Conventional hadron spectroscopy at LHCb

The 23rd International Conference on Few-Body Problems in Physics Beijing, China Sept.22-27, 2024

Yuhao Wang Peking University On behalf of the LHCb collaboration

Conventional hadrons

- Conventional hadrons: color-singlet
 - \Box Meson: $\overline{q}q$
 - □ Baryon: *qqq*
- \mathcal{L}_{QCD} is in principle expected to fully describe the spectrum \hat{g} and properties of hadrons

• Experimental measurements in hadron spectroscopy

- □ Extend the knowledge of QCD
- $\hfill\square$ Provide crucial inputs to reduce the uncertainties in theory
- Help to understand the ways in which QCD forms bound states and about their internal structure

Conventional Hadron Spectroscopy at LHCb

- The world's largest samples of reconstructed conventional heavy flavour hadrons are collected with LHCb during LHC RunI and RunII
- $\ensuremath{{ \bullet}}$ So far 75 hadrons have been discovered at the LHC, of which 67 by LHCb

[[]https://www.nikhef.nl/~pkoppenb/hadrons//Masses.pdf]

Conventional Hadron Spectroscopy at LHCb

• This talk will focus on the selected topics of conventional hadron spectroscopy, includes:

- Recent observations of new hadron
- □ Recent measurements of hadron property

- O Observation of $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$ [Phys. Rev. Lett. 118, 182001]
- O Observation of $\mathcal{E}_b(6100)^-$, $\mathcal{E}_b(6087)^0$ and $\mathcal{E}_b(6095)^0$ [Phys. Rev. Lett. 131 (2023) 171901]
- Study of hidden beauty spectroscopy [arXiv:2408.05134]
- Determination of the spin-parities of $\Xi_c(3055)^{+(0)}$ [arXiv:2409.05440]

[https://www.nikhef.nl/~pkoppenb/hadrons//Masses_conventional_hadrons.pdf]

Conventional hadron spectroscopy at LHCb

The LHCb detector

- A general purpose detector covering the forward region: 2 < η < 5
- Unprecedented *b* and *c* samples delivered by the LHC \rightarrow designed for heavy flavor physics
- Perfect conditions for both precision measurements & observations of new states
- Successful operation in RunI and RunII with various collision systems (pp, p-Pb, Pb-Pb)

The LHCb detector

Ingredients for good spectroscopy measurement

- $\textcircled{\begin{tabular}{ll} \bullet \\ \hline \end{array}} Excellent tracking \rightarrow mass and lifetime resolutions$
- O **Particle identification** \rightarrow important when dealing with charged hadrons in the final states
- **Trigger system** \rightarrow give excellent efficiency

Observation of new Ω_c^0 **states in** $\Xi_c^+ K^-$ **spectrum**

[Phys. Rev. Lett. 118, 182001]

- Study status in 2017:
 - $\Box \ \Omega_c^0 \to \Xi_c^+ K^-, \Xi_c^+ \to p K^- \pi^+$
 - □ The LHCb studied $\Xi_c^+ K^-$ spectrum up to 3450 MeV using RunI data
 - **There are 5 new states observed**: $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$, $\Omega_c(3119)^0$
 - □ There are 1 hint on another broad structure around 3200 and 3300 MeV

Observation of new Ω_c^0 states in $\Xi_c^+ K^-$ spectrum

[Phys. Rev. Lett. 131, 131902]

- Newly added 2016-2018 data
- Dedicated selection and BDT training per sample
- In total 7 states are reported, including 2 broad new states $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$

- In 2021, the CMS collaboration has reported the observation of the new $\Xi_b(6100)^-$ state [Phys. Rev. Lett. 126, 252003] $\Box \Xi_b(6100)^- \rightarrow \Xi_b^- \pi^+ \pi^-$
 - \Box Using the final states containing $J/\psi \rightarrow$ Di-muon trigger

Good example of complementarity :)

□ limited statistics

Conventional hadron spectroscopy at LHCb

- The Ξ_b baryons form an isospin doublet (*bsu*, *bsd*)
- First investigation in LHCb using $\Xi_b^- \pi^- \pi^+$ and $\Xi_b^0 \pi^- \pi^+$ final states
 - **D** Different decay modes were used to look for single or three pions
 - Most abundant b-baryon
 - \square Hadronic final states with topological trigger \rightarrow Higher yields, S/B
 - New charged resonance (temporarily referred to as Ξ_b^{**-}):

 $\Box \text{ Start with } \Xi_{\rm b}^{-} \to \Xi_{\rm c}^{0}[{\rm pK^-K^-\pi^+}]\pi^- \text{ and } \Xi_{\rm b}^{-} \to \Xi_{\rm c}^{0}[{\rm pK^-K^-\pi^+}]\pi^-\pi^+\pi^-$

 $\Box \ \Xi_b^{*0} \to \Xi_b^- \pi^+$ (one intermediate resonance known)

 $\Box \ \Xi_b^{**-} \to \Xi_b^{*0} \pi^-$

 $\Box \text{ The final state is thus} = \overline{\Xi_{b}^{-} \pi^{+} \pi^{-}} \text{ Charged final states}$

 \Box The yield is expected lower here due to the extra track in the final state

• New neutral resonance (temporarily referred to as Ξ_b^{**0}):

 $\Box \text{ Start with } \Xi_{b}^{0} \to \Xi_{c}^{+}[pK^{-}\pi^{+}]\pi^{-} \text{ and } \Xi_{b}^{0} \to \Xi_{c}^{+}[pK^{-}\pi^{+}]\pi^{-}\pi^{+}\pi^{-}$ $\Box \Xi_{b}^{\prime-}, \Xi_{b}^{*-} \to \Xi_{b}^{0}\pi^{-} \text{ (two intermediate resonances known)}$ $\Box \Xi_{b}^{**0} \to \Xi_{b}^{\prime-}\pi^{+}, \Xi_{b}^{**0} \to \Xi_{b}^{*-}\pi^{+}$

 \Box The final state is thus $\Xi_{\rm b}^0 \pi^- \pi^+$

[Phys. Rev. Lett. 131 (2023) 171901]

 \Rightarrow Up to 9 tracks in the final states

Conventional hadron spectroscopy at LHCb

Yuhao Wang

- The $\Xi_h(6100)^-$ is confirmed by LHCb with significance > 12 σ
 - \Box The decay mainly through $\Xi_b^{*0}\pi^-$ state
- First observation of $\Xi_b(6087)^0$ and $\Xi_b(6095)^0$
 - \Box Significance > 10 σ (7 σ)
 - \Box Main decay processes: $\Xi_b^{\prime-}\pi^+$ and $\Xi_b^{*-}\pi^+$
- The best measurement on the known $\Xi_b^{\prime-}$ and Ξ_b^{*-} states

• First observation of $\Xi_b^0 \to \Xi_c^+ \pi^- \pi^+ \pi^-$ (New decay)

State	Observ.	Value (MeV)
$\Xi_b(6100)^-$	Q_0	$23.6 \pm 0.11 \pm 0.02$
	Γ	$0.94 \pm 0.30 \pm 0.08$
	m_0	$6099.74 \pm 0.11 \pm 0.02 \pm 0$
$\Xi_{b}(6087)^{0}$	Q_0	$16.20 \pm 0.20 \pm 0.06$
	Γ	$2.43 \pm 0.51 \pm 0.10$
	m_0	$6087.24 \pm 0.20 \pm 0.06 \pm 0.5 \ (\Xi_b^0)$
$\Xi_b(6095)^0$	Q_0	$24.32 \pm 0.15 \pm 0.03$
	Γ	$0.50 \pm 0.33 \pm 0.11$
	m_0	$6095.36 \pm 0.15 \pm 0.03 \pm 1$
Ξ_b^{*0}	Q_0	$15.80 \pm 0.02 \pm 0.01$
	Γ	$0.87 \pm 0.06 \pm 0.05$
	m_0	$5952.37 \pm 0.02 \pm 0.01 \pm 0.6 \ (\Xi_b^-)$
$\Xi_b^{\prime-}$	Q_0	$3.66 \pm 0.01 \pm 0.00$
	Γ	$0.03 \pm 0.01 \pm 0.03$
	m_0	$5935.13 \pm 0.01 \pm 0.00 \pm 0.5 \ (\Xi_b^0)$
Ξ_b^{*-}	$\overline{Q_0}$	$24.27 \pm 0.03 \pm 0.01$
	Γ	$1.43 \pm 0.08 \pm 0.08$
	m_0	$5955.74 \pm 0.03 \pm 0.01 \pm 0.5 \ (\Xi_b^0)$

[Phys. Rev. Lett. 131 (2023) 171901]

Study of hidden beauty spectroscopy

${\small \textcircled{O}} \ \Upsilon \ states$

 \Box Masses measured in 1990s (CESR, DORIS, VEPP), relied on photon energy of $\Upsilon(2S)$ and $\Upsilon(3S)$

- \rightarrow standing tensions between CESR and DORIS on $\Upsilon(1S)$ mass
- **I** Shamov et al resolved by reanalysing the data with interference and radiative corrections considered correctly
- □ Quoted error in PDG 2024 for $\Upsilon(1S)$ decreased: 0.26 MeV \rightarrow 0.1 MeV \bigcirc
- □ DORIS data is removed for $\Upsilon(2S)$, error increased: 0.31 MeV \rightarrow 0.5 MeV \odot

• χ_b states

- **Π** Mass knowledge largely comes from study of photon energy in feed-down from Y decays
- □ Measurement of mass splitting are dominated by BarBar experiment

$m_{\chi_{b2}(1P)} - m_{\gamma}$	$\chi_{b1}(1P)$					PDGID:M078DM2	INSPIRE
VALUE (MeV)		DOCUMENT ID		TECN	COMMENT		
$\textbf{19.10} \pm \textbf{0.25}$	OUR AVERAGE Error inc	ludes scale factor of 1.1.					
$19.81 \pm 0.65 \pm 0.$	20	1 AAIJ	2014BG	LHCB	$p \; p o \gamma \mu^+ \mu^- X$		
19.01 ± 0.24		LEES	2014M	BABR	$\Upsilon(2S) o \gamma\gamma\mu^+\mu^-$		
¹ From the χ_b	$\gamma_j(1P) o \Upsilon(1S) \gamma$ transition.						
References:							
AAIJ	2014BG JHEP 1410 088	Measurement of the $\chi_b(3P)$ Mass and of the Ref.	lative Rate of $\chi_{b1}(1)$	LP) and j	$\chi_{b2}(1P)$ Production		
LEES	2014M PR D90 112010	Bottomonium Spectroscopy and Radiative Transi	tions Involving the	$\chi_{bJ}(1P,2$	2P) States at BABAR		

State	Measured mass $[MeV/c^2]$			
	PDG2024	PDG2022		
$\Upsilon(1S)$	9460.4 ± 0.1	9460.30 ± 0.26		
$\Upsilon(2S)$	10023.4 ± 0.5	10023.26 ± 0.31		
$\Upsilon(3S)$	10355.2 ± 0.5	10355.2 ± 0.5		

Conventional hadron spectroscopy at LHCb

[arXiv:2408.05134]

[Phys. Lett. B839 (2023), 137766]

Study of hidden beauty spectroscopy

Yuhao Wang

Conventional hadron spectroscopy at LHCb

Study of hidden beauty spectroscopy

• First observation of muonic Dalitz decay $\chi_b \to \Upsilon(1S)\mu^-\mu^+$

□ Measured masses agree with PDG

LHCb Yuhao Wang

Conventional hadron spectroscopy at LHCb

[arXiv:2408.05134]

- $\Xi_c(3055)^{+(0)}$ observed for the first time by <u>Babar(Belle</u>)
- Excitation modes of $\Xi_c(3055)^{+(0)}$ extensively studied

Yuhao Wang

• Many proposed interpretations, including $J^P = \frac{1}{2}^-$, $\frac{3}{2}^-$, $\frac{1}{2}^+$, $\frac{3}{2}^+$, $\frac{5}{2}^+$, $\frac{7}{2}^+$

 \Rightarrow determination of J^P is an important information for charm baryon spectroscopy

 $q_2 \rightarrow q_2$

LHC Yuhao Wang

Conventional hadron spectroscopy at LHCb

- Amplitude analysis
 - □ Helicity formalism
 - □ Free parameters: mass, width, helicity couplings
- Best fit corresponds to $J^P = \frac{3^+}{2}$

With rejection significance of other hypotheses $n_{\sigma} > 6.5 \sigma$

[arXiv:2409.05440]

- Amplitude analysis
 - □ Helicity formalism
 - □ Free parameters: mass, width, helicity couplings
- Best fit corresponds to $J^P = \frac{3^+}{2}$
- With rejection significance of other hypotheses $n_{\sigma} > 6.5 \sigma$
- Measured the up-down asymmetries α of $\Xi_b^{0(-)} \rightarrow \Xi_c(3055)^{+(0)}\pi^-$ decays
 - □ Consistent with a complete parity violation
 - \Box First measurement for the transition of the Ξ_b to Ξ_c baryon with a pseudoscalar meson
- Measured the relative branching fraction $B_{\Xi_c(3080)^+}/B_{\Xi_c(3055)^+}$

Quantity	$\Xi_c(3055)^+$	$\Xi_{c}(3055)^{0}$	
$m [\mathrm{MeV}\!/c^2]$	$3054.52 \pm 0.36 \pm 0.17$	$3061.00 \pm 0.80 \pm 0.23$	
$\Gamma [\mathrm{MeV}]$	$8.01 \pm 0.76 \pm 0.34$	$12.4 \pm 2.0 \pm 1.1$	
α	$-0.92\pm\ 0.10\ \pm\ 0.05$	$-0.92 \pm 0.16 \pm 0.22$	
$R_{\mathcal{B}}$	$0.045 \pm 0.023 \pm 0.006$	$0.14 \pm 0.06 \pm 0.04$	

[arXiv:2409.05440]

Summary and prospect

• Recent interesting results presented in this talk

- ✓ Observation of $\Xi_b(6100)^-$, $\Xi_b(6087)^0$ and $\Xi_b(6095)^0$
- ✓ Observation of $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$
- ✓ New decay modes: $\chi_b \to \Upsilon(1S)\mu^-\mu^+$, $\Xi_b^0 \to \Xi_c^+\pi^-\pi^+\pi^-$
- Mass measurement: Υ , χ_b
- ✓ Spin-parity determination: $\Xi_c(3055)^+$, $\Xi_c(3055)^0$

Just one more conventional hadron away from completing the spectroscopy puzzle

Today's discovery, tomorrow's

precision tool to test QCD!

- In RunIII, the LHCb experiment will keep making important contributions to heavy hadron spectroscopy with
 - Higher luminosity
 - Upgraded detector
 - □ Improved techniques

□ ...

Thanks a lot for your attention!

Backup

LHCb dataset

RunI: 3 fb⁻¹ pp collision @ 7,8 TeV
RunII: 6 fb⁻¹ pp collision @ 13 TeV

https://lbgroups.cern.ch/online/OperationsPlots/index.htm

Helicity amplitude

• Helicity couplings in the $\Xi_b \to \Xi_c \pi$, $\Xi_c^{**} \to D\Lambda$, $\Lambda \to p\pi$ decay chain

Floated for each resonance

Strong decay, only phase term:

 $\eta^{P_{\Xi_c}}(-1)^{J_{\Xi_c}+1/2}$

Fixed from input

Theoretical interpretations of $\Xi_c(3055)$

• Summarized in Rept.Prog.Phys. 80 (2017) no.7, 076201

References	Theoretical model	J^{P} of $\Xi_{c}(3055)$
Eur. Phys. J. A 37 (2008) 217–225	Faddeev method	5/2 ⁺ (1D)
Phys. Rev. D 78 (2008) 056005	Regge phenomenology	5/2 ⁺ (1D)
Phys. Rev. D 84 (2011) 014025	QCD-motivated relativistic quark model	3/2 ⁺ (1D)
Phys. Rev. D 86 (2012) 034024	Chiral quark model	3/2 ⁺ (1D)
Eur. Phys. J. A 82 (2015) 51	Relativistic flux tube model	3/2 ⁺ (1D)
Phys. Rev. D 94 (2016) 114016	QCD sum rules within HQET	3/2 ⁺ (1D)
Phys. Rev. D 96 (2017) 114003	3P0 model	$1/2^+(\overline{3}_F), \ 3/2^+(6_F)$ (2S)
Eur. Phys. J. C 79 (2019)167	Hadron molecular state	$1/2^{-}$, $3/2^{-}$ (molecular)

