

The 23rd International Conference on Few-Body Problems in Physics

Correlation function and the inverse problem in the twobody interactions

- Chu-Wen Xiao
- Guangxi Normal University
- Collaborators: Eulogio Oset, Wei-Hong Liang, Jia-Jun Wu En Wang, Hai-Peng Li
- **arXiv:** [2409.05787](https://arxiv.org/abs/2409.05787) **2024.9. Beijing**

Outline

1. Introduction 2. Two-body interaction 3. Inverse problem 4. Summary

1

§1. Introduction

 $A \Sigma^*(1/2-)$ state with mass 1430 MeV near $\overline{K}N$ threshod was **predicted**: *N. Kaiser, P. B. Siegel, and W. Weise, Nucl. Phys. A 594, 325 (1995) E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998) J. A. Oller and U.-G. Meißner, Phys. Lett. B 500, 263 (2001) D. Jido, J. A. Oller, E. Oset, A. Ramos and U.-G. Meißner, Nucl. Phys. A 725, 181 (2003)* **two-poles structure of** *Λ***(1405) was found** A recent review on the $\Sigma*(1/2-)$ state: **But, still NOT found yet……..** $$

E. Wang, L.-S. Geng, J.-J. Wu, J.-J. Xie, and B.-S. Zou, arXiv:2406.07839

There are some proposals to search for this **predicted** state:

Y.-H. Lyu, H. Zhang, N.-C. Wei, B.-C. Ke, E. Wang, and J.-J. Xie, Chin. Phys. C 47, 053108 (2023)

$$
\gamma n\,\rightarrow\,K^+\Sigma_{1/2^-}^{*-}
$$

X.-L. Ren, E. Oset, L. Alvarez-Ruso, and M. J. Vicente Vacas, Phys. Rev. C 91, 045201 (2015) J.-J. Wu and B.-S. Zou, Few Body Syst. 56, 165 (2015)

$$
\bar{\nu}_l p \, \rightarrow \, l^+ \Phi B
$$

Wang, J.-J. Xie, and E. Oset, Phys. Lett. B 753, 526 (2016)

$$
\chi_{c0}(1P) \to \bar{\Sigma}\Sigma\pi
$$

L.-J. Liu, E. Wang, J.-J. Xie, K.-L. Song, and J.-Y. Zhu, Phys. Rev. D 98, 114017 (2018)

$$
|\chi_{c0}\> \rightarrow \> \Lambda \Sigma \pi|
$$

J.-J. Xie and E. Oset, Phys. Lett. B 792, 450 (2019)

A recent **evidence** of the Σ∗(1/2−) state:

Y. Ma et al. (Belle), Phys. Rev. Lett. 130, 151903 (2023)

But, from their analysis, they can NOT discriminate from the peak being due to

a resonance or to a cusp in the $\overline{K}N$ threshold.

 $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$

 $\Lambda_c^+ \to \pi^+ \pi^+ \pi^- \Lambda$

§2. Two-body interaction

(1) Coupled channel interaction from the chiral unitary approach

$$
\bar{K}^0 p, \pi^+ \Sigma^0, \pi^0 \Sigma^+, \pi^+ \Lambda, \text{ and } \eta \Sigma^+
$$

Without the Coulomb interaction

$$
V_{ij} = -\frac{1}{4f^2}C_{ij}(k_i^0+k_j^0)
$$

$$
\begin{aligned}\n\left|\pi^{+}\Sigma^{0}\right\rangle &= -\frac{1}{\sqrt{2}}\left(\left|\pi\Sigma, I=2, I_{3}=1\right\rangle + \left|\pi\Sigma, I=1, I_{3}=1\right\rangle\right) \\
\left|\pi^{0}\Sigma^{+}\right\rangle &= -\frac{1}{\sqrt{2}}\left(\left|\pi\Sigma, I=2, I_{3}=1\right\rangle - \left|\pi\Sigma, I=1, I_{3}=1\right\rangle\right) \\
\left|\bar{K}^{0}p\right\rangle &= \left|\bar{K}N, I=1, I_{3}=1\right\rangle, \\
\left|\pi^{+}\Lambda\right\rangle &= -\left|\pi\Lambda, I=1, I_{3}=1\right\rangle \\
\left|\eta\Sigma^{+}\right\rangle &= -\left|\eta\Sigma, I=1, I_{3}=1\right\rangle\n\end{aligned}
$$

 $f=93\,\, \mathrm{MeV}$

5

 $\sqrt{2}$

Coupled Channel Unitary Approach: solving Bethe-Salpeter equations, which take on-shell approximation for the loops.

$$
T = V + V\,G\,T,\,T = [1 - V\,G]^{-1}\,V
$$

where V matrix (potentials) can be evaluated from the interaction Lagrangians.

J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438 E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99 J. A. Oller and U. G. Meißner, Phys. Lett. B 500 (2001) 263 *G* is a diagonal matrix with the loop functions of each channels:

$$
G_{ll}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{2M_l}{(P-q)^2 - m_{l1}^2 + i\varepsilon} \, \frac{1}{q^2 - m_{l2}^2 + i\varepsilon}
$$

The coupled channel scattering amplitudes **T matrix satisfy the unitary**:

$$
\text{Im } T_{ij} = T_{in} \sigma_{nn} T_{nj}^*
$$
\n
$$
\sigma_{nn} \equiv \text{Im } G_{nn} = -\frac{q_{cm}}{8\pi\sqrt{s}} \theta(s - (m_1 + m_2)^2))
$$

To search the poles of the resonances, we should extrapolate the scattering amplitudes to the second Riemann sheets:

$$
G_{ll}^{II}(s)=G_{ll}^{I}(s)+i\left|\frac{i}{2\pi}\frac{M_{l}q_{cml}(s)}{\sqrt{s}}\right|
$$

Correlation functions

§3. Inverse problem

Assume an energy dependence interaction potential

Using the bootstrap or resampling method

11

Generating random centroids of the data

Average of the fitted parameters

Observables:**the scattering length and effective range**

$$
\frac{1}{a_i} = \frac{8\pi\sqrt{s}}{2M_i} (T_{ii})^{-1} \bigg|_{\sqrt{s}_{\text{th},i}} \qquad \qquad r_i = \frac{1}{\mu_i} \frac{\partial}{\partial \sqrt{s}} \left[\frac{-8\pi\sqrt{s}}{2M_i} (T_{ii})^{-1} + ik_i \right]_{\sqrt{s}_{\text{th},i}}
$$

 $\sqrt{s}_p = (1420 \pm 10) - i(101 \pm 19)$ MeV

J. A. Oller and U.-G. Meißner, Phys. Lett. B 500, 263 (2001) D. Jido, J. A. Oller, E. Oset, A. Ramos and U.-G. Meißner, Nucl. Phys. A 725, 181 (2003)

Average of the scattering lengths

Average of the effective ranges

Consistent with the theoretical results before

A cusp- like structure

§4. Summary

- \blacktriangleright We use the chiral unitary approach to dynamically generate the state $|\Sigma^*(1430)|$
- Taking the pseudo data from theory, we use the resampling method for the inverse problem in the fitting of the correlation functions. \blacktriangleright The existing of this resonance can be tested by the information from the correlation functions.

Hope future experiments bring more clarifications on these issues…….

Thanks for your attention!

感谢大家的聆听!