

Doubly Charmed $\Lambda_c \Lambda_c$ **Scattering from Lattice QCD**

Yiqi Geng

Institute of Morden Physics, and Nanjing Normal U.

Collaborators: Liuming Liu, Peng Sun, Jia-Jun Wu, Hanyang Xing, Zhicheng Yan, Ruilin Zhu

yqgeng@njnu.edu.cn liuming@impcas.ac.cn sunpeng19820124@gmail.com wujiajun@ucas.ac.cn

FB23, Sept 26th , 2024, Beijing

Outline

- Motivation
- Lattice Setup
- Formalism
- Analyses and Result
- Summary

Since $X(3872)$ was found in 2003, many exotic states beyond conventional quark model were found in experiments one after another.

Also see talks: [D. Wei, 24th 14:00-14:25 China Hall 2] [L.-S. Geng, 24th 14:25-14:50 China Hall 2]

[F.-K. Guo et al, PoS LATTICE2022(2023)232]

• Recently, many new exotic states were found, such as $T_{cc}^+(3875)$, $P_c(444084457)$ and so on. **[F.-Z. Peng, 24th 14:50-15:10 China Hall 2] Also see talks:**

[X. Zhang, 25th 11:25-11:45 China Hall 2]

[L.-R. Dai, 26th 9:45-10:05 China Hall 2]

- ⚫ Since unquenched Lattice QCD was developed, many lattice study on hadronic spectrum have been pushed ahead.
	- \triangleright Many lattice works on T_{cc}^{+} (3875) are trying to explain it structure. **[S.-Y. Chen, C.-J. Shi, Y. Chen at el, Phys.Lett.B 833 (2022) 137391] [Lyu Yan at el, Phys.Rev.Lett. 131 (2023) 16, 161901] [M. Padmanath and S. Prelovsek, Phys.Rev.Lett. 129 (2022) 3, 032002] [M.-L. Du, Phys.Rev.Lett. 131 (2023) 13, 13190]**
	- ➢ Lattice study on baryon-meson molecular states also have some results. **[Lyu Yan at el, Phys.Rev.D 106 (2022) 7, 074507] [Hanyang Xing at el, arXiv 2210.08555]**
- ⚫ Study of Baryon-Baryon interaction have many challenges on Lattice.
	- ➢ Deuteron bound state haven't been confirmed in the lattice calculation.

[Saman Amarasinghe et al. Phys.Rev.D. 107 (2023) 9, 094508]

➢ ΛΛ system, which is also known as H dibaryon.

[Jeremy R. Green et al. Phys.Rev.Lett. 127 (2021) 24, 242003]

Also see talk : Hanyang Xing, 26th 12:00-12:30 , China Hall 3 **What about** $\Lambda_c \Lambda_c$ **?**

Lattice Setup

In this work,

• Two Wilson-Clover lattice ensembles are used.

[Z.C. Hu et al. PRD 109 (2024) 5, 054507]

- Space-time symmetrical and 2+1 flavor.
- Same m_{π} and lattice spacing, but different volume.

● Lüscher's finite volume method [M. Lüscher, Nucl. Phys. B. 354 (1991) 531-578] $\det[1 + i\rho T(1 + i\mathcal{M})] = 0$

- $\rho \sim$ phase space $T \sim$ scattering amplitude $\mathcal{M} \sim$ Lüscher matrix
- For S wave rest-frame case:

$$
\mathcal{M}_{00}(\tilde{q}^2) = \frac{2}{\sqrt{\pi L}} Z_{00}(1; \tilde{q}^2)
$$

Also see talk : Akski Rusetsky, 24th 12:00-12:30 , China Hall 2

- ➢ **A new modification on L**ሷ**scher equation is needed**
	- Cause by discretized effect with $Z_{1(2)} \neq 1$:

$$
E(k) = \sqrt{m_1^2 + Z_1 p^2} + \sqrt{m_2^2 + Z_2 p^2}
$$

[Yan Li, Jia-Jun Wu at el, JHEP 08 (2024) 178]

• General Lüscher matrix

$$
\mathcal{M}_{lm,l'm'}(q,P) = \frac{1}{q} \left(\frac{1}{L^3} \sum_{k} -P \int \frac{d^3 k^r}{(2\pi)^3} \right) \frac{32\pi^2 E^*(q) \mathcal{J}^r}{4\omega_1(k^*)\omega_2(k^*)} \frac{Y_{lm}(\hat{k}^*) Y_{l'm'}(\hat{k}^*) \left(\frac{|k^*|}{q}\right)^{l+l'}}{E^*(q) - \omega_1(k^*) - \omega_2(k^*)}
$$

• Consider a translation of the limit

$$
\lim_{k^* \to q} \frac{1}{4\omega_1(k^*)\omega_2(k^*)} \frac{q - k^*}{E^*(q) - \omega_1(k^*) - \omega_2(k^*)} = \lim_{k^* \to q} \frac{1}{4q[Z_1\omega_2(q) + Z_2\omega_1(q)]}
$$
\n
$$
\to \frac{1}{4\omega_1(k^*)\omega_2(k^*)} \frac{1}{E^*(q) - \omega_1(k^*) - \omega_2(k^*)} = \frac{1}{2[Z_1\omega_2(q) + Z_2\omega_1(q)]} \frac{1}{q^2 - k^{*2}}
$$

$$
\rightarrow \mathcal{M}_{lm,l'm'}(q,P) = \frac{16\pi^2}{q} \left(\frac{1}{L^3} \sum_{k} -P \int \frac{d^3k^r}{(2\pi)^3} \right) J^r \frac{Y_{lm}(\hat{k}^*) Y_{l'm'}(\hat{k}^*) \left(\frac{|k^*|}{q} \right)^{l+l'}}{q^2 - k^{*2}} \frac{E^*(q)}{Z_1 \omega_2(q) + Z_2 \omega_1(q)}
$$

• For S wave rest-frame case: $\mathcal{M}_{00}(\tilde{q}^2)$ = 2 πL $Z_{00}(1;\tilde{q}^2) \times$ $E^*(q)$ $Z_1\omega_2(q) + Z_2\omega_1(q)$

Formalism

⚫ **Distillation quark smearing method**

➢ Advantages

- Improve precision
- Efficient for large numbers of operations
- > Operate $\Box(t) = V(t)V^{\dagger}(t)$ on quarks → $P = VGV^{\dagger}$
- $G \sim$ propagator $P \sim$ perambulator
- $V \sim$ eigenvectors of ∇^2

• Dimension of V is $[N_t, N_c \times N_x^3, N_{ev}]$

[Colin Morningstar, Phys.Rev.D 83 (2011) 114505] [Hadron Spectrum Collaboration, Phys.Rev.D 80 (2009) 054506]

⚫ **Operator construction**

• Single baryon
$$
B(k, x^0) = \sum_{\vec{x}} P_+ \varepsilon_{abc} r_{ax} \left[s_{bx}^T (C\gamma_5) t_{cx} \right] e^{-i\vec{k}\cdot\vec{x}}
$$

• Two baryons
$$
\mathcal{O}_{B_1B_2}^{\Lambda}(|\vec{k}|) = \sum_j c_j^{\Lambda} B_1^T(|\vec{k}|) C\gamma_5 B_2(-|\vec{k}|)
$$

⚫ **Correlation function**

 $C(t) = \langle O(t) O^{\dagger}(0) \rangle \approx A e^{-E t}$

⚫ **Generalized eigenvalue problem(GEVP)**

 $C(t)v_{\alpha}(t,t_0) = \lambda_{\alpha}(t,t_0)C(t_0)v_{\alpha}(t,t_0)$

- ⚫ Energy Fitting Method
	- \triangleright Fitting range selection

Correlation function of Single Λ_c then can be fitted as the parametrization

- Fitting window is $[t_{start}, t_{end}]$ while t_{end} is fixed.
- Starting time-slice should given a stable fitting result.
- Fitting window should be as wide as possible.

 $C(t) = A \exp[-M_{eff}t]$

- Energy Fitting Method
	- ➢ Two baryons correlation function

Since these energy levels are quite close to their corresponding free energies, a ratio form fitting could perform better

$$
C_R(t) = \frac{C_{BB}(t)}{C_{thre.}(t)} \simeq Ae^{-(E_{BB}-2m_{\Lambda_c})t} = Ae^{-\Delta E t}
$$

⚫ Couple channel

To explore the states near $\Lambda_c \Lambda_c$ 0(0⁺) threshold, the coupling with $\Xi_{cc} N$ is contained.

• single baryon
$$
\Lambda_c
$$
 $0 \left(\frac{1}{2}^+ \right)$, Ξ_{cc} , $N \frac{1}{2} \left(\frac{1}{2}^+ \right)$ and Σ_c $1 \left(\frac{1}{2}^+ \right)$

Determine the $\Sigma_c \Sigma_c$ **threshold cutoff**

• two baryons

$$
\Lambda_c \Lambda_c^{I=0} = [\Lambda_c \Lambda_c]
$$

$$
\Xi_{cc} N^{I=0} = \frac{1}{2} ([p \Xi_{cc}^+] + [\Xi_{cc}^+ p] - [n \Xi_{cc}^{++}] - [\Xi_{cc}^{++} n])
$$

Base on identical particle exchange, the operator construction can be further simplified.

- Coupled with $E_{cc}N$
	- ➢ Cross-correlation matrix

- ➢ Overlap factor
	- $Z_i^\alpha = \sqrt{2 E_\alpha} e^{E_\alpha t_0/2} v_j^{\alpha*} \mathcal{C}_{ji}(t_0)$

- The coupling between $\Xi_{cc}N$ and $\Lambda_c\Lambda_c$ is quite small.
- $\Lambda_c \Lambda_c$ energy levels haven't been shifted obviously.

[C. Liu, L. Liu et al, Phys.Rev.D 101 (2020) 5, 054502] [Jozef J. Dudek et al, Phys.Rev.D 82 (2010) 034508]

Analyses and Result

- Discretization effect
	- Dispersion relation $E^2(k) = m^2 + Z_{cont.}p^2$

where slope Z isn't always equal to 1 perfectly.

• Modification on Lüscher formula

Consider a translation of the limit

$$
\lim_{k^* \to q} \frac{1}{4\omega_1(k^*)\omega_2(k^*)} \frac{q - k^*}{E^*(q) - \omega_1(k^*) - \omega_2(k^*)} = \lim_{k^* \to q} \frac{1}{4q[Z_1\omega_2(q) + Z_2\omega_1(q)]}
$$
\n
$$
\to \frac{1}{4\omega_1(k^*)\omega_2(k^*)} \frac{1}{E^*(q) - \omega_1(k^*) - \omega_2(k^*)} = \frac{1}{2[Z_1\omega_2(q) + Z_2\omega_1(q)]} \frac{1}{q^2 - k^{*2}}
$$
\n
$$
\to \mathcal{M}_{00}(\tilde{q}^2) = \frac{2}{\sqrt{\pi L}} Z_{00}(1; \tilde{q}^2) \times \frac{E_1 + E_2}{Z_1E_2 + Z_2E_1}
$$

[Yan Li, Jia-Jun Wu at el, JHEP 08 (2024) 178]

⚫ Spectrum and Phase

• Repulsive interaction

- Due to the **discretization** on lattice, a **modification on Lüscher equation** is proposed in this work.
- Coupled with $\Xi_{cc}N$, the energy levels of $\Lambda_c\Lambda_c$ haven't been shifted obviously. Therefore, **single channel** is contained.
- Showing a **repulsive interaction,** there's **no bound state** in this system.
- Scattering length $a_0 = -0.143(49)$ fm.

Thanks!

Back-up

● Left-hand cut

The left-hand cut gives the limit of pole extraction with $k^2 = -\frac{m_\omega^2}{4}$ 4 from the exchanging of omega boson.

> [X.-K. Dong et al, Phys.Rev.D 105 (2022) 7, 074506] [Also see talk in Aug 1^{st} 11:30 and 11:50 in LT1]

⚫ Finite volume effect

- The scattering length are consistent in the two ensembles.
- However, there's a little difference.

