

Recent studies of tetraquark states at LHCb

The 23rd International Conference on Few-Body Problems in Physics Beijing, China Sept.22-27, 2024

> Zhihong Shen Peking University On behalf of the LHCb collaboration

Exotic hadrons

- Since discovery of $\chi_{c1}(3872)$ aka X(3872) in 2003, dozens of more exotic candidate observed
- Theoretic explanations

 Exotic hadrons studies help to further understand non-perturbative QCD at low energies

The LHCb detector

- A single-arm forward spectrometer covering $2 < \eta < 5$
- Designed for heavy flavour physics

New hadrons at LHCb

https://www.nikhef.nl/~pkoppenb/hadrons//Masses_LHCb.pdf

Results not detailed in this talk

... but important

Fully-charmed tetraquark

T_{cc̄cc̄}(6900) in *J/ψ* pair
 mass spectrum

Candidate for [*ccss*]

• X(3960) in $B^+ \to D_s^+ D_s^- K^+$

$\chi_{c1}(3872)$ properties

• ω contribution in $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$

$\begin{array}{c} 400 \\ 350 \\ 9 \text{ fb}^{-1} \\ - \text{ data} \\ - \text{ total fit} \\ 0 \\ 150 \\ 100 \\ 0 \\ 400 \\ 500 \\ 600 \\ 700 \\ m_{\pi^{+}\pi^{-}} \left[\text{MeV}\right] \end{array}$

Science Bulletin 65 (2020) 1983

Phys. Rev. Lett. 131, (2023) 071901

Phys. Rev. D 131 (2023) L011103

Results shown in this talk

Ξ_b(6095)⁰ Ξ_b(6087)⁰ bqq

cqq

h_c(4300)

 $\chi_{c1}(4010)$ $h_c(4000)$

cc̄qqq

cēcē

cąqą

сā

P_{ccs}(4338)⁰

X(3960

2023

 $T_{c\bar{c}s1}(4000)$

Ω_c(3327)⁰ Ω_c(3185)⁰

T_{cš0}(2900)⁺⁺

 $T_{c\bar{s}0}(2900)^{0}$

2024

bā

сē

 $c\bar{c}(q\bar{q})$

 $\Xi_b(6327)^0$ $\Xi_b(6333)^0$

ccāā

 $\chi_{c1}(4685) \psi(4630)$

 $T_{c\bar{c}s1}(4220)^+$

 $T_{c\bar{c}s1}(4000)^+$

 $T_{cc}(3875)^+$

2022

 $C_{cs0}(2900)^{0}$ $C_{cs1}(2900)^{0}$

2021

 $D_{s0}(2590)^+$

Dozens of new hadrons observed

T_{cčcč}(6900)

since last conference

 $\Omega_b(6350)^ \Lambda_b(6152)^0 \Omega_b(6340)^ =_b(6227)^0$

Pcc (4457)+

P_{cc}(4440)⁺

P_{cc}(4312)⁺

ψ(3842)

 $\Xi_c(2939)^0$

 $\Xi_c(2923)^0$

2019

submission

2020

 $\Lambda_b(6070)^0 B_s^*(6114)^0$

 $B_{c}^{*}(6063)^{0}$

Minimal quark content "mimics" regular hadronic structure

• Radiative decay of $\chi_{c1}(3872)$

Manifestly exotics

Minimal quark content shows up as explicitly exotic

- (Hidden-charm tetraquarks with strangeness
 - Charged: $T_{c\bar{c}s1}(4000)^+$ and $T_{c\bar{c}s1}(4220)^+$
 - Neutral: $T_{c\bar{c}s1}(4000)^{0}$
- Doubly-charmed tetraquarks

 $\circ T_{cc}(3875)^+$

- Open-charmed tetraquarks
 - $\circ T_{cs0}(2900)^0$ and $T_{cs1}(2900)^0$
 - o $T_{c\bar{s}0}(2900)^{++}$ and $T_{c\bar{s}0}(2900)^{0}$

PART 01

Hidden exotics

Radiative decays of $\chi_{c1}(3872)$

• First observation of $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$, 6σ

 $B^+ \rightarrow \chi_{c1}(3872) K^+, \chi_{c1}(3872) \rightarrow \psi(2S) \gamma$

 $B^+ \to \chi_{c1}(3872) K^+, \chi_{c1}(3872) \to J/\psi\gamma$

arXiv:2406.17006, submitted to JHEP

 $\mathcal{R}_{\psi\gamma} = \frac{\mathcal{B}(B^+ \to (\chi_{c1}(3872) \to \psi(2S)\gamma)K^+)}{\mathcal{B}(B^+ \to (\chi_{c1}(3872) \to J/\psi)K^+)}$

arXiv:2406.17006, submitted to JHEP

PART 02 Manifestly exotics

Hidden-charm tetraquarks with strangeness

Observation of $T_{c\bar{c}s1}(4000)^+$ and $T_{c\bar{c}s1}(4220)^+$

Isospin partner of $T_{c\bar{c}s1}(4000)^+$: $T_{c\bar{c}s1}(4000)^0$

- Search for $T_{c\bar{c}s1}(4000)^0$ in $B^0 \rightarrow J/\psi K_S^0 \phi$
- Simultaneous amplitude analysis of $B^+ \rightarrow J/\psi K^+ \phi$ and $B^0 \rightarrow J/\psi K_S^0 \phi$
- Evidence for $T_{c\bar{c}s1}(4000)^0$ with a significance of 4.0 σ
- Mass, width of $T_{c\bar{c}s1}^{+,0}$

-	State	Mass (MeV)	Width (MeV)
[cc̄ds̄]	$T_{c\bar{c}s1}(4000)^0$	$3991{}^{+12}_{-10}{}^{+9}_{-17}$	$105^{+29}_{-25}{}^{+17}_{-23}$
[ccus]	$T_{c\bar{c}s1}(4000)^+$	$4003\pm6{}^{+4}_{-14}$	$131\pm15\pm26$

$$\Delta M \equiv M_{T_{c\bar{c}s1}(4000)^0} - M_{T_{c\bar{c}s1}(4000)^+} = -12^{+11}_{-10} {}^{+6}_{-4} \text{ MeV}$$

Consistent with $T_{c\bar{c}s1}(4000)^0$ and
 $T_{c\bar{c}s1}(4000)^+$ being isospin partners

Isospin partner of $T_{c\overline{c}s1}(4000)^+$: $T_{c\overline{c}s1}(4000)^0$

PART 03 Manifestly exotics

Doubly-charmed tetraquarks

Doubly-charmed tetraquarks: *T_{cc}*(3875)⁺

- Frist observation of $T_{cc}(3875)^+ \rightarrow D^0 D^0 \pi^+$
 - Exotic quark content [ccūd]
- Close to $D^{*+}D^0$ mass threshold, narrow

$$\begin{split} \delta m_{\rm BW} &\equiv m_{\rm BW} - (m_{D^{*+}} + m_{D^0}) \\ &= -273 \pm 61({\rm stat}) \pm 5({\rm syst})^{+11}_{-14}({\rm model}) \, {\rm KeV} \\ \Gamma &= 410 \pm 65({\rm stat}) \pm 43({\rm syst})^{+18}_{-38}({\rm model}) \, {\rm KeV} \end{split}$$

- Consistent with isoscalar, $J^P = 1^+$
- First representative of $QQ'\bar{q}\bar{q}'$
 - Almost stable against strong interaction $\tau \sim 10^{-20}$ s
 - Support existence of T_{bb}^- [$bb\overline{u}\overline{d}$] and T_{bc}^0 [$bc\overline{u}\overline{d}$] might be found in the future

Nature Communicatitions, 13 (2022) 3351

PART 04 Manifestly exotics

Open-charmed tetraquarks

Open-charm tetraquarks: $T^*_{cs0}(2870)^0$ and $T^*_{cs1}(2900)^0$

• Amplitude analysis on $B^+ \rightarrow D^+ D^- K^+$ decay

Model with only charmonia cannot describe data well

syst

Phys. Rev. D 102, 112003 (2020)

Two new states needed to describe data

stat

Resonance	Mass (Gev	$V/c^{2})$	Width (N	MeV)
$T^*_{cs0}(2870)^{\circ}$	2.866 ± 0.007	± 0.002	57 ± 12	± 4
$T_{cs1}^{*}(2900)^{0}$	2.904 ± 0.005	± 0.001	110 ± 11	± 4

Strong candidate for tetraquark states with quark content $\overline{c}\overline{s}du$

Amplitude analysis of $B^+ \rightarrow D^{*\pm}D^{\mp}K^+$

• Confirmation of $T^*_{cs0}(2870)^0$ and $T^*_{cs1}(2900)^0$ in $B^+ \to D^+D^-K^+$

Property	This work	Previous work
$T^*_{\bar{c}\bar{s}0}(2870)^0$ mass [MeV]	$2914 \pm 11 \pm 15$	2866 ± 7
$T^*_{ar{c}ar{s}0}(2870)^0 { m width} [{ m MeV}]$	$128\pm22\pm23$	57 ± 13
$T^*_{ar{c}ar{s}1}(2900)^0 { m mass} [{ m MeV}]$	$2887\pm8\pm6$	2904 ± 5
$T^*_{\overline{cs1}}(2900)^0$ width [MeV]	$92\pm16\pm16$	110 ± 12

- No structure found in D*- K+
 spectrum
- Three new states in *D*^{*±}*D*[∓] spectrum observed

	Unit: MeV	
$h_c(4000)$	$J^{PC} = 1^{+-}$	L (9D) 2
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$	$n_c(2P)$:
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$	(9D)
$m_0 = 4012.5 \substack{+3.6 \\ -3.9 \\ -3.9 \\ -3.7}$	$\Gamma_7 \Gamma_0 = 62.7 + 7.0 + 6.4 - 6.6$	$\chi_{c1}(2\Gamma)$!
$h_c(4300)$	$J^{PC} = 1^{+-}$	h(2D)
$m_0 = 4307.3 {}^{+6.4}_{-6.6} {}^{+3.3}_{-4.1}$	$\Gamma_0 = 58 \frac{+28}{-16} \frac{+28}{-25}$	$n_c(\mathbf{SF})$?

$B^+ \rightarrow D^{*-}D^+K^+$ ata $\chi_{c2}(3930) - \eta_c(3945) - \psi(4)$

Amplitude analysis of $B \rightarrow DD_s \pi$

- Joint amplitude analysis linked through isospin symmetry
 - $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$
 - $B^+ \rightarrow D^- D_S^+ \pi^+$
- Two exotic states observed

 $\begin{array}{ll} T^*_{c\bar{s}0} \ (2900)^0 : M = 2.892 \pm 0.014 \pm 0.015 \,\text{GeV}, & J^P = 0^+ \\ & \Gamma = 0.119 \pm 0.026 \pm 0.013 \,\text{GeV}, & \\ T^*_{c\bar{s}0} (2900)^{++} : M = 2.921 \pm 0.017 \pm 0.020 \,\text{GeV}, & \\ & \Gamma = 0.137 \pm 0.032 \pm 0.017 \,\text{GeV}, & J^P = 0^+ \end{array}$

Not the same as $T^*_{cs0}(2870)^0 \ [c\bar{s}du]$ observed in $B^+ \rightarrow D^+D^-K^+$

Isospin triplet?

 $T^*_{c\bar{s}0}(2900)^0\to D^+_s\pi^-$

? $T^*_{c\bar{s}0}(2900)^+ \to D^+_{s}\pi^0$ to be searched $T^*_{c\bar{s}0}(2900)^{++} \to D^+_{s}\pi^+$

Phys. Rev. Lett. 131 (2023) 041902 Phys. Rev. D 108 (2023) 012017

Summary and outlook

Some recent results on tetraquark states presented

- Hidden exotics: radiative decay of $\chi_{c1}(3872)$
- Manifestly exotics:
 - $[c\bar{c}q\bar{s}]$: $T_{c\bar{c}s1}(4000)^+$, $T_{c\bar{c}s1}(4220)^+$, $T_{c\bar{c}s1}(4000)^0$
 - $[cc\bar{q}\bar{q}]$: $T_{cc}(3875)^+$
 - $[c\bar{s}qq]$: $T_{cs0}(2900)^0$, $T_{cs1}(2900)^0$, $T_{c\bar{s}0}(2900)^{++}$, $T_{c\bar{s}0}(2900)^0$

LHCb upgrade

- Larger data sample will help tetraquark studies
 - $_{\odot}$ Properties of observed tetraquarks
 - $_{\odot}$ Likely to observe more tetraquarks
 - 0 • •

Thanks for your attention!

Back up

LHCb dataset

- Run 1: 3 fb⁻¹ pp collision @ 7,8 TeV
- Run 2:

 $6 \text{ fb}^{-1} pp \text{ collision } @ 13 \text{ TeV}$

Integrated Recorded Luminosity (1/fb)

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2024

Details of $B^0 \rightarrow J/\psi K_S^0 \phi$

- Relativistic Breit-Wigner to describe lineshape
- Floating parameters
 - Mass, width, helicity couplings
- Parameters configuration
 - Isospin symmetry for all resonances except for $T_{\psi s1}^{\theta}(4000)$ in B^+ and B^0 decay
 - Corresponding parameters shared
 - Not assuming isospin symmetry for $T_{\psi s1}^{\theta}(4000)^{0}$ and $T_{\psi s1}^{\theta}(4000)^{+}$

- ccds $T_{\psi s}$ chain: K^{*} chain X chain [ccss] $T_{\psi s}$ [*c***cus**] $B \rightarrow \phi$ $B \rightarrow I/\psi$ K^* $B \rightarrow X$ Κ $\hookrightarrow J/\psi \phi$ $\hookrightarrow K^+K^- \hookrightarrow J/\psi K$ $\hookrightarrow \mu^+ \mu^- \hookrightarrow \phi K$ $\hookrightarrow \mu^+ \mu^- \hookrightarrow K^+ K^ \hookrightarrow \mu^+ \mu^ \hookrightarrow K^+ K^ T^{\theta}_{ws1}(4000)$ $2^{1}P_{1}$ $K(1^{+})$ $\eta_{c2}(4150)$ $2^{1}P_{1}^{3}$ $K'(1^+)$ $T^{\eta}_{\psi\phi1}(4630)$ $T_{ws1}(4220)$ $1^{3}P_{1}$ $K_1(1400)$ $\chi_{c0}(4500)$ $1^{1}D_{2}$ $K_2(1770)$ $\chi_{c0}(4700)$ $1^{3}D_{2}$ $K_2(1820)$ NR_{I/w} $1^{3}D_{1}$ *K**(1680) $\chi_{c1}(4140)$ $2^{3}S_{1}$ *K*^{*}(1410) $\chi_{c1}(4274)$ $2^{3}P_{2}$ $K_{2}^{*}(1980)$ $\chi_{c1}(4685)$ $2^{1}S_{0}$ *K*(1460)
- Corresponding parameters vary independently

Details of $T_{cc}(3872)^+$

Reflections from T_{cc}^+ in $m(D^0D^0)$ and $m(D^+D^0)$ spectra consistent with isoscalar hypothesis

Isovector components T_{cc}^0 and T_{cc}^{++} would show up in $m(D^+D^+)$ and $m(D^+D^0\pi^+)$ spectra \rightarrow not observed

Unitarised 3-body BW model, assuming I = 0 and $J^P = 1^+$:

Characteristic size estimates $R_{\Delta E} = 7.49 \pm 0.42 \,\mathrm{fm}$ $R_a = 7.16 \pm 0.51 \,\mathrm{fm}$ (molecular-like)

Unlike $\chi_{c1}(3872)$, no T_{cc}^+ suppression for high multiplicity (wrt. $D^0\overline{D}^0$)

Amplitude analysis of $B^+ \rightarrow D^{*-}D_s^+\pi^+$

• $T_{c\bar{s}0}^*(2900)^{++}$ has been searched in $D_s^+\pi^+$ spectrum

 No strong evidence of tetraquarks contributing to the total decay amplitude

• Fit fraction of $T^*_{c\bar{s}0}(2900)^{++} \rightarrow D^+_{s}\pi^+$ is found to be less than 2.3% at 90% CL

