

Mass spectra of strange double charm pentaquark

FB23, Beijing, China

Speaker: Zi-Yan Yang Institute of Quantum Matter, South China Normal University Based on **PRD 110, 056022(2024)** Co-authors: Prof. Qian Wang, Prof. Wei Chen

2024.09.25

Content

- Background
- QCD sum rule
- Numerical analysis
- Discussion and Conclusion
- Summary

Background: Exotic Hadron

• Exotic Hadron: Tetraquark, Pentaquark, Hybrid, Glueball…

Background: Exotic Hadron

[LHCb] PRL, 122.222001(2019)

[LHCb] Sci. Bull.,65.1983(2020)

• Exotic Hadron: Tetraquark, Pentaquark, Hybrid, Glueball…

Motivation: T_{cc} , $T_{c\bar{s}}$ and P_{ccs}

- Recent discovery of the double charm tetraquark $T_{cc}^+(3875)$ raises the question whether double charm pentaquark exists or not.
- Heavy antiquark-diquark
 symmetry(HADS) states that a color
 triplet double heavy diquark behaves
 like a heavy antiquark in color space.
 - The observed $T_{c\bar{s}}(2900)^0$ with quark content $cd\bar{u}\bar{s}$ indicates the potential existence of strange double charm pentaquark $ccus\bar{d}$

- Many theoretical attempts on the mass spectrum from molecular picture[1] and compact pentaquark picture[2].
- [XK Dong etc, CTP 73.125201(2021)], Bethe-Salpeter equation with

interaction respecting heavy quark spin symmetry, predicts several bound states.

[1] Yan et al. Phys. Rev. D 98, 091502(2018) Dong et al. Commun. Theor. Phys. 73, 125201 (2021) Chen et al. Phys. Rev. D 96, 116012 (2017) Guo, Phys. Rev. D 96, 074004 (2017) Zhu et al. Phys. Lett. B 797,134869 (2019) Shen et al. Eur.Phys.J.C 83,70 (2023) Wang et al. Eur.Phys.J.C 83,70 (2023) Uan et al. Phys. Rev. D 109, 074035 (2024) Duan et al. Phys. Rev. D 109, 094018 (2024)
[2] Chen et al. Phys. Lett. B 822, 136693 (2021) Xing et al. Eur. Phys. J. C 81, 978 (2021) Zhou et al. Phys. Rev. C 98, 045204 (2018) Wang, Eur. Phys. J. C 78, 826 (2018) Park et al. Phys. Rev. D 99, 094023 (2019)

- Many theoretical attempts on the mass spectrum from molecular picture[1] and compact pentaquark picture[2].
- [XK Dong etc, CTP 73.125201(2021)], Bethe-Salpeter equation with

interaction respecting heavy quark spin symmetry, predicts several bound states.

• [QS Zhou etc, PRC. 98.045204(2018)], color-magnetic interaction, predicts

several compact $ccsq\bar{q}$ states

[1] Yan et al. Phys. Rev. D 98, 091502(2018) Dong et al. Commun. Theor. Phys. 73, 125201 (2021) Chen et al. Phys. Rev. D 96, 116012 (2017) Guo, Phys. Rev. D 96, 074004 (2017) Zhu et al. Phys. Lett. B 797,134869 (2019) Shen et al. Eur.Phys.J.C 83,70 (2023) Wang et al. Phys. Rev. D 109, 074035 (2024) Duan et al. Phys. Rev. D 109, 094018 (2024)
[2] Chen et al. Phys. Lett. B 822, 136693 (2021) Xing et al. Eur. Phys. J. C 81, 978 (2021) Zhou et al. Phys. Rev. C 98, 045204 (2018) Wang, Eur. Phys. J. C 78, 826 (2018) Park et al. Phys. Rev. D 99, 094023 (2019)

Pentaquark (J^P, I)	Mass							
	This work	ChEFT [19]	CMI [15]	QCDSR [20]				
$cc\bar{s}nn(\frac{1}{2}^-,0)$	4.092 ± 0.298	3.957	4.702	_	$\Xi_{ccq}ar{K}$			
$cc\bar{n}nn(\frac{1}{2}^{-},\frac{1}{2})$	3.841 ± 0.290	3.816	4.578	4.21	$\Xi_{ccq}\pi$			
$cc\bar{n}sn(\frac{1}{2}^{-}, 1/0)$	4.125 ± 0.301	4.112	4.854	_	$\Xi_{ccq} K$			
$cc\bar{s}sn(\frac{1}{2}^{-},\frac{1}{2})$	4.409 ± 0.307	3.816	4.968	_	$\Omega_{ccq} K$			
$cc\bar{s}nn(\frac{3}{2}^-,0)$	4.496 ± 0.338	_	4.355	_	$\Xi^*_{ccq}ar{K}$			
$cc\bar{n}nn(\frac{3}{2}^{-},\frac{1}{2})$	4.393 ± 0.340	_	3.970	4.27	$\Xi^*_{ccq}\pi$			
$cc\bar{n}sn(\frac{3}{2}^{-}, 1/0)$	4.600 ± 0.348	_	4.802	_	$\Xi_{ccq}^* K$			
$cc\bar{s}sn(\frac{1}{2}^-,\frac{1}{2})$	4.762 ± 0.342	_	4.955	_	$\Omega^*_{ccq}K$			

• [Y Xing etc, EPJC 81.978(2021)], double heavy triquark-diquark framework

with SU(3) flavor symmetry, predicts several stable double charm pentaquark (for instance a $J^P = 1/2^- ccsn\bar{n}$ pentaquark)

• Many theoretical attempts on the mass spectrum from molecular picture[1] and compact pentaquark picture[2].

Current	J^P	s_0 [GeV ²]	M_B^2 [GeV ²]	Pole (%)	CVG (%)	Mass [GeV]	Two-hadron threshold [GeV]	f_X [GeV ⁶]
$J^{\Lambda_c D}$	$\frac{1}{2}$	19.5(±5%)	2.83-3.43	>16.9	<5	$4.13^{+0.10}_{-0.09}$	4.15	$0.77^{+0.16}_{-0.16} \times 10^{-3}$
$J^{\Sigma_c D}$	$\frac{1}{2}^{-}$	$18.3(\pm 5\%)$	3.40-3.70	>5.9	<5	$4.08\substack{+0.18 \\ -0.13}$	4.32	$0.28^{+0.08}_{-0.08} imes 10^{-3}$
$J^{\Sigma_c D^*}$	$\frac{3}{2}$	$20.3(\pm 5\%)$	3.17-3.47	>11.9	<10	$4.14\substack{+0.18 \\ -0.15}$	4.46	$0.27^{+0.08}_{-0.08} imes 10^{-3}$
$J^{\Sigma_c^*D}$	$\frac{3}{2}$	$22.8(\pm 5\%)$	3.82-4.22	>13.4	<2	$4.47\substack{+0.11 \\ -0.10}$	4.39	$1.43^{+0.31}_{-0.30} \times 10^{-3}$
$J^{\Lambda_c D^*}$	$\frac{3}{2}$	$21.0(\pm 5\%)$	3.55-3.95	>12.6	<5	$4.31\substack{+0.11 \\ -0.10}$	4.29	$0.95^{+0.21}_{-0.21} imes 10^{-3}$
$J^{\Lambda_c^*D}$	$\frac{3}{2}$	$22.8(\pm 5\%)$	2.91-3.51	>25.0	<10	$4.42_{-0.12}^{+0.13}$	4.73	$0.79^{+0.16}_{-0.15} imes 10^{-3}$
$J^{\Lambda_c^*D^*}$	$\frac{5}{2}$	$22.1(\pm 5\%)$	3.09-3.69	>15.5	<10	$4.41\substack{+0.17 \\ -0.14}$	4.86	$0.86^{+0.21}_{-0.19} imes 10^{-3}$
$J^{\Sigma_c^*D^*}$	$\frac{5}{2}$	$25.0(\pm 5\%)$	4.0-4.6	>12.5	<2	$4.69_{-0.11}^{+0.12}$	4.53	$2.48^{+0.56}_{-0.54} imes 10^{-3}$

• **[FB Duan etc, PRD 109.094018(2024)]**, QCD sum rule, consider the potential *ccudd* pentaquarks.

• • • • • • •

Interpolating currents: Spin of HADS partner for $T_{c\bar{s}}$

- In HADS, insuring the charm diquark has the same color structure $\overline{3}$, the spin structure of diquark should be symmetric due to Pauli principle, which is $S_{cc} = 1$.
- The strange charm tetrequark $T_{c\bar{s}}(2900)^0$ with quark content $[u\bar{c}][s\bar{d}]$ is a spin singlet state, the spin structure should be $[u\bar{c}]_0[s\bar{d}]_0$ or $[u\bar{c}]_1[s\bar{d}]_1$
- The spin structure of corresponding HADS pentaquark partner:

$$\mathbf{1}_{[cc]} \otimes \frac{1}{2}_{[u]} \otimes \mathbf{0}_{[s\bar{d}]} = \frac{1}{2}_{[ccus\bar{d}]} \oplus \frac{3}{2}_{[ccus\bar{d}]}$$

Or

$$\mathbf{1}_{[cc]} \otimes \frac{1}{2}_{[u]} \otimes \mathbf{1}_{[s\bar{d}]} = \frac{1}{2}_{[ccus\bar{d}]} \oplus \frac{3}{2}_{[ccus\bar{d}]} \oplus \frac{5}{2}_{[ccus\bar{d}]}$$

Analogous discussion can be made for the molecular structure and the compact

structure. We consider these spins of pentaquark states in this work.

Interpolating currents: Flavor configuration

• Five flavor configurations

molecule $[\bar{d}_d s_d][\epsilon^{abc}Q_a Q_b u_c], [\bar{d}_d Q_d][\epsilon^{abc}Q_a u_b s_c], [\bar{d}_d u_d][\epsilon^{abc}Q_a Q_b s_c]$

$$\text{compact} \qquad \epsilon^{aij} \epsilon^{bkl} \epsilon^{abc} [Q_i u_j] [Q_k s_l] \bar{d}_c, \epsilon^{aij} \epsilon^{bkl} \epsilon^{abc} [Q_i Q_j] [u_k s_l] \bar{d}_c$$

Which can be related by the Fierz transformation.

$$\delta^{de} \epsilon^{abc} = \delta^{da} \epsilon^{ebc} + \delta^{db} \epsilon^{aec} + \delta^{dc} \epsilon^{abe}$$

Interpolating currents

Molecule $\Xi_c^{(',*)+}D^{+(*)}$

$$\begin{split} \eta_{1} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{5} u_{b} \right) Q_{c} \right] \left[\bar{d}_{d} \gamma_{5} Q_{d} \right], \\ \eta_{2} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{\mu} \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{\mu} \gamma_{5} u_{b} \right) \gamma_{\mu} Q_{c} \right] \left[\bar{d}_{d} \gamma_{5} Q_{d} \right], \\ \eta_{3} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{5} u_{b} \right) \gamma_{\mu} Q_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{4\mu} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{\nu} \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{\nu} \gamma_{5} u_{b} \right) \gamma_{\nu} Q_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{5\mu} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_{a}^{T} C \gamma_{\mu} u_{b} \right) \gamma_{5} Q_{c} + \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} s_{c} + \left(Q_{a}^{T} C \gamma_{\mu} s_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{6} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_{a}^{T} C \gamma_{\mu} u_{b} \right) \gamma_{5} Q_{c} + \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} s_{c} + \left(Q_{a}^{T} C \gamma_{\mu} s_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{7,\mu\nu} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_{a}^{T} C \gamma_{\mu} u_{b} \right) \gamma_{5} Q_{c} + \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} s_{c} + \left(Q_{a}^{T} C \gamma_{\mu} s_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\nu} Q_{d} \right] + \left(\mu \leftrightarrow \nu \right), \end{split}$$

$$\begin{aligned} \mathbf{Molecule} \ \Xi_{CC}^{(*)++} \bar{K}^{0(*)} \\ \xi_{1} &= \left[\epsilon_{abc} (Q_{a}^{T} C \gamma_{\mu} Q_{b}) \gamma_{\mu} \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{5} s_{d} \right], \\ \xi_{2\mu} &= \left[\epsilon_{abc} (Q_{a}^{T} C \gamma_{\nu} Q_{b}) \gamma_{\nu} \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} s_{d} \right], \\ \xi_{3\mu} &= \frac{1}{\sqrt{3}} \epsilon_{abc} \left[2 \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} Q_{c} + \left(Q_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{5} s_{d} \right], \\ \xi_{4} &= \frac{1}{\sqrt{3}} \epsilon_{abc} \left[2 \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} Q_{c} + \left(Q_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} s_{d} \right], \\ \xi_{5,\mu\nu} &= \frac{1}{\sqrt{3}} \epsilon_{abc} \left[2 \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} Q_{c} + \left(Q_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\nu} s_{d} \right] + (\mu \leftrightarrow \nu), \\ \mathbf{Molecule} \ \Omega_{CC}^{(*)+} \pi^{+} (\rho^{+}) \\ \psi_{i} &= \xi_{i} (u \leftrightarrow s), \end{aligned}$$

Compact

$$J_{1,2} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_\mu s_l\right) \gamma_5 C \bar{d}_c^T,$$

$$J_{1,3} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_5 s_l\right) \gamma_\mu C \bar{d}_c^T,$$

$$J_{1,5\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_5 s_l\right) \gamma_5 C \bar{d}_c^T,$$

$$J_{1,8\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\nu Q_j\right) \left(u_k^T C \gamma_\nu s_l\right) \gamma_\mu C \bar{d}_c^T,$$

$$J_{1,9\mu\nu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_\nu s_l\right) \gamma_5 C \bar{d}_c^T + (\mu \leftrightarrow \nu),$$

$$J_{2,1} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j\right) \left(Q_k^T C\gamma_5 s_l\right) \gamma_5 C\bar{d}_c^T,$$

$$J_{2,2} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_\mu u_j\right) \left(Q_k^T C\gamma_\mu s_l\right) \gamma_5 C\bar{d}_c^T,$$

$$J_{2,3} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_\mu u_j\right) \left(Q_k^T C\gamma_5 s_l\right) \gamma_\mu C\bar{d}_c^T,$$

$$J_{2,4} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j\right) \left(Q_k^T C\gamma_\mu s_l\right) \gamma_\mu C\bar{d}_c^T,$$

$$J_{2,5\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j\right) \left(Q_k^T C\gamma_5 s_l\right) \gamma_5 C\bar{d}_c^T,$$

$$J_{2,6\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j\right) \left(Q_k^T C\gamma_\mu s_l\right) \gamma_5 C\bar{d}_c^T,$$

$$J_{2,7\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j\right) \left(Q_k^T C\gamma_5 s_l\right) \gamma_5 C\bar{d}_c^T,$$

$$J_{2,8\mu\nu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_\mu u_j\right) \left(Q_k^T C\gamma_\nu s_l\right) \gamma_5 C\bar{d}_c^T + (\mu \leftrightarrow \nu),$$

QCD sum rule

- One of the most widely used methods to obtain the information about hadrons properties (Shifman, Vainshtein, Zakharov 1979)
- Based on the operator product expansion(OPE) of the correlator of interpolating currents

$$\Pi_{\mu\nu\dots}(q^2) = i \int d^4x e^{iq \cdot x} \langle \Omega | T[J_{\Gamma}(x)J_{\Gamma'}^{\dagger}(0)] | \Omega \rangle = T_{\mu\nu\dots}\Pi(q^2)$$

• Main point of the QCDSR philosophy is the implementation of the interaction of the high virtual valence quark-gluon system with the soft vacuum quark and gluon fields, whose strength is determined by the values of the vacuum condenstates.

Operator product expansion

The correlation function can be perturbative evaluated via operator product expansion method (OPE) in timelike space $Q^2 = -q^2 \rightarrow \infty$. (Wilson 1969)

$$i \int d^4x e^{iq \cdot x} \langle \Omega | T[J_{\Gamma}(x)J_{\Gamma'}^{\dagger}(0)] | \Omega \rangle = \sum_d C_d(q^2) \langle \Omega | \mathcal{O}_d(0) | \Omega \rangle$$

 $C_d(q^2)$ are Wilson coefficients, containing high q^2 QCD perturbative
effects, local gauge invariant operators $\mathcal{O}_d(0)$ contain QCD non-perturbative
effects.

$$\mathcal{O}_{3} = : \bar{q}(0)q(0) :\equiv \bar{q}q$$

$$\mathcal{O}_{4} = : g_{s}^{2}G_{\alpha\beta}^{n}(0)G_{\alpha\beta}^{n}(0) :\equiv g_{s}^{2}G^{2}$$

$$\mathcal{O}_{5} = : \bar{q}(0)g_{s}\sigma^{\alpha\beta}\frac{\lambda^{n}}{2}G_{\alpha\beta}^{n}(0)q(0) :\equiv \bar{q}\sigma Gq$$

$$\mathcal{O}_{6}^{q} = : \bar{q}(0)q(0)\bar{q}(0)q(0) :\equiv \bar{q}q\bar{q}q$$

$$\mathcal{O}_{6}^{G} = : f_{ijk}g_{s}^{3}G_{\alpha\beta}^{i}(0)G_{\beta\gamma}^{j}(0)G_{\gamma\alpha}^{k}(0) :\equiv g_{s}^{3}G^{3}$$

Operator product expansion

OPE up to dimension-9

Dispersion relation

Quark-Gluon level

We evaluate the correlation function in timelike space $Q^2 = -q^2 \rightarrow \infty$,

$$\Pi^{\text{OPE}}(q^2) = \sum_{d} C_d(q^2) \langle \Omega | \mathcal{O}_d(0) | \Omega \rangle$$

but we are more interested in physical region $q^2 > 0$

Hadronic level

the unitarity of \mathcal{S} matrix \rightarrow branch cut only on positive real axis

$$2\mathrm{Im}\Pi(q^2) = \sum_n \langle \Omega | J_{\Gamma}(x) | n \rangle \langle n | J_{\Gamma}(0) | \Omega \rangle (2\pi)^4 \mathrm{d}\Phi_n \delta^{(4)}(q-p_n)$$

Dispersion relation

To connect the CF at **two levels**, we consider the analyticity of CF in the q^2 complex plane

Cauchy's integral formula

$$\Pi(q^2) = \frac{1}{2\pi i} \oint_C ds \frac{\Pi(s)}{s - q^2}$$

For $\lim_{R \to \infty} |\Pi(q^2)| \to 0$, the dispersion relation is

$$\Pi^{\text{OPE}}(q^2) = \frac{1}{\pi} \int_{s_{<}}^{\infty} ds \frac{\text{Im}\Pi(s)}{s - q^2 - i\epsilon}$$

Ultraviolet divergence in CF, the dispersion relation is

$$\Pi(q^2) = \frac{(q^2)^N}{\pi} \int_{s_{<}}^{\infty} ds \frac{\operatorname{Im}\Pi(s)}{s^N(s-q^2-i\epsilon)} + \sum_{k=0}^{N-1} \frac{\Pi^{(k)}(0)}{k!} (q^2)^k$$

Dispersion relation

Optical theorem

Im
$$\Pi(q^2) \sim s\sigma(p_{\rm in} \rightarrow {\rm anything})$$

We use narrow resonance approximation for

baryon system:(double pole+continuum)

$$\rho(s) = \frac{1}{\pi} \operatorname{Im}\Pi(s) = f_X^{-2}(\not p + m_X^{-})\delta(s - m_X^{-2}) + f_X^{+2}(\not p + m_X^{+})\delta(s - m_X^{+2}) + \text{continuum}.$$

The sum rules for baryon system:

parity projected sum rules(Jido, Kodama, Oka 1996)

$$\mathscr{L}_{k}(s_{0}^{+}, M_{B}^{2}, +) \equiv \frac{1}{2} \int_{s_{<}}^{s_{0}^{+}} e^{-s/M_{B}^{2}} \left[\sqrt{s} \rho_{A}^{\text{OPE}}(s) + \rho_{B}^{\text{OPE}}(s) \right] s^{k} ds = \lambda_{+}^{2} m_{+}^{2k+1} \exp \left[-\frac{m_{+}^{2}}{M_{B}^{2}} \right]$$
$$\mathscr{L}_{k}(s_{0}^{-}, M_{B}^{2}, -) \equiv \frac{1}{2} \int_{s_{<}}^{s_{0}^{-}} e^{-s/M_{B}^{2}} \left[\sqrt{s} \rho_{A}^{\text{OPE}}(s) - \rho_{B}^{\text{OPE}}(s) \right] s^{k} ds = \lambda_{-}^{2} m_{-}^{2k+1} \exp \left[-\frac{m_{-}^{2}}{M_{B}^{2}} \right]$$

The extracted mass:
$$m_{\pm}(s_0^{\pm}, M_B) = \sqrt{\frac{\mathscr{L}_1(s_0^{\pm}, M_B^2, \pm)}{\mathscr{L}_0(s_0^{\pm}, M_B^2, \pm)}}$$

Values for various Condensates

Standard value at 1 GeV

$$\langle \bar{q}q \rangle = -(0.24 \pm 0.01)^3 \text{GeV}^3$$
$$\langle \bar{s}s \rangle = (0.8 \pm 0.1) \langle \bar{q}q \rangle$$
$$\langle g_s^2 GG \rangle = (0.48 \pm 0.14)^4 \text{GeV}^4$$
$$\langle g_s \bar{q}\sigma \cdot Gq \rangle = -M_0^2 \langle \bar{q}q \rangle$$
$$M_0^2 = (0.8 \pm 0.2) \text{GeV}^2$$

$$\begin{split} m_{s}(\mu) &= m_{s}(2 \text{ GeV}) \left[\frac{\alpha_{s}(\mu)}{\alpha_{s}(2 \text{ GeV})} \right]^{\frac{12}{33-2n_{f}}}, \\ m_{c}(\mu) &= m_{c}(m_{c}) \left[\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{c})} \right]^{\frac{12}{33-2n_{f}}}, \\ m_{b}(m_{b}) &= m_{b}(m_{b}) \left[\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{b})} \right]^{\frac{12}{33-2n_{f}}}, \\ \langle \bar{q}q \rangle(\mu) &= \langle \bar{q}q \rangle(1 \text{ GeV}) \left[\frac{\alpha_{s}(1 \text{ GeV})}{\alpha_{s}(\mu)} \right]^{\frac{12}{33-2n_{f}}}, \\ \langle \bar{s}s \rangle(\mu) &= \langle \bar{s}s \rangle(1 \text{ GeV}) \left[\frac{\alpha_{s}(1 \text{ GeV})}{\alpha_{s}(\mu)} \right]^{\frac{12}{33-2n_{f}}}, \\ \langle \bar{q}g_{s}\sigma \cdot Gq \rangle(\mu) &= \langle \bar{q}g_{s}\sigma \cdot Gq \rangle(1 \text{ GeV}) \left[\frac{\alpha_{s}(1 \text{ GeV})}{\alpha_{s}(\mu)} \right]^{\frac{2}{33-2n_{f}}}, \\ \langle \bar{s}g_{s}\sigma \cdot Gs \rangle(\mu) &= \langle \bar{s}g_{s}\sigma \cdot Gs \rangle(1 \text{ GeV}) \left[\frac{\alpha_{s}(1 \text{ GeV})}{\alpha_{s}(\mu)} \right]^{\frac{2}{33-2n_{f}}}, \\ \alpha_{s}(\mu) &= \frac{1}{b_{0}t} \left[1 - \frac{b_{1}\log t}{b_{0}t} \right] + \frac{b_{1}^{2}(\log^{2}t - \log t - 1) + b_{0}b_{2}}{b_{0}^{4}t^{2}} \right], \end{split}$$

We evolve all input at $\mu = 2m_Q$

As an example: $J_{1,2}$ with $J^P = 1/2^-$

The contributions of the perturbative term and various condensate

terms to the correlation function with respect to M_B^2 when $s_0 \to \infty$

To ensure the convergence of OPE, we require the contribution of the

perturbative term is larger than the quark condensate term

We also require that the pole 30 PC[%] contribution(PC) to be larger than 20 20%, thus our working Borel 10 Window is $3.50 \sim 3.86 \text{ GeV}^2$ 0∟ 3.0 3.5 4.0 5.0 4.5 5.5 6.0 M_B^2 [GeV²] 4.7 4.8 $s_0 = 22.0 \text{ GeV}^2$ 4.6 ----- $s_0 = 22.3 \text{ GeV}^2$ 4.6 4.5 $\dots s_0 = 22.6 \, \text{GeV}^2$ m [GeV] m [GeV] 4.4 4.4 $M_B^2 = 3.50 \text{ GeV}^2$ 4.3 $M_B^2 = 3.68 \text{ GeV}^2$ 4.2 4.2 $\dots M_B^2 = 3.86 \text{ GeV}^2$ 4.1 3.0 3.5 4.0 5.0 5.5 20 22 4.5 6.0 24 16 18 26 28 30 M_B^2 [GeV²] $s_0[\text{GeV}^2]$

40

Mass spectra of strange double charm pentaquark

- The variation of the mass with respect to M_B^2 should be minimized to obtain the optimal value of the continuum threshold s_0
- We can find that the optimized value can be chosen as $s_0 \approx 22.3 \text{GeV}^2$
- Our mass sum rules are established to be very stable in the above parameter

regions

	Mas	s spectra	for str	ange	Current	Structure J^P	$M_B^2({ m GeV}^2)$ $s_0({ m GeV}^2)$	Mass (GeV)
	doul	ble charm	penta	quark	${J}_{1,2}$	$[cc]_1[us]_1\bar{d} \ \frac{1}{2}$	3.50–3.86 22.3	$4.38^{+0.04}_{-0.05}$
			•	•	${J}_{1,3}$	$[cc]_{1}[us]_{0}\bar{d}$ $\frac{\bar{1}}{2}$	3.14-4.22 21.3	$4.29^{+0.05}_{-0.05}$
		• 1/2 ⁻ • 3/2	2 ⁻ • 5/2 ⁻		${J}_{1,5\mu}$	$[cc]_1[us]_0\bar{d} \frac{3}{2}$	3.50–3.82 21.3	$4.27\substack{+0.05 \\ -0.05}$
5 (${J}_{1,8\mu}$	$[cc]_1[us]_1\bar{d} \frac{3}{2}$	3.50-4.10 22.3	$4.38\substack{+0.05\\-0.05}$
					${J}_{1,9\mu u}$	$[cc]_1[us]_1\bar{d} \frac{5}{2}$	3.46-4.25 23.3	$4.43\substack{+0.05\\-0.05}$
$\sum_{v=1}^{n} \sum_{v=1}^{n++*} V^{0*}$, -				$\Xi_{c}^{+*}D^{+*}$ $J_{2,1}$	$[cu]_0[cs]_0\bar{d}$ $\frac{1}{2}^-$	3.00-4.05 21.3	$4.25\substack{+0.04 \\ -0.04}$
$\bigcup_{\infty} \Xi_c^+ D^{+*}$	• = = = • = = = = = = = = = = = = = = = = = = =	····	₽ - ₽		$\Xi_{cc}^{++}K^{0*}J_{2,2}$	$[cu]_1[cs]_1\bar{d} \frac{1}{2}$	3.00–5.08 24.3	$4.57\substack{+0.05 \\ -0.04}$
$\sum_{n++*} N_0$		··· ^{&} ·‡····· ^{\$}	ġ-₫\$	ਤੂ-ਦੂ	$\Xi_{c}^{+}D^{+}$ $J_{2,3}$	$[cu]_1[cs]_0\bar{d}$ $\frac{1}{2}$	3.78–4.28 23.3	$4.44_{-0.04}^{+0.05}$
=		¥		-¥	$\Xi_{\rm cc}^{++}K^0 J_{2,4}$	$[cu]_0[cs]_1d$ $\frac{1}{2}^-$	4.00–4.11 22.3	$4.35_{-0.04}^{+0.05}$
4.0	,				$\Omega_{cc}^{++}\pi^0 = J_{2,5\mu}$	$[cu]_1[cs]_0d \frac{3}{2}$	3.00-4.03 21.3	$4.27^{+0.05}_{-0.04}$
					α J _{2,6μ}	$[cu]_0[cs]_1d = \frac{3}{2}$	3.00-4.31 22.3	$4.31^{+0.04}_{-0.04}$
	$\Box^{(*)} D^{(*)}$	$\nabla(*) V(*) $ $O(*)$	-(a) T		$J_{2,7\mu}$	$[cu]_0[cs]_0d \frac{3}{2}$	3.00-4.05 21.3	$4.25^{+0.04}_{-0.04}$
	$\Xi_c^{(\cdot)}D^{(\cdot)}$	$\Xi_{cc}^{cc} \Lambda^{cr} \Omega_{cc}^{cr}$	$\pi(\rho)$ Typ	e-1 Type-11				_
	Current	Structure	J^P	$M_B^2({ m GeV}^2)$	$s_0(\text{GeV}^2)$	Mass (GeV)	Threshold (MeV)
	Current η_3	Structure $\Xi_c^+ D^{*+}$	J^P $\frac{1}{2}$	$M_B^2({ m GeV}^2)$ 3.20–4.38	$s_0(\text{GeV}^2)$ 24.3	Mass (GeV) 4.50 ^{+0.05}	Threshold (MeV 4477)
	Current η_3 $\eta_{4\mu}$	Structure $\Xi_c^+ D^{*+}$ $\Xi_c'^+ D^{*+}$	J^P $\frac{\frac{1}{2}}{\frac{3}{2}}$	$\frac{M_B^2 ({\rm GeV}^2)}{3.20-4.38}$ 3.30-4.25	<i>s</i> ₀ (GeV ²) 24.3 24.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$	Threshold (MeV 4477 4588)
	Current η_3 $\eta_{4\mu}$ η_6	Structure $\Xi_c^+ D^{*+}$ $\Xi_c'^+ D^{*+}$ $\Xi_c^{*+} D^{*+}$	J^P $\frac{\frac{1}{2}}{\frac{3}{2}}$ $\frac{1}{2}$	$M_B^2 (\text{GeV}^2)$ 3.20–4.38 3.30–4.25 3.00–4.75	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$	Threshold (MeV 4477 4588 4655)
	Current η_3 $\eta_{4\mu}$ η_6 ξ_1	Structure $\Xi_c^+ D^{*+}$ $\Xi_c'^+ D^{*+}$ $\Xi_c^{*+} D^{*+}$ $\Xi_{cc}^{++} \bar{K}^0$	J^P $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$	M_B^2 (GeV ²) 3.20–4.38 3.30–4.25 3.00–4.75 3.16–4.05	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$	Threshold (MeV 4477 4588 4655 4120)
	Current η_3 $\eta_{4\mu}$ η_6 ξ_1 $\xi_{2\mu}$	Structure $\Xi_{c}^{+}D^{*+}$ $\Xi_{c}^{\prime+}D^{*+}$ $\Xi_{c}^{*+}D^{*+}$ $\Xi_{cc}^{++}\bar{K}^{0}$ $\Xi_{cc}^{++}\bar{K}^{*0}$	$J^{P} \\ \frac{\frac{1}{2}}{\frac{3}{2}} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}$	$M_B^2 (\text{GeV}^2)$ 3.20-4.38 3.30-4.25 3.00-4.75 3.16-4.05 3.12-4.23	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$	Threshold (MeV 4477 4588 4655 4120 4512)
	Current η_3 $\eta_{4\mu}$ η_6 ξ_1 $\xi_{2\mu}$ $\xi_{3\mu}$	Structure $\Xi_{c}^{+}D^{*+}$ $\Xi_{c}^{\prime+}D^{*+}$ $\Xi_{c}^{*+}D^{*+}$ $\Xi_{cc}^{++}\bar{K}^{0}$ $\Xi_{cc}^{+++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{0}$	$J^{P} \\ \frac{\frac{1}{2}}{\frac{3}{2}} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{3}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}$	$M_B^2 (\text{GeV}^2)$ 3.20–4.38 3.30–4.25 3.00–4.75 3.16–4.05 3.12–4.23 3.38–4.23	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3 21.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.28^{+0.05}_{-0.05}$	Threshold (MeV 4477 4588 4655 4120 4512 4192)
	Current η_3 $\eta_{4\mu}$ η_6 ξ_1 $\xi_{2\mu}$ $\xi_{3\mu}$ ξ_4	Structure $\Xi_{c}^{+}D^{*+}$ $\Xi_{c}^{\prime+}D^{*+}$ $\Xi_{cc}^{*+}D^{*+}$ $\Xi_{cc}^{++}\bar{K}^{0}$ $\Xi_{cc}^{+++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$	J^{P} $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{1}{2}^{-}$	$\begin{array}{c} M_B^2 ({\rm GeV^2}) \\ 3.20 - 4.38 \\ 3.30 - 4.25 \\ 3.00 - 4.75 \\ 3.16 - 4.05 \\ 3.12 - 4.23 \\ 3.38 - 4.23 \\ 3.00 - 3.76 \end{array}$	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3 21.3 22.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.28^{+0.05}_{-0.05}$ $4.37^{+0.05}_{-0.05}$) Threshold (MeV 4477 4588 4655 4120 4512 4192 4584	
	Current η_{3} $\eta_{4\mu}$ η_{6} ξ_{1} $\xi_{2\mu}$ $\xi_{3\mu}$ ξ_{4} $\xi_{5\mu\nu}$	Structure $\Xi_{c}^{+}D^{*+}$ $\Xi_{c}^{\prime+}D^{*+}$ $\Xi_{cc}^{*+}D^{*+}$ $\Xi_{cc}^{++}\bar{K}^{0}$ $\Xi_{cc}^{+++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$	J^{P} $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2$	$\begin{array}{c} M_B^2 ({\rm GeV}^2) \\ 3.20 - 4.38 \\ 3.30 - 4.25 \\ 3.00 - 4.75 \\ 3.16 - 4.05 \\ 3.12 - 4.23 \\ 3.38 - 4.23 \\ 3.00 - 3.76 \\ 3.00 - 4.45 \end{array}$	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3 21.3 22.3 24.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.28^{+0.05}_{-0.05}$ $4.37^{+0.05}_{-0.05}$ $4.47^{+0.05}_{-0.04}$	Threshold (MeV 4477 4588 4655 4120 4512 4192 4584 4584	
	Current η_3 $\eta_{4\mu}$ η_6 ξ_1 $\xi_{2\mu}$ $\xi_{3\mu}$ ξ_4 $\xi_5_{\mu\nu}$ Ψ_1	Structure $\Xi_{c}^{+}D^{*+}$ $\Xi_{c}^{\prime+}D^{*+}$ $\Xi_{c}^{*+}D^{*+}$ $\Xi_{cc}^{++}\bar{K}^{0}$ $\Xi_{cc}^{+++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Omega_{cc}^{+}\pi^{+}$	J^{P} $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{5}{2}^{-}$ $\frac{1}{2}^{-}$	$\begin{array}{c} M_B^2({\rm GeV^2})\\ 3.20{-}4.38\\ 3.30{-}4.25\\ 3.00{-}4.75\\ 3.16{-}4.05\\ 3.12{-}4.23\\ 3.38{-}4.23\\ 3.00{-}3.76\\ 3.00{-}4.45\\ 3.18{-}4.25\\ \end{array}$	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3 21.3 22.3 24.3 21.3 21.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.28^{+0.05}_{-0.05}$ $4.28^{+0.05}_{-0.05}$ $4.37^{+0.05}_{-0.05}$ $4.47^{+0.05}_{-0.05}$ $4.27^{+0.05}_{-0.05}$	Threshold (MeV 4477 4588 4655 4120 4512 4192 4584 4584 4584 3853	
	Current η_3 $\eta_{4\mu}$ η_6 ξ_1 $\xi_{2\mu}$ $\xi_{3\mu}$ ξ_4 $\xi_5_{\mu\nu}$ ψ_1 $\psi_{2\mu}$	Structure $\Xi_{c}^{+}D^{*+}$ $\Xi_{c}^{\prime+}D^{*+}$ $\Xi_{c}^{*+}D^{*+}$ $\Xi_{cc}^{++}\bar{K}^{0}$ $\Xi_{cc}^{+++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Omega_{cc}^{+}\pi^{+}$ $\Omega_{cc}^{+}\rho^{+}$	J^{P} $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{1}{2$	$\begin{array}{c} M_B^2({\rm GeV^2})\\ 3.20-4.38\\ 3.30-4.25\\ 3.00-4.75\\ 3.16-4.05\\ 3.12-4.23\\ 3.38-4.23\\ 3.00-3.76\\ 3.00-4.45\\ 3.18-4.25\\ 3.16-3.63\end{array}$	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3 21.3 22.3 24.3 21.3 24.3 21.3 24.3 21.3 24.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.28^{+0.05}_{-0.05}$ $4.37^{+0.05}_{-0.05}$ $4.47^{+0.05}_{-0.05}$ $4.27^{+0.05}_{-0.05}$ $4.50^{+0.06}_{-0.06}$) Threshold (MeV 4477 4588 4655 4120 4512 4192 4584 4584 4584 3853 4488	
	Current η_{3} $\eta_{4\mu}$ η_{6} ξ_{1} $\xi_{2\mu}$ $\xi_{3\mu}$ ξ_{4} $\xi_{5\mu\nu}$ ψ_{1} $\psi_{2\mu}$ $\psi_{3\mu}$	Structure $\Xi_{c}^{+}D^{*+}$ $\Xi_{c}^{\prime+}D^{*+}$ $\Xi_{cc}^{*+}D^{*+}$ $\Xi_{cc}^{++}\bar{K}^{0}$ $\Xi_{cc}^{+++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Xi_{cc}^{*++}\bar{K}^{*0}$ $\Omega_{cc}^{+}\pi^{+}$ $\Omega_{cc}^{+}\rho^{+}$ $\Omega_{cc}^{*+}\pi^{+}$	J^{P} $\frac{1}{2}^{-}$ $\frac{1}{2$	$\begin{array}{c} M_B^2({\rm GeV^2})\\ 3.20{-}4.38\\ 3.30{-}4.25\\ 3.00{-}4.25\\ 3.00{-}4.75\\ 3.16{-}4.05\\ 3.12{-}4.23\\ 3.38{-}4.23\\ 3.00{-}3.76\\ 3.00{-}4.45\\ 3.18{-}4.25\\ 3.16{-}3.63\\ 3.04{-}4.41\\ \end{array}$	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3 21.3 22.3 24.3 21.3 24.3 21.3 24.3 21.3 24.3 21.3 24.3 21.3 24.3 22.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.28^{+0.05}_{-0.05}$ $4.37^{+0.05}_{-0.05}$ $4.47^{+0.05}_{-0.05}$ $4.27^{+0.05}_{-0.05}$ $4.50^{+0.06}_{-0.06}$ $4.36^{+0.05}_{-0.05}$	Threshold (MeV 4477 4588 4655 4120 4512 4192 4584 4584 3853 4488 3925	
	Current η_{3} $\eta_{4\mu}$ η_{6} ξ_{1} $\xi_{2\mu}$ $\xi_{3\mu}$ ξ_{4} $\xi_{5\mu\nu}$ ψ_{1} $\psi_{2\mu}$ $\psi_{3\mu}$ ψ_{4}	$\begin{array}{c} \text{Structure} \\ \Xi_{c}^{+}D^{*+} \\ \Xi_{c}^{\prime+}D^{*+} \\ \Xi_{c}^{*+}D^{*+} \\ \Xi_{cc}^{*+}\bar{K}^{0} \\ \Xi_{cc}^{+++}\bar{K}^{*0} \\ \Xi_{cc}^{*++}\bar{K}^{*0} \\ \Xi_{cc}^{*++}\bar{K}^{*0} \\ \Xi_{cc}^{*++}\bar{K}^{*0} \\ \Xi_{cc}^{*++}\bar{K}^{*0} \\ \Omega_{cc}^{+}\pi^{+} \\ \Omega_{cc}^{+}\rho^{+} \\ \Omega_{cc}^{*+}\rho^{+} \\ \Omega_{cc}^{*+}\rho^{+} \end{array}$	J^{P} $\frac{1}{2}^{-}$ $\frac{1}{2$	$\begin{array}{c} M_B^2({\rm GeV}^2)\\ 3.20{-}4.38\\ 3.30{-}4.25\\ 3.00{-}4.25\\ 3.00{-}4.75\\ 3.16{-}4.05\\ 3.12{-}4.23\\ 3.38{-}4.23\\ 3.38{-}4.23\\ 3.00{-}3.76\\ 3.00{-}4.45\\ 3.18{-}4.25\\ 3.16{-}3.63\\ 3.04{-}4.41\\ 3.00{-}3.77\end{array}$	$s_0(\text{GeV}^2)$ 24.3 24.3 24.3 20.3 24.3 21.3 22.3 24.3 21.3 24.3 21.3 24.3 21.3 24.3 22.3 22.3	Mass (GeV) $4.50^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.55^{+0.05}_{-0.04}$ $4.63^{+0.06}_{-0.05}$ $4.20^{+0.05}_{-0.05}$ $4.52^{+0.06}_{-0.05}$ $4.28^{+0.05}_{-0.05}$ $4.37^{+0.05}_{-0.05}$ $4.47^{+0.05}_{-0.05}$ $4.50^{+0.06}_{-0.06}$ $4.36^{+0.05}_{-0.05}$ $4.37^{+0.05}_{-0.05}$) Threshold (MeV 4477 4588 4655 4120 4512 4192 4584 4584 3853 4488 3925 4560	

Mass spectra for strange double charm pentaquark

- $\Xi_c^{(\prime)}D^*, \Xi_c^*D^*, \Xi_{cc}^*\bar{K}^*, \Omega_{cc}^*\rho$ may form as bound molecular states
- J^P = 5/2⁻ state lies below the thresholds of strong decay channels, could be a narrow state and easy to be identified in experiment.
- The best observed channel is the semileptonic decay to double charm baryon.

• Furthermore, we consider the dependence of the mass on the heavy quark mass by varying the heavy quark mass to perform QCDSR analysis.

Heavy Quark Spin Symmetry

Heavy Quark Spin Symmetry

. <u>π</u> . Δ	m^2	O(1 + 2)		HADS			$\overline{\Lambda}$ Δm^2
$+\Lambda + - 4$	- <i>m</i> _Q +	$-O(1/m_Q^2)$	21	$m_Q \rightarrow m_Q$	Q m_T	$m_{c} = m_{Q} + M_{c}$	$A + \frac{1}{2m_Q}$
Current	J^P	Structure	b(GeV)	$c (\text{GeV}^2)$	$m_{P_{bbs}}(\text{GeV})$	$m_{T_{c\bar{s}}}(\text{GeV})$	$J^P(T_{c\bar{s}})$
η_3	$\frac{1}{2}$	$\Xi_c^+ D^{*+}$	1.65	0.40	$10.16^{+0.06}_{-0.05}$	_	_
$\eta_{4\mu}$	$\frac{3}{2}$	$\Xi_c^{\prime+}D^{*+}$	1.79	0.25	$10.31^{+0.06}_{-0.05}$	_	_
η_6	$\frac{1}{2}$	$\Xi_c^{*+}D^{*+}$	2.33	-0.35	$10.68^{+0.06}_{-0.05}$	_	_
ξ_1	$\frac{1}{2}$	$\Xi_{cc}^{++}ar{K}^0$	1.48	0.24	9.930.06	2.94	0^+
$\xi_{2\mu}$	$\frac{3}{2}$	$\Xi_{cc}^{++}ar{K}^{*0}$	1.64	0.44	$10.17_{0.06}^{0.06}$	3.26	1+
$\xi_{3\mu}$	$\frac{\overline{3}}{2}$	$\Xi^{*++}_{cc}ar{K}^0$	1.46	0.38	$9.96^{+0.06}_{-0.05}$	3.03	1+
ξ4	$\frac{\tilde{1}}{2}$	$\Xi^{*++}_{cc}ar{K}^{*0}$	1.04	1.07	$9.59_{-0.07}^{+0.07}$	3.16	0^{+}
$\xi_{5\mu\nu}$	$\frac{\overline{5}}{2}$	$\Xi^{*++}_{cc}ar{K}^{*0}$	1.63	0.38	$9.99_{-0.05}^{+0.06}$	3.20	$0^+, 1^+, 2^+$
ψ_1	$\frac{\tilde{1}}{2}$	$\Omega_{cc}^{*+}\pi^+$	1.48	0.30	$9.96^{+0.06}_{-0.05}$	2.99	0^{+}
$\psi_{2\mu}$	$\frac{\overline{3}}{2}$	$\Omega_{cc}^+ ho^+$	1.57	0.51	$10.04^{+0.06}_{-0.06}$	3.25	1+
$\psi_{3\mu}$	$\frac{\tilde{3}}{2}$	$\Omega_{cc}^{*+}\pi^+$	1.45	0.47	$9.96^{+0.06}_{-0.05}$	3.09	1+
ψ_4	$\frac{1}{2}$	$\Omega_{cc}^{*+} ho^+$	1.16	0.88	$9.71_{-0.06}^{+0.06}$	3.12	0^{+}
$\psi_{5\mu u}$	$\frac{5}{2}$	$\Omega_{cc}^{*+} ho^+$	1.80	0.25	$10.14_{-0.06}^{+0.07}$	3.27	$0^+, 1^+, 2^+$
	-	-	-	-	-		
Current	J^P	Structure	b (GeV)	$c({ m GeV}^2)$	$m_{P_{bbs}}$ (GeV)	$m_{T_{c\bar{s}}}\left(\mathrm{GeV}\right)$	$J^P(T_{c\bar{s}})$
$J_{1,2}$	$\frac{1}{2}$	$[cc]_1[us]_1\overline{d}$	1.61	0.30	$10.06^{+0.06}_{-0.05}$	3.11	$0^+, 1^+$
$J_{1,3}$	$\frac{\tilde{1}}{2}$	$[cc]_1[us]_0\bar{d}$	1.52	0.29	$10.00^{+0.06}_{-0.05}$	3.02	0^{+}
$J_{1,5\mu}$	$\frac{\overline{3}}{2}$	$[cc]_1[us]_0\bar{d}$	1.53	0.17	$9.97^{+0.06}_{-0.05}$	2.94	1+
$J_{1,8\mu}$	$\frac{\tilde{3}}{2}$	$[cc]_1[us]_1\bar{d}$	1.61	0.30	$10.06^{+0.06}_{-0.05}$	3.11	1+
$J_{1,9\mu\nu}$	$\frac{\overline{5}}{2}$	$[cc]_1[us]_1\bar{d}$	1.66	0.29	$10.10_{-0.06}^{+0.06}$	3.15	2^{+}
$J_{2,1}$	$\frac{\tilde{1}}{2}$	$[cu]_0[cs]_0\bar{d}$	1.79	-0.16	$10.21_{-0.06}^{+0.07}$		
$J_{2,2}$	$\frac{1}{2}$	$[cu]_1[cs]_1\bar{d}$	1.87	0.14	$10.33_{-0.06}^{+0.07}$		
$J_{2,3}$	$\frac{\tilde{1}}{2}$	$[cu]_1[cs]_0\bar{d}$	1.74	0.07	$10.18_{-0.06}^{+0.07}$		
$J_{2,4}$	$\frac{\overline{1}}{2}$	$[cu]_0[cs]_1\bar{d}$	1.72	0.08	$10.17_{-0.06}^{+0.06}$		
$J_{2,5\mu}$	$\frac{3}{2}$	$[cu]_1[cs]_0\bar{d}$	1.65	0.07	$10.08^{+0.06}_{-0.06}$		
$J_{2,6\mu}$	$\frac{\overline{3}}{2}$	$[cu]_0[cs]_1\bar{d}$	1.61	0.08	$10.08_{-0.06}^{+0.06}$		
$J_{2.7u}$	$\frac{3}{2}$ -	$[cu]_0[cs]_0\overline{d}$	1.79	-0.16	$10.21^{+0.07}_{-0.06}$		

Heavy Quark Spin Symmetry

 $m_{P_{cc}} = 2m_Q + \bar{\Lambda} + \frac{\Delta m^2}{4m_o} + O(1/m_Q^2)$

Δι	m^2	$O(1 \downarrow 2)$		HADS			Δm^2	
$1 + \frac{1}{4n}$	$\overline{n_Q}^+$	$O(1/m_Q^2)$	And the second s		$\sim m_{T_c}$	$= m_Q + \Lambda$	$1 + \frac{1}{2m_Q}$	$+ O(1/m_{g}^{2})$
Current	J^P	Structure	<i>b</i> (GeV)	$c (\text{GeV}^2)$	$m_{P_{bbs}}(\text{GeV})$	$m_{T_{c\bar{s}}}(\text{GeV})$	$J^P(T_{c\bar{s}})$	
n.	1-	$\Xi^+ D^{*+}$	1 65	0.40	10.16+0.06	_	_	
		HADS pai	rtner dou	blet for To	s(2900)		_	
η_6	$\frac{1}{2}$	$\Xi_{c}^{*+}D^{*+}$	2.33	-0.35	$10.68^{+0.06}_{-0.05}$	_	_	
ξ1	$\frac{1}{2}$	$\Xi_{cc}^{++}ar{K}^0$	1.48	0.24	9.930.06	2.94	0^{+}	
ξ2μ	$\frac{\overline{3}}{2}$	$\Xi_{cc}^{++}ar{K}^{*0}$	1.64	0.44	$10.17_{0.06}^{0.06}$	3.26	1+	
ξ _{3μ}	$\frac{3}{2}$	$\Xi_{cc}^{*++}ar{K}^0$	1.46	0.38	$9.96^{+0.06}_{-0.05}$	3.03	1+	
ξ ₄	$\frac{1}{2}$	$\Xi^{*++}_{cc}ar{K}^{*0}$	1.04	1.07	$9.59_{-0.07}^{+0.07}$	3.16	0^{+}	
ξ _{5μν}	$\frac{5}{2}$	$\Xi^{*++}_{cc}ar{K}^{*0}$	1.63	0.38	$9.99_{-0.05}^{+0.06}$	3.20	$0^+, 1^+, 2^+$	
ψ_1	$\frac{1}{2}$	$\Omega_{cc}^{*+}\pi^+$	1.48	0.30	$9.96^{+0.06}_{-0.05}$	2.99	0^{+}	
$\psi_{2\mu}$	$\frac{3}{2}$	$\Omega_{cc}^+ ho^+$	1.57	0.51	$10.04_{-0.06}^{+0.06}$	3.25	1+	
$\psi_{3\mu}$	$\frac{3}{2}$	$\Omega_{cc}^{*+}\pi^+$	1.45	0.47	$9.96^{+0.06}_{-0.05}$	3.09	1+	
ψ_4	$\frac{1}{2}$	$\Omega_{cc}^{*+} ho^+$	1.16	0.88	$9.71_{-0.06}^{+0.06}$	3.12	0^+	
Ψ5μν	$\frac{5}{2}$	$\Omega_{cc}^{*+} ho^+$	1.80	0.25	$10.14_{-0.06}^{+0.07}$	3.27	$0^+, 1^+, 2^+$	
	-	-	-	-	-			
Current	J^P	Structure	$b({ m GeV})$	$c ({ m GeV}^2)$	$m_{P_{bbs}}$ (GeV)	$m_{T_{c\bar{s}}} (\text{GeV})$	$J^P(T_{c\bar{s}})$	
$J_{1,2}$	$\frac{1}{2}$	$[cc]_1[us]_1\overline{d}$	1.61	0.30	$10.06^{+0.06}_{-0.05}$	3.11	$0^+, 1^+$	
/ _{1,3}	$\frac{1}{2}$	$[cc]_1[us]_0\overline{d}$	1.52	0.29	$10.00_{-0.05}^{+0.06}$	3.02	0^{+}	
$J_{1.5\mu}$	3-	$[cc]_1[us]_0\bar{d}$	1.53	0.17	$9.97^{+0.06}_{-0.05}$	2.94	1+	
$J_{1,8\mu}$	$\frac{3}{2}$	$[cc]_1[us]_1d$	1.61	0.30	$10.06_{-0.05}^{+0.00}$	3.11	1+	
J _{1,9μν}	$\frac{5}{2}$	$[cc]_1[us]_1\overline{d}$	1.66	0.29	$10.10^{+0.06}_{-0.06}$	3.15	2+	
IADS p	bartne	er triplet fo	or tetraqu	arks with	mass abou	it 3.1 GeV		
-,- I_2_2	<u>1</u> -	$[cu], [cs], \overline{d}$	1.74	0.07	$10.18^{+0.06}$			
- 2,5 I 2 4	$\frac{2}{1}$	$[cu]_1[cs]_0 d$	1.72	0.08	10.10 - 0.06 10.17 + 0.06			
I2,4 I2,5	$\frac{2}{3}$	$[cu]_0[cs]_1\overline{d}$	1.65	0.07	10.07 - 0.06 10.08 + 0.06			
- 2,5μ Ις 6.	² <u>3</u> -	$[cu]_{a}[cs]_{a}$	1.61	0.08	10.08 - 0.06 10.08 + 0.06			
Ι _{2,0μ}	$\frac{2}{3}$	$[cu]_0[cs]_0\bar{d}$	1.79	-0.16	10.00 - 0.06 10.21 + 0.07			

HADS

Mass spectra of strange double charm pentaquark

Summary

- Motivated by the observation of $T_{c\bar{s}}(2900)^0$, we study the mass spectrum of its HADS counter parts, strange double charm pentaquarks.
- The masses for strange double charm pentaquarks with $J^P = 1/2^-, 3/2^-, 5/2^-$ are within the energy region 4.2-4.6 GeV, 4.2-4.5 GeV and 4.4-4.5 GeV, respectively.
- The 5/2⁻ states are below the threshold of its two-hadron strong decay channel and can be viewed as a narrow state. The best observed channel is the semileptonic decay to double charm baryon.

Thanks for your attention!

Backup

Operator product expansion

The correlation function can be perturbative evaluated via operator product expansion method (OPE) in timelike space $Q^2 = -q^2 \rightarrow \infty$. (Wilson 1969)

$$i \int d^4 x e^{iq \cdot x} \langle \Omega | T[J_{\Gamma}(x)J_{\Gamma'}^{\dagger}(0)] | \Omega \rangle = \sum_d C_d(q^2) \langle \Omega | \mathcal{O}_d(0) | \Omega \rangle$$

 $\mathcal{O}_d(0)$ are ordered by increasing dimension d, and $C_d(q^2)$ fall off by corresponding power of q^2 .

$$C_d(q^2) \sim \frac{1}{q^{2d}} \sim x^{2d}$$

To suppress the contributions of high dimension operators, we can work in deep Euclidean region $Q^2 = -q^2 \rightarrow \infty$. The $C_d(q^2)$ can be calculated in perturbation theory.

Wilson coefficient in Fock-Schwinger gauge

Background field method

$$A^{a}_{\mu} \to A^{a}_{\mu} + \phi^{a}_{\mu}$$
$$q \to q + \eta$$

 $(x - x_0)^{\mu} A_{\mu}(x) = 0$

External gauge field A_{μ} can be expressed as

$$A_{\mu}(x) = \int_0^1 t \mathrm{d}t G_{\nu\mu}(tx) x^{\nu}$$

Taylor expansion at small x

$$A_{\mu}(x) = \frac{1}{2} x^{\nu} G_{\nu\mu}(0) + \frac{1}{3} x^{\alpha} x^{\nu} D_{\alpha} G_{\nu\mu}(0) + \frac{1}{8} x^{\alpha} x^{\beta} x^{\nu} D_{\alpha} D_{\beta} G_{\nu\mu}(0) + \cdots$$

Wilson coefficient in Fock-Schwinger gauge

As for soft quark field, which interact with the QCD vacuum with small momentum transfer to form condensates, they can be expanded at small x

$$q(x) = q(0) + x^{\alpha_1} \overrightarrow{D}_{\alpha_1} q(0) + \frac{1}{2} x^{\alpha_1} x^{\alpha_2} \overrightarrow{D}_{\alpha_1} \overrightarrow{D}_{\alpha_2} q(0) + \cdots$$
$$\bar{q}(x) = \bar{q}(0) + x^{\alpha_1} \bar{q}(0) \overleftarrow{D}_{\alpha_1} + \frac{1}{2} x^{\alpha_1} x^{\alpha_2} \bar{q}(0) \overleftarrow{D}_{\alpha_1} \overleftarrow{D}_{\alpha_2} + \cdots$$

With the expansion, the CF becomes like

 $\Pi_{\mu\nu\dots}(x) = \langle \Omega \,|\, T[J_{\Gamma}(x)J_{\Gamma'}^{\dagger}(0)] \,|\, \Omega \rangle$

= (some product of propagator) + (some product of propagator) $\langle \Omega | \bar{q}(x)q(0) | \Omega \rangle$ + …

- PRC: color-magnetic interaction in Schroedinger equation by variational method, which is well-known to only give the upper limit of a given state.
- PLB: Non-relativistic constituent quark model by solving multi body
 Schroedinger equation. Overlooked linear confinement potential and induce
 two free parameters. And variational method.