The 23rd International Conference on Few-Body Problems in Physics (FB23)

# Production and Polarization of Hypernuclei in Heavy-ion Collisions

KJ Sun, Dai-Neng Liu, Yun-Peng Zhen, Jin-Hui Chen, Che Ming Ko, Yu-Gang Ma arXiv:2405.12015



KaiJia Sun kjsun@fudan.edu.cn; Fudan University



# Outline

- 1. Production of (anti-)hypertriton in heavy-ion collisions
- 2. Polarization phenomenon in heavy-ion collisions
- 3. Results: (Anti-)Hypertriton polarization and its spin structure
- 4. Results: Effects of baryon spin correlations
- 5. Summary and outlook

#### 1. Production of light (anti-)(hyper-)nuclei



#### 1. The halo hyper-nucleus: (anti-)hypertriton



J. Chen et al., Phys. Rep. 760, 1 (2018);P. Braun-Munzinger and B. Donigus NPA987, 144 (2019) D. N. Liu et al. Phys. Lett. B 855, 138855 (2024)

### **1. Binding energy and lifetime**

#### ALICE, PRL 131, 102302 (2023)

Y. G. Ma, Nucl. Sci. Tech. 3497 (2023)



J. Chen et al., Phys. Rep. 760, 1 (2018); P. Braun-Munzinger and B. Donigus NPA987, 144 (2019)



### 1. Spin of (anti-)hypertriton ?

(5)



### 2. Polarization of hadrons in relativistic heavy-ion collisions

STAR, Nature 548, 62 (2017)
Z. T. Liang and X. N. Wang PRL 94, 102301 (2005)
F. Becattini, F. Piccinini, and J. Rizzo, PRC 77, 024906 (2008)



### 2. Polarization of hadrons in relativistic heavy-ion collisions



#### Spin alignment of mesons

$$\frac{dN}{d(\cos\theta^*)} \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*$$

#### Fluctuation/correlation of strong force field

X. L. Sheng et al., PRL 131, 042304 (2023)

$$G_s^{(y)} \equiv g_{\phi}^2 \Big[ 3 \langle B_{\phi,y}^2 \rangle + \frac{\langle \mathbf{p}^2 \rangle_{\phi}}{m_s^2} \langle E_{\phi,y}^2 \rangle - \frac{3}{2} \langle B_{\phi,x}^2 + B_{\phi,z}^2 \rangle - \frac{\langle \mathbf{p}^2 \rangle_{\phi}}{2m_s^2} \langle E_{\phi,x}^2 + E_{\phi,z}^2 \rangle \Big]$$

#### Quark-antiquark spin correlation J. P. Lv et al., arXiv:2402.13721

#### Meson spectral property

F. Li and S. Liu, arXiv:2206.11890



## 2. Polarization of light (anti-)(hyper-)nuclei

A. Andronic et al., Phys. Lett. B 697, 203-207 (2011)





FAIR/CBM (2.4-4.9 GeV)
 HIAF/CEE (2.1-4.5 GeV)
 NICA/MPD (4-11 GeV)

A novel tool to study the evolution of stronglyinteracting matter at high-baryon density region



Coalescence model for hypertriton production (without baryon spin correlation)  

$$E_{i} \frac{d^{3}N_{i,\pm\frac{1}{2}}}{d\mathbf{p}_{i}^{3}} = \int_{\Sigma^{\mu}} d^{3}\sigma_{\mu}p_{i}^{\mu}w_{i,\pm\frac{1}{2}}(\mathbf{x}_{i},\mathbf{p}_{i})\bar{f}_{i}(\mathbf{x}_{i},\mathbf{p}_{i})$$

$$\hat{p}_{np\Lambda} = \hat{p}_{n} \otimes \hat{p}_{p} \otimes \hat{p}_{\Lambda}$$

$$\hat{p}_{np\Lambda} = \hat{p}_{n} \otimes \hat{p}_{p} \otimes \hat{p}_{\Lambda}$$

$$E \frac{d^{3}N_{3}_{H,\pm\frac{1}{2}}}{d\mathbf{P}^{3}} = E \int \prod_{i=n,p,\Lambda} p_{i}^{\mu} d^{3}\sigma_{\mu} \frac{d^{3}p_{i}}{E_{i}} \bar{f}_{i}(\mathbf{x}_{i},\mathbf{p}_{i})$$

$$\times \left(\frac{2}{3}w_{n,\pm\frac{1}{2}}w_{p,\pm\frac{1}{2}}w_{\Lambda,\pm\frac{1}{2}} + \frac{1}{6}w_{n,\pm\frac{1}{2}}w_{p,\pm\frac{1}{2}}w_{\Lambda,\pm\frac{1}{2}} + \frac{1}{6}w_{n,\pm\frac{1}{2}}w_{n,\pm\frac{1}{2}} + \frac{1}{6}w_{n,\pm\frac{1}{2}}w_{n,\pm\frac{1}{2}}w_{n,\pm\frac{1}{2}} + \frac{1}{6}w_{n,\pm\frac{1}{2}}w_{n,\pm\frac{1}{2}} + \frac{1}{6}w_{n,\pm\frac{1}{2}}w_{n,\pm\frac{1}{2}}w_{n,\pm\frac{1}{2}} + \frac{1}{6}w_{n,$$



(12)

#### K. J. Sun et al., arXiv:2405. 12015(2024)



$$\hat{\beta}_{\Lambda}^{3}H(\frac{3}{2}^{+}) \qquad \hat{\rho}_{\Lambda}^{3}H \approx \text{diag} \left[ \frac{(1+\mathcal{P}_{\Lambda})^{3}}{4(1+\mathcal{P}_{\Lambda}^{2})}, \frac{(1-\mathcal{P}_{\Lambda})(1+\mathcal{P}_{\Lambda})^{2}}{4(1+\mathcal{P}_{\Lambda}^{2})}, \qquad T(_{\Lambda}^{3}H \to \pi^{-} + {}^{3}\text{He}) \\ \frac{(1-\mathcal{P}_{\Lambda})^{2}(1+\mathcal{P}_{\Lambda})}{4(1+\mathcal{P}_{\Lambda}^{2})}, \frac{(1-\mathcal{P}_{\Lambda})^{3}}{4(1+\mathcal{P}_{\Lambda}^{2})} \right] \qquad = \frac{FT_{p}}{\sqrt{6\pi}} \begin{pmatrix} e^{i\phi^{*}}\sin\theta^{*} & 0 \\ -\frac{2}{\sqrt{3}}\cos\theta^{*} & \frac{e^{i\phi^{*}}\sin\theta^{*}}{\sqrt{3}} \\ -\frac{e^{-i\phi^{*}}\sin\theta^{*}}{\sqrt{3}} & -\frac{2}{\sqrt{3}}\cos\theta^{*} \\ 0 & -e^{-i\phi^{*}}\sin\theta^{*} \end{pmatrix}$$

$$\frac{dN}{d\cos\theta^*} = \frac{1}{2} \left[ 1 + \left( \hat{\rho}_{\frac{1}{2},\frac{1}{2}} + \hat{\rho}_{-\frac{1}{2},-\frac{1}{2}} - \frac{1}{2} \right) (3\cos^2\theta^* - 1) \right] \qquad \hat{\rho}_{\frac{1}{2},\frac{1}{2}} + \hat{\rho}_{-\frac{1}{2},-\frac{1}{2}} - \frac{1}{2} \approx -\frac{\mathcal{P}_{\Lambda}^2}{1 + \mathcal{P}_{\Lambda}^2} \approx -\mathcal{P}_{\Lambda}^2$$



| $\int J^P$                     | structure                                               | decay mode                                                                                     | $\frac{dN}{d\cos\theta^*}$                                                                   |
|--------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $\left \frac{1}{2}^+\right $   | $\Lambda(\frac{1}{2}^+) - np(1^+)$                      | $^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + ^{3}\text{He}$                                   | $\frac{1}{2}(1-\frac{1}{2.58}\alpha_{\Lambda}\mathcal{P}_{\Lambda}\cos\theta^{*})$           |
| $\left \frac{1}{2}\right $     | $\Lambda(\frac{1}{2}^+) - np(0^+)$                      | $^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + ^{3}\text{He}$                                   | $\frac{1}{2}(1+\alpha_{\Lambda}\mathcal{P}_{\Lambda}\cos\theta^{*})$                         |
| $\left[\frac{3}{2}^+\right]$   | $\Lambda(\frac{1}{2}^+) - np(1^+)$                      | $^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + ^{3}\text{He}$                                   | $\frac{1}{2} \left( 1 - \mathcal{P}_{\Lambda}^2 (3\cos^2\theta^* - 1) \right)$               |
| $\left[\frac{1}{2}\right]^{-}$ | $\bar{\Lambda}(\frac{1}{2}^{-}) - \overline{np}(1^{-})$ | ${}^3_{\overline{\Lambda}}\overline{\mathrm{H}}  ightarrow \pi^+ + {}^3\overline{\mathrm{He}}$ | $\frac{1}{2}(1-\frac{1}{2.58}\alpha_{\bar{\Lambda}}\mathcal{P}_{\bar{\Lambda}}\cos\theta^*)$ |
| $\left[\frac{1}{2}\right]^{-}$ | $\bar{\Lambda}(\frac{1}{2}^{-}) - \overline{np}(0^{-})$ | ${}^3_{\overline{\Lambda}}\overline{\mathrm{H}}  ightarrow \pi^+ + {}^3\overline{\mathrm{He}}$ | $\frac{1}{2}(1+lpha_{ar{\Lambda}}\mathcal{P}_{ar{\Lambda}}\cos\theta^*)$                     |
| $\left[\frac{3}{2}\right]^{-}$ | $\bar{\Lambda}(\frac{1}{2}^{-}) - \overline{np}(1^{-})$ | ${}^3_{\overline{\Lambda}}\overline{\mathrm{H}} \to \pi^+ + {}^3\overline{\mathrm{He}}$        | $\frac{1}{2} \left( 1 - \mathcal{P}_{\bar{\Lambda}}^2 (3\cos^2\theta^* - 1) \right)$         |

(13)

The measurement of hypertriton polarization provides a novel method to uniquely determine its internal spin structure

 $\alpha_{^{3}_{\Lambda}H} \approx -\frac{1}{2.58}\alpha_{\Lambda}$ 



#### 4. Effects of baryon spin correlation



$$\begin{split} \hat{\rho}_{np\Lambda} &= \hat{\rho}_n \otimes \hat{\rho}_p \otimes \hat{\rho}_\Lambda + \frac{1}{2^2} (c_{np}^{\alpha\beta} \hat{\sigma}_{n,\alpha} \otimes \hat{\sigma}_{p,\beta} \otimes \hat{\rho}_\Lambda \\ &+ c_{p\Lambda}^{\alpha\beta} \hat{\sigma}_{p,\alpha} \otimes \hat{\sigma}_{\Lambda,\beta} \otimes \hat{\rho}_n + c_{n\Lambda}^{\alpha\beta} \hat{\sigma}_{n,\alpha} \otimes \hat{\sigma}_{\Lambda,\beta} \otimes \hat{\rho}_p) \\ &+ \frac{1}{2^3} c_{np\Lambda}^{\alpha\beta\gamma} \hat{\sigma}_{n,\alpha} \otimes \hat{\sigma}_{p,\beta} \otimes \hat{\sigma}_{\Lambda,\gamma}, \\ \mathcal{P}_{3}_{\Lambda H} &\approx \frac{\frac{2}{3} \langle \mathcal{P}_n \rangle + \frac{2}{3} \langle \mathcal{P}_p \rangle - \frac{1}{3} \langle \mathcal{P}_\Lambda \rangle - \langle \mathcal{P}_n \mathcal{P}_p \mathcal{P}_\Lambda \rangle + C_-}{1 - \frac{2}{3} (\langle (\mathcal{P}_n + \mathcal{P}_p) \mathcal{P}_\Lambda \rangle) + \frac{1}{3} \langle \mathcal{P}_n \mathcal{P}_p \rangle + C_+} \\ C_- &= -\frac{1}{4} (\langle c_{np}^{zz} \mathcal{P}_\Lambda \rangle + \langle c_{p\Lambda}^{zz} \mathcal{P}_n \rangle + \langle c_{n\Lambda}^{zz} \mathcal{P}_p \rangle) - \frac{1}{4} \langle c_{np\Lambda}^{zzz} \rangle, \\ C_+ &= \frac{1}{12} (\langle c_{np}^{zz} \rangle - 2 \langle c_{p\Lambda}^{zz} \rangle). \end{split}$$
'genuine' correlation terms

#### Induced correlations

We can express the polarization of a particle as  $\mathcal{P} = \langle \mathcal{P} \rangle + \delta \mathcal{P}$  with  $\delta \mathcal{P}$  denoting its space and momentum dependent fluctuations, which leads to the relations  $\langle \mathcal{P}_n \mathcal{P}_p \rangle = \langle \mathcal{P}_n \rangle \langle \mathcal{P}_p \rangle + \langle \delta \mathcal{P}_n \delta \mathcal{P}_p \rangle$  and  $\langle \mathcal{P}_n \mathcal{P}_p \mathcal{P}_\Lambda \rangle = \langle \mathcal{P}_n \rangle \langle \mathcal{P}_p \rangle \langle \mathcal{P}_\Lambda \rangle + \langle \mathcal{P}_n \mathcal{P}_n \rangle \langle \mathcal{P}_n \rangle \langle$ 

 $\langle \delta \mathcal{P}_n \delta \mathcal{P}_p \rangle \langle \mathcal{P}_\Lambda \rangle + \langle \delta \mathcal{P}_n \delta \mathcal{P}_\Lambda \rangle \langle \mathcal{P}_p \rangle + \langle \delta \mathcal{P}_p \delta \mathcal{P}_\Lambda \rangle \langle \mathcal{P}_n \rangle + \langle \delta \mathcal{P}_n \delta \mathcal{P}_p \delta \mathcal{P}_\Lambda \rangle$ . Assuming again  $\langle \mathcal{P}_n \rangle \approx \langle \mathcal{P}_p \rangle \approx \langle \mathcal{P}_\Lambda \rangle$  and neglecting the three-body correlation, we then have

$$\mathcal{P}_{_{\Lambda}\mathrm{H}} \approx (1 - \langle \delta \mathcal{P}_n \delta \mathcal{P}_p \rangle - \langle \delta \mathcal{P}_p \delta \mathcal{P}_\Lambda \rangle - \langle \delta \mathcal{P}_n \delta \mathcal{P}_\Lambda \rangle) \langle \mathcal{P}_\Lambda \rangle$$

This result suggests that it is possible to extract the information on the spin-spin correlations among nucleons and  $\Lambda$  hyperons from the measurement of hypertriton polarization in heavy-ion collisions, although it is non-trivial in practice.

# **Summary and outlook**

- 1. (Anti-)hypertriton is globally polarized in non-central heavy-ion collisions.
- 2. (Anti-)hypertriton polarization and its decay pattern provide a novel method to uniquely determine the spin structure of its wavefunction.



### Backup

Parity-violating weak decay:

 $T(^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + ^{3}\text{He})$ 

$$T(\Lambda \to \pi^- + p) = \frac{1}{\sqrt{4\pi}} \begin{pmatrix} T_s + T_p \cos \theta_p^* & T_p \sin \theta_p^* e^{i\phi_p^*} \\ T_p \sin \theta_p^* e^{-i\phi_p^*} & T_s - T_p \cos \theta_p^* \end{pmatrix}$$

The normalized angular distribution of the <sup>3</sup>He in the decay  ${}^3_{\Lambda}H \rightarrow \pi^- + {}^3$ He is given by

$$\frac{dN}{d\cos\theta^*} = \operatorname{Tr}[T^+\hat{\rho}T] = \frac{1}{2}(1 + \alpha_{^{3}_{\Lambda}\mathrm{H}}\mathcal{P}_{^{3}_{\Lambda}\mathrm{H}}\cos\theta^*), \qquad (7)$$

 $= \frac{F}{6\sqrt{\pi}} \begin{pmatrix} 3T_s - T_p \cos \theta^* & -T_p \sin \theta^* e^{i\phi^*} \\ -T_p \sin \theta^* e^{-i\phi^*} & 3T_s + T_p \cos \theta^* \end{pmatrix}$  in terms of the hypertriton decay parameter  $\alpha_{3_{A}H} \approx -\frac{1}{3T_s^2 + \frac{1}{3}T_p^2} \alpha_A \approx -\frac{1}{2.58} \alpha_A$ . The angular distribution of <sup>3</sup>He in the decay  ${}_{A}^{3}H \to \pi^- + {}^{3}$  He can thus be further expressed as

$$\frac{dN}{d\cos\theta^*} \approx \frac{1}{2} \left(1 - \frac{1}{2.58} \alpha_{\Lambda} \mathcal{P}_{\Lambda} \cos\theta^*\right). \tag{8}$$

Compared to the angular distribution of the proton in the  $\Lambda$  decay, which has the form

Sign flip !  

$$\frac{dN}{d\cos\theta_p^*} = \frac{1}{2}(1 + \alpha_\Lambda \mathcal{P}_\Lambda \cos\theta_p^*), \qquad (9)$$

the <sup>3</sup>He in  $^{3}_{\Lambda}$ H decay has an opposite sign in its angular dependence.







# (sudden approximation) $N_{A} = Tr(\hat{\rho}_{s}\hat{\rho}_{A})$ $= g_{c} \int d\Gamma \rho_{s}(\{x_{i}, p_{i}\}) \times W_{A} (\{x_{i}, p_{i}\})$

Wigner function of light cluster

Overlap between source distribution function and Wigner function of light nuclei



### 5. Little Bang Nucleosynthesis

#### Big-bang nucleosynthesis is responsible for the formation of light nuclei in our Universe. $t \sim 100 \text{ s}, kT < 1 \text{ MeV}$

K. A. Olive et al., Phys. Rept. 333, 389–407 (2000); «The First Three Minutes» S. Weinberg



Synthesis of antimatter nuclei in little bangs of<br/>relativistic heavy-ion collisions $t \sim 10^{-22} s, kT \sim 100 \text{ MeV}$ 



J. Chen et al., Phys. Rep. 760, 1 (2018); P. Braun-Munzinger and B. Donigus NPA987, 144 (2019)

### **5.** Final-state coalescence



- 3-body coalescence

-2-body coalescence - SHM, Vc = dV/dy

 $\cdots$  SHM, Vc = 3dV/dy

 $10^{3}$ 

 $\left<\mathrm{d}\mathrm{N_{ch}}\!\!\left/\mathrm{d}\eta\right>_{\left|\eta
ight|<0.5}$ 

 $10^{2}$ 

### 5. Statistical hadronization

Andronic, Braun-Munzinger, Redlich, Stachel, Nature 561, 321 (2018)



#### 5. Relativistic kinetic equation

K. J. Sun, R. Wang, C. M. Ko, Y. G. Ma, C. Shen, Nat. Commun. 15, 1074 (2024) Data from STAR, PRL 130, 202301 (2023)



#### Strong hadronic re-scattering effects

Relativistic kinetic equation for  $\pi NN \leftrightarrow \pi d$  $\frac{\partial f_d}{\partial t} + \frac{\mathbf{P}}{E_d} \cdot \frac{\partial f_d}{\partial \mathbf{R}} = -\mathcal{K}^> f_d + \mathcal{K}^< (1 + f_d)$ 

#### with collision integral:

$$\mathsf{R.H.S.} = \frac{1}{2g_d E_d} \int \prod_{i=1'}^{3'} \frac{\mathrm{d}^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \frac{\mathrm{d}^3 \mathbf{p}_\pi}{(2\pi)^3 2E_\pi} \frac{E_d \mathrm{d}^3 \mathbf{r}}{m_d}$$

$$\times 2m_d W_d(\tilde{\mathbf{r}}, \tilde{\mathbf{p}}) (\overline{|\mathcal{M}_{\pi^+ n \to \pi^+ n}|^2} + n \leftrightarrow p)$$

$$\times \left[ -\left(\prod_{i=1'}^{3'} (1 \pm f_i)\right) g_\pi f_\pi g_d f_d + \frac{3}{4} \left(\prod_{i=1'}^{3'} g_i f_i\right) \times (1 + f_\pi) (1 + f_d) \right] \times (2\pi)^4 \delta^4 (p_{\mathrm{in}} - p_{\mathrm{out}})$$

Nonlocal collision integral to take into account the effects of finite nuclei sizes.  $W_d$  denotes deuteron Wigner function.

### 4. Effects of baryon spin correlation

T. Liang, Chirality 2023  

$$\begin{vmatrix} \rho_{00}^{V} - \frac{1}{3} \end{vmatrix} \gg P_{\Lambda}^{2} \sim P_{q}^{2} \\
\rho_{00}^{V} - \frac{1}{3} \sim \langle P_{q} P_{\overline{q}} \rangle \end{bmatrix}$$
The STAR data show that:  $\langle P_{q} P_{\overline{q}} \rangle \neq \langle P_{q} \rangle \langle P_{\overline{q}} \rangle \quad \langle P_{q} P_{\overline{q}} \rangle \gg \langle P_{q} \rangle \langle P_{\overline{q}} \rangle$ 
By studying  $P_{u}$ , we study the average of quark polarization  $P_{q}$ :

By studying  $P_H$ , we study the average of quark polarization  $P_q$ ; by studying  $\rho_{00}^V$ , we study the correlation between  $P_q$  and  $P_{\overline{q}}$ .

How to separate long range or local correlations

$$C_{NN}^{H_i\overline{H}_j} \equiv \frac{N_{H_i\overline{H}_j}^{\uparrow\uparrow} + N_{H_i\overline{H}_j}^{\downarrow\downarrow} - N_{H_i\overline{H}_j}^{\uparrow\downarrow} - N_{H_i\overline{H}_j}^{\downarrow\uparrow}}{N_{H_i\overline{H}_j}^{\uparrow\uparrow} + N_{H_i\overline{H}_j}^{\downarrow\downarrow} + N_{H_i\overline{H}_j}^{\uparrow\downarrow} + N_{H_i\overline{H}_j}^{\downarrow\uparrow}}$$

sensitive to the long range correlation

They should be sensitive to the local correlations.

 $\rho_{1-1}^{V} = \frac{P_{qz}P_{\bar{q}z} - P_{qx}P_{\bar{q}x} + i(P_{qx}P_{\bar{q}y} + P_{qy}P_{\bar{q}x})}{3 + \vec{P}_{q} \cdot \vec{P}_{\bar{q}}}$ 

 $\rho_{10}^{V} = \frac{P_{qz}(1+P_{\bar{q}y}) + (1+P_{qy})P_{\bar{q}z} - iP_{qx}(1+P_{\bar{q}y}) - i(1+P_{qy})P_{\bar{q}x}}{\sqrt{2}(3+\vec{P}_{q}\cdot\vec{P}_{\bar{q}})}$ 

 $\rho_{0-1}^{V} = \frac{P_{qz}(1 - P_{\bar{q}y}) + (1 - P_{qy})P_{\bar{q}z} - iP_{qx}(1 - P_{\bar{q}y}) - i(1 - P_{qy})P_{\bar{q}x}}{\sqrt{2}(3 + \vec{P}_{a} \cdot \vec{P}_{\bar{a}})}$ 

#### Global quark spin correlations in relativistic heavy ion collisions

Ji-peng Lv,<sup>1, \*</sup> Zi-han Yu,<sup>1, †</sup> Zuo-tang Liang,<sup>1, ‡</sup> Qun Wang,<sup>2, 3, §</sup> and Xin-Nian Wang<sup>4, ¶</sup>





$$\rho_{\mathrm{np}}(\mathbf{x}_1, \mathbf{x}_2) = \rho_{\mathrm{n}}(\mathbf{x}_1)\rho_{\mathrm{p}}(\mathbf{x}_2) + C_2(\mathbf{x}_1, \mathbf{x}_2)$$

 $\rho_{nnp}(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}) \approx \rho_n(\mathbf{x_1})\rho_n(\mathbf{x_2})\rho_p(\mathbf{x_3})$  $+ C_2(\mathbf{x_1}, \mathbf{x_2})\rho_p(\mathbf{x_3}) + C_2(\mathbf{x_2}, \mathbf{x_3})\rho_n(\mathbf{x_1})$  $+ C_2(\mathbf{x_3}, \mathbf{x_1})\rho_n(\mathbf{x_2}) + C_3(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3})$ 

$$\frac{N_{\rm t}N_{\rm p}}{N_{\rm d}^2} \approx \frac{1}{2\sqrt{3}} \left[ 1 + \Delta\rho_n + \frac{\lambda}{\sigma} G\left(\frac{\xi}{\sigma}\right) \right]$$

K. J. Sun, L. W. Chen, C. M. Ko, and Z. Xu, Phys. Lett. B 774, 103 (2017); K. J. Sun, C. M. Ko, and F. Li, PLB 816, 136258 (2021); (15)