

An accurate relativistic chiral nuclear force

Jun-Xu Lu @ Beihang U.

Co-operators: Dr. Chun-Xuan Wang, Dr. Yang Xiao, Prof. Li-Sheng Geng

□ Introduction

- □ Framework: chiral nuclear force
- Results and discussion
- □ Summary and prospect

Introduction

The key for nuclear physics

• Nuclear matter, structure, reaction, astrophysics...

D The major concern of various facilities

A new era of discovery----Exotic nuclei

An accurate relativistic chiral nuclear force up to NNLO

Jun-xu Lu

Introduction

QCD: Asymptotic freedom and confinement

- In higher energy regions
 - "free" quarks
 - perturbative QCD
- In lower energy regions
 - non-perturbative nature
 - hadrons as degrees of freedom for interactions

Chiral effective field theory

One has to write **the most general Lagrangian** consistent with **the assumed symmetry principles**, particularly the **(broken) chiral symmetry of QCD**.

- Chiral symmetry and its spontaneously breaking——Goldstone bosons
- EFT——Interactions in low-energy regime do not depend on the details of those in high-energy regimes

Steven Weinberg Nobel Prize 1979

Perturbative treatment of low-energy strong interaction

> In powers of external momenta and light quark masses——power counting rule

٠

$$p_i \rightarrow \alpha p_i$$
 $m_q \rightarrow \alpha^2 m_q$
 $\mathcal{A}(\alpha p_i, \alpha^2 m_q) = \alpha^D \mathcal{A}(p_i, m_q)$

$$D = 4L + \sum_{n} n V_n - 2N_M - N_B$$

- D: chiral order of certain diagram ۲
- L: number of loops ٠

- N_M : number of meson propagators • N_{R} : number of baryon propagators
- V_n : number of n-th order vertices ٠

7

Advantages

Systematically improvement Closer connected to QCD \succ Self-consistent 3-body force \succ Uncertainty estimation \succ

Perturbative treatment of low-energy strong interaction

➢ In powers of external momenta and light quark masses — — power counting rule

$$p_i \rightarrow \alpha p_i$$
 $m_q \rightarrow \alpha^2 m_q$
 $\mathcal{A}(\alpha p_i, \alpha^2 m_q) = \alpha^D \mathcal{A}(p_i, m_q)$

$$D = 4L + \sum_{n} n V_n - 2N_M - N_B$$

- D: chiral order of certain diagram
- L: number of loops

• N_M : number of meson propagators

 $N_{\rm R}$: number of baryon propagators

 V_n : number of n-th order vertices

Advantages

- Closer connected to QCD > Systematically improvement > Uncertainty estimation
- Self-consistent 3-body force

- □ For baryon systems <u>power counting breaking</u>
 - Non-vanishing baryon mass at chiral limit

Heavy baryon (HB) Heavy static nucleon Non-relativistic p^μ = m_Bv^μ + k^μ Jenkins and Manohar, PLB 255 (1991) 558.

Infrared regularization (IR)

- Covariance
- Analytical problem
 Becher and Leutwyler, EPJC 9 (1999) 643

Extended-on-mass-shell (EOMS)

- Covariance
- Faster convergence
- Gegelia, Fuchs et al. in PRD60(1999), PRD68 (2003)

□ Non-relativistic chiral nuclear force

An accurate relativistic chiral nuclear force up to NNLO

10

Non-relativistic chiral nuclear force

Nuclear force

□ Huge success, but still less satisfying

Nuclear force

□ Huge success, but still less satisfying

An accurate relativistic chiral nuclear force up to NNLO

Jun-Xu Lu

13

Covariant framework

D Relativistic framework

- ✓ Lorentz invariance
- ✓ Faster convergence

Dynamically and kinematically

- ✓ Improved renormalization group invariance
- ✓ Available for relativistic ab-initio calculations

Chiral effective lagrangian: Dirac Spinor/Clifford algebra
$$u(p,s) = N_p \begin{pmatrix} 1 \\ \sigma \cdot p \\ \overline{E+m} \end{pmatrix} \chi_s \begin{bmatrix} \frac{1}{2} \gamma_5 \gamma_\mu \gamma_5 \gamma_\mu \sigma_{\mu\nu} \epsilon_{\mu\nu\rho\sigma} \overleftarrow{\partial}_\mu \partial_\mu \\ 0 & 0 & 1 & 0 & 0 & 0 & - & 0 & 1 \\ \varphi + - + - & + & - & + & + \\ C & + & + & - & + & - & + & - & + \\ \end{array}$$

Covariant scheme to restore the broken power counting

Extended-on-mass-shell(EOMS) scheme

 $C_i = C_i^b + C_i^d R + C_i^{\text{PCB}}$

 C_i : LEC C_i^b : the bare value C_i^d : for UV divergence C_i^{PCB} : for PCB terms

Non-perturbative treatment: relativistic scattering equation (Blankenbecler-Sugar equation)

$$(\sqrt{s/2 + p_0, \vec{p}}) \quad (\sqrt{s/2 + p'_0, \vec{p}}) = V + V (\sqrt{s/2 + k_0, \vec{k}}) + (\sqrt{s/2 + k_0, \vec{k}}) + (\sqrt{s/2 - k_0,$$

$$\mathcal{T}(p',p|W) = \mathcal{A}(p',p|W) + \int \frac{d^4k}{(2\pi^4)} \mathcal{A}(p',k|W)G(k|W)\mathcal{T}(k,p|W),$$

$$\mathcal{T} = \mathcal{V} + \mathcal{V}g\mathcal{T},$$

$$\mathcal{V} = \mathcal{A} + \mathcal{A}(G-g)\mathcal{V} \qquad g = \frac{\pi i\delta(k^0)\Lambda_+^1(k)\Lambda_+^2(-k)}{2E_k(E_k^2 - s/4 - i\epsilon)}$$

Relativistic chiral nuclear force

2018:	<i>Leading order</i> relativistic chiral nucleon-nucleon interaction X.L Ren et al CPC42,014103
2019:	Covariant chiral nucleon-nucleon contact Lagrangian up to order $\mathcal{O}(q^4)$
	Y. Xiao et al Phys.Rev.C 99,024004
2020:	Two-pion exchange contributions to the nucleon-nucleon interaction in
	<i>covariant baryon ChPT</i> Y. Xiao et al Phys.Rev.C 102,054001
2021:	Non-perturbative two-pion exchange contributions to the nucleon-nucleon interaction in covariant baryon ChPT
	C.X. Wang et al Phys.rev.C 105,014003
	An accurate relativistic chiral nucleon- nucleon interaction up to NNLO
	J.X Lu et al Phys.rev.lett. 128,142002
2023:	Saturation of nuclear matter in the relativistic Brueckner-Hatree-Fock approach with a leading order covariant chiral nuclear force
	W.J. Zou et al. Phys.Lett.B 854 (2024) 138732
2024:	Antinucleon-nucleon interactions in covariant chiral effective field theory
	Y. Xiao et al. arXiv: 2406.01292
	2018: 2019: 2020: 2021: 2023: 2023:

LO Relativistic chiral nuclear force

CON(4)+OPE \geq

E_{lab.} [MeV]

Ren et al. CPC42,014103 Phase shifts for n-p scattering

\geq **RGI** analysis Wang et al. CPC45,054101 ${}^{3}S_{1}, {}^{3}D_{1}, {}^{1}P_{1}, {}^{3}P_{0}$

 \geq Nuclear matter saturation Zou et al. PLB 854 (2024) 138732

NNLO Relativistic chiral nuclear force: contact terms

 $V = V_{\mathrm{CT}}^{\mathrm{LO}} + \frac{V_{\mathrm{CT}}^{\mathrm{NLO}}}{V_{\mathrm{CT}}} + V_{\mathrm{OPE}} + V_{\mathrm{TPE}}^{\mathrm{NLO}} + V_{\mathrm{TPE}}^{\mathrm{NNLO}} - V_{\mathrm{IOPE}}$

Relativistic NLO NF(4+13)

Non-relativistic N³LO NF (2+7+15)

N³LO

Xiao et al. Phys.Rev.C 99,024004

NLO/NNLO Relativistic chiral nuclear force: TPE

$$V = V_{\rm CT}^{\rm LO} + V_{\rm CT}^{\rm NLO} + V_{\rm OPE} + V_{\rm TPE}^{\rm NLO} + V_{\rm TPE}^{\rm NNLO} - V_{\rm IOPE}$$

Non-relativistic NLO NF

$$V_{\text{NLO}}^{\text{TPEP}} = -\frac{\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2}{384 \pi^2 f_{\pi}^4} L(q) \left\{ 4 M_{\pi}^2 (5g_A^4 - 4g_A^2 - 1) + q^2 (23g_A^4 - 10g_A^2 - 1) + \frac{48g_A^4 M_{\pi}^4}{4M_{\pi}^2 + q^2} \right\} - \frac{3g_A^4}{64\pi^2 f_{\pi}^4} L(q) \{ \boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \, \boldsymbol{\sigma}_2 \cdot \boldsymbol{q} - q^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \} + P(\boldsymbol{k}, \boldsymbol{q}),$$

$$L(q) = \frac{1}{q} \sqrt{4M_{\pi}^2 + q^2} \ln \frac{\sqrt{4M_{\pi}^2 + q^2} + q}{2M_{\pi}}$$

Relativistic NLO NF

 $\mathcal{A} =$ Bilinear \times Loop integral

• Bilinear(114 terms for planar box diagram)

• Loop integral—— scalar and tensor integrals (29 terms for planar box diagram)

$$A_0, B_0, B_{00}, C_0, C_1, C_2, C_{00}, C_{11}, C_{12}, C_{22}, D_0, D_1, D_2, D_{00}, D_{11}, D_{12}, D_{22}, D_{23}$$

□ Results of NLO/NNLO relativistic NF

TABLE III. $\tilde{\chi}^2 = \sum_i (\delta^i - \delta^i_{PWA93})^2$	of different chiral forces for partial waves up to $J \leq 2$.
--	---

	Total	${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{1}P_{1}$	${}^{3}P_{1}$	${}^{3}S_{1}$	${}^{3}D_{1}$	ϵ_1	${}^{1}D_{2}$	${}^{3}D_{2}$	${}^{3}P_{2}$	${}^{3}F_{2}$	ϵ_2
NLO	17.02	1.02	7.04	0.46	0.33	1.80	1.69	0.15	2.18	1.35	0.95	0.01	0.04
NNLO	16.61	0.18	0.30	1.07	1.55	3.36	0.26	0.03	0.01	9.56	0.01	0.27	0.01
NR-N ³ LO-Idaho	8.84	1.53	0.30	2.41	0.04	2.33	1.00	0.02	0.57	0.42	0.17	0.03	0.02
NR-N ³ LO-EKM	16.08	13.45	0.29	0.34	0.06	0.01	0.13	0.01	0.02	0.43	0.12	1.22	0.00

Relativistic NNLO compatible to non-relativistic N³LO

- NR-N³LO-Idaho: R. Machleidt and D. R. Entem, Phys.Rev.C(2003), Phys.Rept.(2011)
- NR-N³LO-EKM: E. Epelbaum, H. Krebs, and U. G. Meißner, Eur.Phys.J.A(2015), Phys.Rev.Lett. (2015).

□ Phase shifts for J=0

- Uncertainties are estimated via Bayesian model
- NLO is compatible with NNLO below 200MeV
- Below 200MeV: NNLO, NR-N³LO-Idaho, NR-N³LO-EKM almost overlap

Fitting results

□ Phase shifts for J=1

NLO is compatible with NNLO below 200MeV

• Below 200MeV: NNLO, NR-N³LO-Idaho, NR-N³LO-EKM almost overlap

□ Phase shifts for J=2

For higher kinetic energies

- ${}^{1}D_{2}$, ${}^{3}P_{2}$: NLO slightly worse
- ³D₂: NNLO slightly worse

Below 200MeV: NNLO, NR-N³LO-Idaho, NR-N³LO-EKM almost overlap • ${}^{3}F_{2}$: NR-N³LO-Idaho best but with fine-tuned $c_{2,3,4}$

20

•

D Predictions for phase shifts for $J \le 4$ and $L \le 4$

No contact terms up to NNLO

CRelativistic NNLO p-p scattering

- Isospin breaking effect: Epelbaum et al. NPA747362
 - Strong part $--m_u m_d$

Correspond to LO contact terms

- Electromagnetic part —— charges of u,d quarks
 - Non-relativistic frame: only ${}^{1}S_{0}$ Equivalently redefine the LECs $\langle {}^{1}S_{0}, \operatorname{np}|V_{\operatorname{cont}}^{\operatorname{np}}|{}^{1}S_{0}, \operatorname{np}\rangle = \tilde{C}_{1S0}^{\operatorname{np}} + C_{1S0}(p^{2} + p'^{2})$ $\langle {}^{1}S_{0}, \operatorname{pp}|V_{\operatorname{cont}}^{\operatorname{pp}}|{}^{1}S_{0}, \operatorname{pp}\rangle = \tilde{C}_{1S0}^{\operatorname{pp}} + C_{1S0}(p^{2} + p'^{2})$
 - Relativistic frame: ¹S₀, ³P₀, ³P₁

3 independent

CRelativistic NNLO p-p scattering

• For ${}^{1}S_{0}$, all are in good agreement with experimental data. NNLO is slightly flawed for ${}^{3}P_{1}$

NNLO overlap with NR-N4LO-EKM in lower energy region, but slightly worse beyond 200MeV

Summary and prospect

- □ We construct a relativistic chiral nuclear force up to NNLO
 - We maintain the relativity both dynamically and kinematically
 - > For **np scattering**, it is compatible with **non-relativistic** N^3 LO results for lower energies.
 - ➢ For pp scattering, the phase shifts for ¹S₀ agrees quite well with Nijmegen93

□ What's next?

24

D Uncertainties

> Bayesian truncation uncertainties

The expansion for an observable X of EFT ۲

$$X = X_{\text{ref}} \sum_{n=0}^{\infty} c_n Q^n = X^{(0)} + \Delta X^{(2)} + \dots, \qquad Q = \text{Max}\{\frac{p}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b}\}$$
$$X_{\text{ref}} = \text{Max}\{|X^{\text{LO}}|, \frac{|X^{\text{LO}} - X^{\text{NLO}}|}{Q^2}, \frac{|X^{\text{NLO}} - X^{\text{NNLO}}|}{Q^3}\},$$

R.J.Furnstahl et al. PRC2015, PRC2019 E. Epelbaum et al. PRL2015, EPJA2019 P. Maris et al. PRC2021

kth order truncation uncertainty ٠

$$\Delta_k = \sum_{n=k+1}^{\infty} c_n Q^n$$

Bayesian model: encode the expectation of the expansion coefficients c_i in a "prior pdf" $\mathbf{pr}(\mathbf{c}_i | \bar{\mathbf{c}})$ ٠

 O^3

$$\mathrm{pr}_{h}(\Delta|c_{i\leq k}) = \frac{\int_{0}^{\infty} d\bar{c} \operatorname{pr}_{h}(\Delta|\bar{c}) \mathrm{pr}(\bar{c}) \prod_{i\in A} \mathrm{pr}(c_{i}|\bar{c})}{\int_{0}^{\infty} d\bar{c} \operatorname{pr}(\bar{c}) \prod_{i\in A} \mathrm{pr}(c_{i}|\bar{c})},$$

DoB
$$p\% = \int_{-d_k^{(p)}}^{d_k^{(p)}} p(\Delta_k | c_0, c_1, \dots, c_k) d\Delta_k \qquad \Delta X^{(k)} = X_{\text{ref}} d_k^{(p)}$$

Advantages

- ✓ Statistically well established
- ✓ Up to arbitrary order vs only known order

np, pp simultaneously

CRelativistic NNLO p-p scattering

Epelbaum et al. NPA747362

Total ${}^{1}S_{0}$ ${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{1}D_{2}$ ${}^{3}P_{2}$ ${}^{3}F_{2}$ ϵ_{2}	
NNLO-Thom 5.67 0.50 0.04 3.43 0.70 0.87 0.12 0.01 Gaussian, A=0.7GeV	·V
NNLO-BbS 2.60 0.07 0.04 2.15 0.03 0.04 0.27 0.00 sharp./=0.9GeV	
NR-N ⁴ LO-EKM 0.87 0.60 0.17 0.03 0.02 0.03 0.02 0.00	J

- For ${}^{1}S_{0}$, all are in good agreement with experimental data. NNLO is slightly flawed for ${}^{3}P_{1}$
- NNLO overlap with NR-N4LO-EKM in lower energy region, but slightly worse beyond 200MeV

TA	ABLE IV. ý	$\tilde{\chi}^2 = \sum$	$\delta_i(\delta^i-\delta^i)$	$\delta^i_{\mathrm{PWA93}}$	$)^2$ of d	ifferen	t chiral	forces	for par	rtial wa	ves up	to $J \leq$	2.	
		Total	${}^{1}S_{0}$	${}^{3}P_{0}$	$^{1}P_{1}$	${}^{3}P_{1}$	${}^{3}S_{1}$	${}^{3}D_{1}$	ϵ_1	${}^{1}D_{2}$	${}^{3}D_{2}$	${}^{3}P_{2}$	${}^{3}F_{2}$	ϵ_2
NNLO-P	BbS-np	16.61	0.18	0.30	1.07	1.55	3.36	0.26	0.03	0.01	9.56	0.01	0.27	0.01
NNLO-Bb	S-pp-np	17.40	0.14	0.02	1.08	2.32	3.56	0.29	0.03	0.03	9.73	0.03	0.18	0.00
NNLO-The	om-pp-np	11.84	0.86	0.07	3.07	3.69	0.69	0.97	0.01	0.27	1.19	0.97	0.05	0.01
NR-N ³ LC	D-Idaho	8.84	1.53	0.30	2.41	0.04	2.33	1.00	0.02	0.57	0.42	0.17	0.03	0.02
NR-N ³ LO	D-EKM	16.08	13.45	0.29	0.34	0.06	0.01	0.13	0.01	0.02	0.43	0.12	1.22	0.00

26

Fitting results

Comparison with Bonn potential

R. Machleidt et al, Phys.Rept.1987 S-H. Shen et al, Prog.Part.Nucl.Phys.2019

So far, Bonn potential developed in 1980' is the most common choice for relativistic many-body studies

