performance of the best glass sample: 6 g/cm3 & 1000 ph/MeV & 100 ns
The GS collab. led by IHEP, with 3 Institutes of CAS, 5 Universities, 3 Factories.

GS	Research & Sicci
Production	Mass production
	Optical test
GS Research	Mechanical test 🎯 🎡 🥌
	Irradiation test 🚺 🥌 🎉
	Simulation
GS HCAL Design	SiPM Research
	Single Tile Test
GS	Unclear Detection 🥯 🚺 🐼
Application	Others

希格斯物理:新物理的探针

Higgs 衰变到BSM粒子, H→ X₁X₂

→ CEPC的Higgs 或者 Z 玻色子奇异衰变末态的分 支比预期测量精度将比 HL-LHC提升多个数量级!

CEPC 物理:探索新物理能标

▶利用标准模型有效场理论 (SMEFT), 分别对算符参数进行独立拟合或 全局拟合, CEPC对新物理的预期探索能标可达到~10 TeV!

95% CL reach from SMEFT fit