Charmed meson mass and decay constants from CLQCD ensembles

Yi-Bo Yang

With Hai-Yang Du, Bo-Lun Hu, Peng Sun, et.al.,

For CLQCD collaboration

Outline

LQCD background and CLQCD ensembles

 Hadron masses and decay constants

Quark mass determinations

BMWc, Nature 593(2021)51

Discretization error

- Lattice calculation will suffer from the discretization error, which is usually $\mathcal{O}(a^2 \Lambda_{OCD}^2)$.
- ^o If we reduce the lattice spacing *a* by a factor of 2, the cost of calculation will increase by a factor of at least
- The current FLAG "green star" requires at least three lattice spacings and at least two points below 0.1 fm and a range of lattice spacings satisfying

0

Chiral extrapolation

- The cost to simulate light quark can be an order of magnitude larger than that of the strange quark.
- Non-trivial algorithm likes multigrid can speed up the calculation of the light quark for certain fermion
- The current FLAG "green star" requires $m_{\pi,\min} < 200$ MeV with at least three m_{π} in the chiral extrapolation, or $m_{\pi, \text{ case1}} = 135 \pm 10 \text{ MeV} \text{ and } m_{\pi, \text{ case2}} < 200 \text{ MeV}.$

Finite volume effect

 Hadron mass can have very strong dependence on spatial size L, especially when $L \leq \Lambda_{\text{OCD}}^{-1}$;

The finite volume chiral perturbative theory suggest an $e^{-m_{\pi}L}$ correction when $m_{\pi}L \geq 3$, it means that the volume required by $m_{\pi} \sim 135$ MeV is ~ 11 times of that required by $m_{\pi} \sim 300$ MeV.

^o The current FLAG "green star" requires $m_{\pi}L \sim 3.2$ for $m_{\pi} \sim 135$ MeV, or at least three volumes.

Z.-H. Hu, B.-L. Hu, J.-H. Wang, et. al., CLQCD, PRD109(2024) 054507

Informations

- Cost: Ο
- That of an independent configuration (per 10 traj.'s with $\tau = 1.0$, converted to A100 GPU hours) is shown on the figure;
- Used more than equivalently 5,000,000 A100 GPU hours;
- Working on the Sugon machines Ο to avoid the embargo of A100 GPU.

a

Outline

LQCD background and CLQCD ensembles

 Hadron masses and decay constants

Quark mass

Renormalization through intermediate scheme

$$m_q^{\overline{\text{MS}}}(\mu) = \frac{Z_m^{\text{MOM,Lat}}(Q, 1/a)}{Z_m^{\text{MOM,Dim}}(Q, \mu, \epsilon)} Z_m^{\overline{\text{MS}},\text{Dim}}(\epsilon) m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^m, \alpha_s^n)$$

- The RI/MOM renormalization targets to cancel the $\alpha_{s} \log(a)$ divergences using the off-shell quark matrix element;
- ° Up to the $\mathcal{O}(a^2p^2)$ correction which can be eliminated by the $a^2p^2 \rightarrow 0$ extrapolation.

Quark mass

- Obtain the regularization independent renormalization constant non-perturbatively: $Z_{S}^{\text{MOM}}(Q, a) = 1 - \frac{\alpha_{s}C_{F}}{4\pi} [-3\log(a^{2}Q^{2}) - \xi + b_{S}] + \mathcal{O}(\alpha_{s}^{2}, a^{2}Q^{2})$
- Calculate the matching coefficient perturbatively 1.2 and obtain the result at $\overline{\text{MS}}$ scale Q: $Z_S^{\text{MS}}(Q, a) = 1 - \frac{\alpha_s C_F}{4\pi} [-3\log(a^2Q^2) - 5 + b_S] + \mathcal{O}(\alpha_s^2, a^2Q^2) \xrightarrow{\text{N}} 1.0$
- Obtain the result at $\overline{\text{MS}}$ scale μ with the scale evolution:

$$Z_{S}^{\overline{\text{MS}}}(\mu, a) = 1 - \frac{\alpha_{s}C_{F}}{4\pi} [-3\log(a^{2}\mu^{2}) - 5 + b_{S}] + \mathcal{O}(\alpha)$$

Non-Perturbative renormalization

Renormalized quark masses Impact of the renormalization

- $m_{\pi}^2/m_q \sim \Sigma/F^2$ which is insensitive to the quark mass, with the partially quenching effect subtracted;
- The PCAC mass $m_q^{PC} = \frac{\langle 0 | \partial_4 A_4 | PS \rangle}{2 \langle 0 | P | PS \rangle}$ has obvious 1/a and action dependences:
- 1. Smaller with large intrinsic scale 1/a;
- 2. Very sensitive to the fermion action.
- **RI/MOM** renormalization eliminates both the dependences and makes m_{π}^2/m_q^{MS} of all the ensembles on a similar curve.

Quark mass

Determine the pure QCD quark masses

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

• $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$

• $m_n = 939.57$ MeV;

• $m_{\pi}^0 = 134.98$ MeV;

• $m_{\pi}^{+} = 139.57 \text{ MeV} = m_{\pi}^{0} + 4.53(6) \text{ MeV} + \dots;$ X. Feng, et,al. Phys.Rev.Lett.128(2022)062003

• $m_K^0 = 497.61(1) \text{ MeV} = m_{K,OCD}^0 + 0.17(02) \text{ MeV} + \dots;$

 $m_K^+ = 493.68(2) \text{ MeV} = m_{K,\text{OCD}}^+ + 2.24(15) \text{ MeV} + \dots$

D. Giusti, et,al. PRD95(2017)114504

Z.-H. Hu, B.-L. Hu, J.-H. Wang, et. al., CLQCD, PRD109(2024) 054507

Quark mass

						-	~ ~		
Symbol	$\hat{oldsymbol{eta}}$	$a~({\rm fm})$	u_0	v_0	$ ilde{m}_l^b$	$ ilde{m}^b_s$	$\tilde{L}^3 \times \tilde{T}$	m_{π} (MeV)	m_{η_s}
C24P34	6.200	0.10530(18)	0.855453	0.951479	-0.2770	-0.2310	$24^3 \times 64$	340.5(1.7)	748
C24P29			0.855453	0.951479	-0.2770	-0.2400	$24^3 \times 72$	292.7(1.2)	658
C32P29			0.855453	0.951479	-0.2770	-0.2400	$32^3 \times 64$	292.4(1.1)	659
C32P23			0.855520	0.951545	-0.2790	-0.2400	$32^3 \times 64$	228.0(1.2)	644
C48P23			0.855520	0.951545	-0.2790	-0.2400	$48^3 \times 96$	225.6(0.9)	644
C48P14			0.855548	0.951570	-0.2825	-0.2310	$48^3 \times 96$	135.5(1.6)	707
E28P35	6.308	0.08877(30)	0.859646	0.954385	-0.2490	-0.2170	$28^3 \times 64$	352.1(1.2)	720
F32P30	6.410	0.07750(18)	0.863437	0.956942	-0.2295	-0.2050	$32^3 \times 96$	303.2(1.3)	677
F48P30			0.863473	0.956984	-0.2295	-0.2050	$48^3 \times 96$	303.4(0.9)	676
F32P21			0.863488	0.957017	-0.2320	-0.2050	$32^3 \times 64$	210.9(2.2)	660
F48P21			0.863499	0.957006	-0.2320	-0.2050	$48^3 \times 96$	207.2(1.1)	663
G36P29	6.498	0.06826(27)	0.866476	0.958910	-0.2150	-0.1926	$36^3 \times 108$	295.1(1.2)	693
H48P32	6.720	0.05187(26)	0.873378	0.963137	-0.1850	-0.1700	$48^{3} \times 144$	317.2(0.9)	695

$$m_{\eta_s} = 687.4(2.2) \text{ MeV}$$

Z.C. Hu, B.L. Hu, J.H. Wang, et. al CLQCD, Phys.Rev.D109 (2024) 054507

$$m_{\eta_s} = 689.89(49) \text{ MeV}$$

BMWc, Nature 593(2021)51

$$m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$$

RM123, Phys.Rev.D100 (2019) 1904.08731

Use etas to determine the valence strange quark mass; 0

- scheme.

Significantly suppress the strange quark mass dependence on each ensemble.

 $^{\circ}$ Use QED-subtracted $m_{D_{c}}$ mass to determine the pure QCD valence charm quark mass; • $\Delta^{\text{QED}} m_{D_s}$ is determined to be 2.3(4) MeV under the $m_{q,\text{QCD+QED}}^{\overline{\text{MS}}}(2\text{GeV}) = m_{q,\text{QCD}}^{\overline{\text{MS}}}(2\text{GeV})$

• Eliminate the effects from unphysical light and strange sea quark masses using the joint fit.

Renormalized quark masses

m_c^{MSbar(2GeV)} (GeV) 1.25 1.2 FLAG N_f=2+1 FLAG N_f=2+1+1 1.15 1.1 1.05 0.95 008 0.01 a²(fm²) 0.006 0.002 0.004 800.0 0.012 0.014

Dian-Jun Zhao, et.al., χ QCD, in preparation

Hai-Yang Du, B.L. Hu, et. al., CLQCD, 2408.03548

Charm quark mass

• Such a value is similar to the current lattice averages within ~1%.

Based on the $a^2 + a^4$ extrapolation:

 The prediction based on the Overlap fermion (χ QCD) and also Clover fermion (CLQCD) agrees within 1-2%.

Bottom quark physics

from CLQCD ensemble

- Determine the bare bottom quark mass using the physical Υ mass using the heavy quark improved action;
- The hyperfine splitting $m_{\Upsilon} - m_{\eta_b}$ and $m_b^{\overline{\text{MS}}}(2 \text{ GeV})$ agree with the experimental/FLAG values within 2%.
- More systematic study is in progress.

Outline

LQCD background and CLQCD ensembles

 Hadron masses and decay constants

Quark mass determinations

Decay constants

 Additional input likes the form factor of the semileptonic decay $K^0 \rightarrow \pi^- l\nu$ is required to determine $|V_{ud(s)}|$ directly and verify the unitarity of CKM.

Charmed meson spectrum

$$m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$$

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass

Open charm cases

- m_D is almost constant at different lattice spacing, with $m_D^{\pm} - m_D^0 = 2.9(3)_{\text{OCD}} + 2.4(5)_{\text{OED}} = 5.3(3)(5) \text{ MeV};$ RM123, Phys.Rev.D95(2017) 114504
- Agree with the PDG value 4.8(1) MeV well.
- Both m_D^* and $m_{D_s}^*$ have obvious lattice spacing dependence and the continuum extrapolated values agree with PDG well.

Charmed meson spectrum

 $m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass

charmonium cases

- $m_{J/\psi}$ agrees with PDG well but $m_{\eta_{\alpha}}$ is a few MeV lower;
- $m_{J/\psi} m_{\eta_c} = 118(3)$ MeV agree with previous HPQCD pure QCD prediction 119(1) MeV.
- P-wave charmonium masses also agree with PDG well, with $m_{1P} - m_{1S} = 451(11)$ MeV.

Baryon spectrum

B.-L. Hu, et. al., CLQCD, in preparation

of four light flavors

- Generally agree with the PDG values at 1% level;
- Trace anomaly contribution to all the baryon including the charmed one is under investigation:

$$m_H = m \langle \bar{\psi}\psi \rangle_H + \left[\frac{2}{\pi}\alpha_s + \mathcal{O}(\alpha_s^2)\right] m \langle \bar{\psi}\psi \rangle_H + \left[\left(-\frac{11}{8\pi} + \frac{N_f}{12\pi}\right)\alpha_s + \mathcal{O}(\alpha_s^2)\right]$$

• The missing QED effect will be investigated in the near future.

Decay constants

Open charm cases

$$f_{D^{+}} = 0.2102(33)_{\text{lat}} \text{ MeV}$$

$$\downarrow$$

$$f_{D^{+}} | V_{cd} | = 45.8(1.1)_{\text{exp}} \text{ MeV} \longrightarrow | V_{cd} | = 0.2179(33)_{\text{lat}}(5)$$

$$f_{D^{+}_{s}} | V_{cs} | = 243.5(2.7)_{\text{exp}} \text{ MeV} \longrightarrow | V_{cs} | = 0.979(11)_{\text{lat}}(11)$$

$$\uparrow$$

$$f_{D^{+}_{s}} = 0.2487(28)_{\text{lat}} \text{ MeV}$$

- Verified the unitarity of CKM matrix elements involving the charm quark: $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.008(23)(23).$
- Also provide the most precise f_{D^*} and f_{D^*} so far.

Hai-Yang Du, B.L. Hu, et. al., CLQCD, 2408.03548

Decay constants

S-wave charmonium

- Our prediction $f_{J/\psi} = 405.9(5.7)$ MeV is consistent with the experimental value 406.5(3.7)(0.5) MeV and also HPQCD prediction 409.6(1.6) MeV;
- We also predict $f_{\eta_c} = 398.1(4.6)$ MeV which is consistent with the HPQCD prediction 397.5(1.0) MeV.

Summary on SM para $m_{\pi^0} = 134.98 \text{ MeV}$ $m_{\pi^{\pm}}(m_u, m_d)$ $w_0 = 0.1736(9) \text{ fm} \longrightarrow (m_u + m_d)^{\overline{\text{MS}}(2 \text{ GeV})}/2 = 3.60(19) \text{ MeV}$ $m_{u}^{\overline{\text{MS}}(2 \text{ GeV})} = 2.45(30) \text{ MeV}$ $m_{\kappa^0}^{\text{QCD}} = 497.44(02) \text{ MeV}$ $m_d^{\overline{\text{MS}}(2 \text{ GeV})} = 4.74(14) \text{ MeV} \qquad \longleftarrow m_K(m_u^v)$ $m_{K^{\pm}}^{\text{QCD}} = 491.44(15) \text{ MeV}$ $m_{\rm s}^{\rm \overline{MS}(2 \ {\rm GeV})} = 98.8(5.5) \ {\rm MeV}$ $m_{D_s}^{\text{QCD}} = 1966.7(1.5) \text{ MeV} \longrightarrow m_c^{\overline{\text{MS}}(m_c)} = 1289(17)(01) \text{ MeV}$ $m_{D_s}(m_c^{val}, m_s^{val}, m_l^{sea}, m_s^{sea})$

Ameters

$$\frac{\int_{K}}{\int_{\pi}} = 1.1907(76)_{\text{lat}}$$

$$\frac{|V_{us}|}{|V_{ud}|} \frac{f_{K}}{f_{\pi}} = 0.27683(29)_{\exp}(20)_{\text{th}} \longrightarrow \begin{bmatrix}|V_{ud}| = 0.9740(03)_{\text{lat}}(01)\\ |V_{us}| = 0.2265(14)_{\text{lat}}(03) \\ 1 = |V_{ud}|^{2} + |V_{us}^{2}| + |V_{ub}|^{2} = |V_{ud}|^{2} + |V_{us}^{2}| + 0.0035^{2} \\ 1 = |V_{ud}|^{2} + |V_{us}^{2}| + |V_{ub}|^{2} = |V_{ud}|^{2} + |V_{us}^{2}| + 0.0035^{2} \\ f_{D^{+}} = 0.2102(33)_{\text{lat}} \text{ MeV} \longrightarrow \begin{bmatrix} f_{D^{+}} = 0.2102(33)_{\text{lat}} \text{ MeV} \\ \downarrow \\ f_{D^{+}} |V_{cd}| = 45.8(1.1)_{\exp} \text{ MeV} \longrightarrow \begin{bmatrix} |V_{cd}| = 0.2179(33)_{\text{lat}}(52)_{\exp} \\ |V_{cs}| = 0.979(11)_{\text{lat}}(11)_{\exp} \\ f_{D^{+}} = 0.2487(28)_{\text{lat}} \text{ MeV} \\ \downarrow \\ \end{bmatrix}$$

Summary

- The state-of-the-arts Lattice QCD ensemble should have enough ensembles to approach the continuum, infinite volume and physical quark masses reliably; and the present CLQCD ensembles have been close to this goal.
- Up, down, strange and charm quark masses have been determined at a few percent level;
- The charmed meson and baryon masses are predicted at ~0.3% uncertainty and agree with the experimental values at 1% level.
- More predictions are in progress.

