

2024/9/25 The 23rd International Conference on Few-Body Problems in Physics

Plan of spin correlation coefficient measurements of deuteron-proton scattering at intermediate energies

Department of Physics, Graduate School of Science, Tohoku University Yuko Saito

- ✤ Tokyo Tech. Univ.: K. Sekiguchi, A. Watanabe, K. Suzuki, H. Sugahara, D. Takahashi
- ✤ Tohoku Univ. : T. Matsui
- RIKEN : K. Tateishi, N. Sakamoto, H. Sakai , T. Uesaka
- * Kyushu Univ. : T. Wakasa, K. Nishibata, K. Aradono, K. Hirasawa, Y. Nagao, S. Sakaguchi
- * Miyazaki Univ.: Y. Maeda * Saitama Univ. : S. Otsuka

Contents

- 1. Three-Nucleon Force and deuteron-proton (*d-p*) elastic scattering
- 2. Measurement of Spin Correlation Coefficients in $\vec{d} \cdot \vec{p}$ elastic scattering
 - Polarized Proton Target
 KuJyaku Detector System
 - Polarized Deuteron Beam
- 3. Experiment with the new systems in January 2024 $(d-\vec{p} \text{ elastic scattering } @ 135 \text{ MeV/Nucleon})$
- 4. proton-³He (p-³He) elastic scattering experiments

5. Summary

1. Three-Nucleon Force and deuteron-proton elastic scattering Two-Nucleon Force (*NN*) and Three-Nucleon Force (3*N*F)

Realistic NN potentials : Argonne v_{18} (AV18), CD Bonn (CDB), Nijmegen I, II

• reproduce 4000 high-precision NN scattering data with accuracy of $\chi^2/data \sim 1$

π

π

N

• excellent descriptions of deuterons (A = 2)

fail to describe properties of $A \ge 3$ nucleon systems eg. binding energies, nuclear matters

- **Three-Nucleon Force (3NF)**
- Typical 3NF : Fujita-Miyazawa (2π -exchange) type
- Development of Urbana IX (UIX), Tucson-Melbourne (TM) \rightarrow potentials based on 2π -exchange type 3NF

<u>good descriptions of A ≧ 3 nuclear binding eneriges</u>

S. C. Pieper et al., Phys. Rev. C 64, 014001 (2001).

• *d-p* elastic scattering (*E/A* 70–300 MeV)

effective probe for investigation of the 3NFs

- 1. Three-Nucleon Force and deuteron-proton elastic scattering Study of 3NFs via few-nucleon scattering experiments
 - momentum, spin, isospin dependence of the 3*N*Fs Direct comparison between...
 - high-precision data in few-nucleon scattering (differential cross sections, spin observables)
 - theoretical predictions based on rigorous numerical calculations

.70 MeV

135 MeV

3NF

8.00000 0000

00-000000

50.00

10.00

00.7 Sr

Up/ 1.00

ьр 0.50

[mb/

d-p

1. Three-Nucleon Force and deuteron-proton elastic scattering

Contents

1. Three-Nucleon Force and deuteron-proton (d-p) elastic scattering

2. Measurement of Spin Correlation Coefficients in \vec{d} - \vec{p} elastic scattering

- Polarized Proton Target
 KuJyaku Detector System
- Polarized Deuteron Beam
- 3. Experiment with the new systems in January 2024 $(d-\vec{p} \text{ elastic scattering } @ 135 \text{ MeV/Nucleon})$
- 4. proton-³He (p-³He) elastic scattering experiments

5. Summary

2. Measurement of Spin Correlation Coefficients $(C_{i,j})$ in $\vec{d} \cdot \vec{p}$ elastic scattering New d-p experiment for the determination of the 3NF

pd and nd elastic scattering at 65-300 MeV/nucleon

Measurement of spin correlation coefficients in *d-p* elastic scattering @ RIKEN

➢ for the determination of LECs in N4LO 3NFs

Polarization of both beam and target necessary!

- ***** Polarized deuteron beam (\vec{d}) : polarized ion source @ RIKEN
- Polarized proton target (\vec{p}) : newly developed based on triplet-DNP
- New detector system (KuJyaku) developed for measurement of L, R, U, D at wide angular (θ) range

2. Measurement of Spin Correlation Coefficients $(C_{i,j})$ in $\vec{d} \cdot \vec{p}$ elastic scattering **Polarized Proton Target** (\vec{p})

→based on the Triplet-Dynamic Nuclear Polarization (triplet-DNP) Method

Past achievements : Proton polarization of <u>34%</u> @ 0.4 T and ~300K K. Tateishi *et al.*, www.pnas.org/cgi/doi/10.1073/pnas.1315778111

necessary conditions for $\vec{d} - \vec{p}$ elastic scattering experiment (• measurement at wide angular range (θ_{lab} : ±60°)

detection of scattered particles with relatively low energy (60-200 MeV)
 → static field under ~1 T

• polarization around 10 %

2. Measurement of Spin Correlation Coefficients $(C_{i,i})$ in $\vec{d} \cdot \vec{p}$ elastic scattering Polarized Proton Target (\vec{p})

(a)

(2)

 $(\mathbf{3})$

2. Measurement of Spin Correlation Coefficients $(C_{i,j})$ in $\vec{d} \cdot \vec{p}$ elastic scattering **KuJyaku Detector System**

10

2. KuJyaku Detector System

2. KuJyaku Detector System

2. Measurement of Spin Correlation Coefficients $(C_{i,j})$ in $\vec{d} \cdot \vec{p}$ elastic scattering **Polarized deuteron beam** (\vec{d}) : **Polarized ion source**

Polarized ion source

~2012

• polarization : 60-80% of theoretically maximum values

$2023/7\sim$

 water leakage from cooling pipe inside vacuum chamber → repairing / maintenance

3 m

 $2024/9/14 \rightarrow beam$ test to check the deuteron polarization !

• polarization : 50-80% (preliminary)

Ready for the

Spin Correlation Coefficients Measurement

Contents

- 1. Three-Nucleon Force and deuteron-proton (d-p) elastic scattering
- 2. Measurement of Spin Correlation Coefficients in $\vec{d} \cdot \vec{p}$ elastic scattering
 - Polarized Proton Target
 KuJyaku Detector System
 - Polarized Deuteron Beam
- 3. Experiment with the new systems in January 2024 $(d \vec{p} \text{ elastic scattering } @ 135 \text{ MeV/Nucleon})$
- 4. proton-³He (p-³He) elastic scattering experiments

5. Summary

3. Experiment with the new systems in January 2024 (d- \vec{p} elastic scattering @ 135 MeV/N)

 \succ First beam test on target/detector systems using *d* beam

Observables	$d\sigma/d\Omega$, A_y , target polarization
Machine time	1/8 9:00 - 1/10 9:00
beam	135 MeV/Nucleon unpolarized d beam
target	pol. <i>p</i> target (C ₁₄ H ₁₈ crystal : ϕ 10, 2.5 mm)
detector	KuJyaku system (plastic scintillators, MWDCs)

3. Experiment with the new systems in January 2024 (d- \vec{p} elastic scattering @ 135 MeV/N) Event Selection

3. Experiment with the new systems in January 2024 (d- \vec{p} elastic scattering @ 135 MeV/N) Preliminary Results

17

Future plans for the Measurement of Spin Correlation Coefficients in \vec{d} - \vec{p} elastic scattering

 \rightarrow polarization expected to rise to ~10%

* Necessity of improvements in target polarization

 \rightarrow under development

*Measurement of Spin Correlation Coefficients in $\vec{d} \cdot \vec{p}$ elastic scattering \checkmark Next : $\vec{d} + \vec{p}$ @ 100 & 135 MeV/Nucleon $\rightarrow C_{y,y}, C_{x,x}, C_{yy,y}$ ✓ Future : $\vec{d} + \vec{p}$ @ 100 & 135 MeV/Nucleon → $C_{z,x}, C_{xx,y}, C_{xy,x}, C_{yz,x}, C_{xz,y}$

Contents

- 1. Three-Nucleon Force and deuteron-proton (d-p) elastic scattering
- 2. Measurement of Spin Correlation Coefficients in $\vec{d} \cdot \vec{p}$ elastic scattering
 - Polarized Proton Target
 KuJyaku Detector System
 - Polarized Deuteron Beam
- 3. Experiment with the new systems in January 2024 $(d-\vec{p} \text{ elastic scattering } @ 135 \text{ MeV/Nucleon})$
- 4. proton-³He (p-³He) elastic scattering experiments

5. Summary

4. proton-³He (p-³He) scattering experiments Isospin Dependence of 3NFs

- d+p : isospin channel limited to T = 1/2
- T = 3/2 channel of 3NFs: Important roles for exploring neutron-rich nuclei & pure neutron matter

Proton-³**He elastic Scattering** @ 65-100 MeV for investigation of T = 3/2 channel in 3*N*Fs

Our Experiments

Incident Energy	65 MeV	70 MeV	65 MeV	100 MeV
Beams	pol. <i>p</i>	р	pol. <i>p</i>	pol. <i>p</i>
Observables	$d\sigma/d\Omega, A_{\!y}{}^p$	$A_y^{3\mathrm{He}}$	$A_y^p, A_y^{3\mathrm{He}}, C_{y,y}$	$A_y^p, A_y^{3\mathrm{He}}, C_{y,y}$
Measured Angles $(\theta_{c.m.})$	27°–170°	46°–141°	46°–133°	47°–149°
Facilities	RCNP, Osaka Univ.	CYRIC, Tohoku Univ.	RCNP, Osaka Univ.	RCNP, Osaka Univ.
Exp. Course	WS course	41 course	ENN course	ENN course

• pol. ³He gas target : Alkali-Hybrid SEOP type \rightarrow polarization : **30-40%** as of 2018

4. proton-³He (p-³He) scattering experiments Isospin Dependence of 3NFs

- d+p : isospin channel limited to T = 1/2
- T = 3/2 channel of 3NFs: Important roles for exploring neutron-rich nuclei & pure neutron matter

Proton-³**He elastic Scattering** @ 65-100 MeV for investigation of T = 3/2 channel in 3*N*Fs

Contents

- 1. Three-Nucleon Force and deuteron-proton (d-p) elastic scattering
- 2. Measurement of Spin Correlation Coefficients in $\vec{d} \cdot \vec{p}$ elastic scattering
 - Polarized Proton Target
 KuJyaku Detector System
 - Polarized Deuteron Beam
- 3. Experiment with the new systems in January 2024 $(d-\vec{p} \text{ elastic scattering } @ 135 \text{ MeV/Nucleon})$
- 4. proton-³He (p-³He) elastic scattering experiments

5. Summary

5. Summary

➢ Measurement of spin correlation coefficients in \vec{d} - \vec{p} elastic scattering to determine 11 LECs in N⁴LO of the 3NF sector in Chiral EFT

- Polarized Deuteron Beam
 Polarized Proton Target
 KuJyaku Detector System
- > Experiment with the new systems in January 2024 ($d \vec{p}$ elastic scattering @ 135 MeV/Nucleon, RIKEN)
 - \checkmark First beam test on the target and detector systems via deuteron beam
 - ✓ Analysis on the differential cross sections / Analyzing Powers \rightarrow ongoing
 - ✓ New material for target crystal : p-terphenyl- d_4

Plan for Measurement of Spin Correlation Coefficients

- ✓ Next : $\vec{d} + \vec{p}$ @ 100 & 135 MeV/Nucleon → $C_{y,y}, C_{x,x}, C_{yy,y}$
- ✓ Future : $\vec{d} + \vec{p}$ @ 100 & 135 MeV/Nucleon → $C_{z,x}, C_{xx,y}, C_{xy,x}, C_{yz,x}, C_{xz,y}$

> p-³He elastic scattering

 \rightarrow for investigation of T = 3/2 channel in 3NFs

Thank you for your attention.

Back ups

Term Oct. 2023-Mar.2029

JST ERATO Three-Nucleon Force Project (PI : Kimiko Sekiguchi)

2. Measurement of Spin Correlation Coefficients $(C_{i,j})$ in $\vec{d} - \vec{p}$ elastic scattering \rightarrow polarization of **beam** and **target** necessary

Polarized deuteron beam (d) : polarized ion source @ RIKEN RIBF
 H. Okamura *et al.*, AIP Conf. Proc. 293, 84 (1994).

* Polarized proton target (\vec{p}) : newly developed based on triplet-DNP method (2021~) \downarrow_{v}

Polarized cross sections of Left, Right, Up, Down directions $L(\theta) = L_0(\theta) \left\{ 1 + \frac{3}{2} p_y \left(A_y^d(\theta) + p_y^T (C_{y,y}(\theta)) + p_y^T A_y^p(\theta) + \frac{1}{2} p_{yy} \left(A_{yy}^d(\theta) + p_y^T (C_{yy,y}(\theta)) \right) \right\},$ $R(\theta) = R_0(\theta) \left\{ 1 + \frac{3}{2} p_y \left(-A_y^d(\theta) + p_y^T (C_{y,y}(\theta)) - p_y^T A_y^p(\theta) + \frac{1}{2} p_{yy} \left(A_{yy}^d(\theta) - p_y^T (C_{yy,y}(\theta)) \right) \right\},$ $U(\theta) = U_0(\theta) \left\{ 1 + \frac{3}{2} p_y p_y^T (C_{x,x}(\theta)) + \frac{1}{2} p_{yy} A_{xx}^d(\theta) \right\},$ $D(\theta) = D_0(\theta) \left\{ 1 + \frac{3}{2} p_y p_y^T (C_{x,x}(\theta)) + \frac{1}{2} p_{yy} A_{xx}^d(\theta) \right\}.$

New detector system (KuJyaku) developed for Measurement of L, R, U, D at wide angular (θ) range

Deuteron polarization beam test (2024/9/14) @ RIKEN

Observables	d polarization
Machine time	9/14 0:00 - 9/15 0:00
beam	7 MeV/Nucleon polarized d beam
target	12 C target (0.5 mg/cm ²)
detector	ΔE -E detectors

polarization : 50-80% (preliminary)

Spin Correlation Coefficients Measurement

RIKEN Nishina Center

Laser spot size on target

Target : pentacene doped *p*-terphenyl single crystal

p-terphenyl

deuterated pentacene (0.005 %/mol)

→ Want laser to cover The full $\varphi 10 \times 2.5 \text{ mm}^3$ range

Size : $\varphi 10 \times 2.5 \text{ mm}^3$

Beam profiler

To the eye, Laser spot looks like φ10

Motivation : The Spin Correlation Coefficients C

polarized beam & target neccesary

