THE 23rd INTERNATIONAL CONFERENCE ON **FB23 FEW-BODY PROBLEMS IN PHYSICS (FB23)** Sept. 22 - 27, 2024 • Beijing, China

Host Institute of High Energy Physics, Chinese Academy of Sciences Tsinghua University University of Chinese Academy of Science China Center of Advanced Science and Technology Institute of Theoretical Physics, Chinese Academy of Sciences South China Normal University **Co-host** Chinese Physical Society (CPS) High Energy Physics Branch of CPS

Reauty baryon decays at LHCb

Institute of High Energy Physics, Chinese Academy of Sciences (IHEP, CAS)

On behalf of LHCb collaboration

Shuqi Sheng (盛书琪)

Introduction

- **Beauty baryons** are produced copiously in LHCb *
- * Opening up new avenues for studying decays and improving precision of their properties
 - Many of the predicted heavy hadron states have not been found
 - Petaquark states or other exotic states
 - The parameters of some of the known hadrons measured with lower precision

LHCb detector

General purpose detector specialized in beauty and charm hadrons

- * Excellent performance to reconstruct exclusive b-hadrons decays

* Daughters of b and c hadrons decays: $p_T \sim O(1) GeV/c$, flight distance of mother particle $L \sim O(1) mm$

Outline

- * Production and mass
- * New decay mode:
 - First observation of the $\Lambda_h^0 \rightarrow D^+ D^- \Lambda [JHEP07(2024)140]$
- * Lifetime:
 - Precision measurement of the Ξ_{h}^{-} baryon lifetime [arXiv: 2406.12111]
- * CPV:

Observation of the $\Xi_b^0 \to \Xi_c^+ D_s^-$ and $\Xi_b^- \to \Xi_c^0 D_s^-$ decays [Eur. Phys. J. C 84, 237 (2024)]

Measurement of the Λ_b^0, Λ_c^+ and Λ decay parameters using $\Lambda_b^0 \to \Lambda_c^+ h^-$ decays [arXiv: 2409.02759]

Observation of the $\Xi_b^0 \to \Xi_c^+ D_s^-$ and $\Xi_b^- \to \Xi_c^0 D_s^-$ decays

[Eur. Phys. J. C 84, 237 (2024)]

Motivation

* According to the quark model, Λ_h^0, Ξ_h^0 and Ξ_h^- form an SU(3) flavour multiplet

• $Br(\Lambda_h^0 \to \Lambda_c^+ D_s^-) = (1.10 \pm 0.10) \times 10^{-2} [Phys. Rev. Lett. 112 (2014) 202001]$

• Ξ_h mass and branching measurement

Test isospin symmetry

* Can further investigate for other $\Xi_b \to \Xi_c D$ measurement

Observation of the $\Xi_b^0 \to \Xi_c^+ D_s^-$ and $\Xi_b^- \to \Xi_c^0 D_s^-$ decays [Eur. Phys. J. C 84, 237 (2024)]

According to the heavy quark effective theory, they should have approximately the same decay width

Analysis strategy

* Measured quantities:

* The isospin symmetry assures that $\frac{\sigma(\Xi_b^0)}{\sigma(\Xi_b^-)} \approx 1$

bervation of the
$$\Xi_b^0 \to \Xi_c^+ D_s^-$$
 and $\Xi_b^- \to \Xi_c^0 D_s^-$ defined as $[\text{Eur. Phys. J. C 84, 237 (2)}]$

$$\frac{\Xi_{c}^{+}D_{s}^{-})}{\Lambda_{c}^{+}D_{s}^{-})} \quad (1)$$

$$\frac{\Xi_{c}^{0}D_{s}^{-})}{\Lambda_{c}^{+}D_{s}^{-})} \quad (2)$$

$$\frac{\Xi_{c}^{+}D_{s}^{-})}{\Xi_{c}^{0}D_{s}^{-})} \quad (3)$$

* Consistent with SU(3) flavor symmetry and several predictions for relative production rates

pervation of the
$$\Xi_b^0 \to \Xi_c^+ D_s^-$$
 and $\Xi_b^- \to \Xi_c^0 D_s^-$ de [Eur. Phys. J. C 84, 237 (2)

First observation of the $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$

[JHEP07(2024)140]

Motivation

- * $\Lambda_b^0 \to D^+ D^- \Lambda$ proceed at quark level through $b \to c \bar{c} s$, not observed yet
- [Phys. Rev. D 103, 114013 (2021)] * Predicted via two types of two-body intermediate states:
 - Existence of a $D\overline{D}$ bound states X(3700)
 - Environment for conventional resonances: excited Ξ_c states $\Xi_c^{**} \to D\Lambda$
 - Pentaquark $\rightarrow \Lambda \bar{D}$ may also be present

First observation of the $\Lambda_h^0 \to D^+ D^- \Lambda$ [JHEP07(2024)140]

Results

- * First observation of $\Lambda_h^0 \to D^+ D^- \Lambda$ decay
- * Branching fraction measured

* Two body invariant masses:

First observation of the $\Lambda_b^0 \to D^+ D^- \Lambda$ [JHEP07(2024)140]

Precision measurement of the Ξ_b^- baryon lifetime

[arXiv: 2406.12111] Submitted to PRD

Introduction

- * The heavy quark expansion (HQE) framework predicts the beauty hadrons
 - Predictions of lifetime is a stringent test of the HQE framework
 - At the leading order, the decay width of all b hadrons is equal to that of the b quark
 - Lifetime measurements provide a direct quantitative test of the HQE high-order corrections

Lifetimes	Theoretical uncertainties	Experimental uncertainties
$ au_{\Xi_{\overline{b}}}/ au_{\Lambda_{b}^{0}}$	1.9%	2.5%
$ au_{\Omega_b^-}/ au_{\Lambda_b^0}$	4.2%	11%

- * Higher exotic b baryons start with Ξ_b^- lifetime measurement relative to that of Λ_b^0 ($au = 1.464 \pm 0.010$ ps)
- * Update Run 1 [Phys. Rev. Lett. 113 (2014) 242002] using larger Run2 samples

Precision measurement of the Ξ_h^- baryon lifetime [arXiv: 2406.12111]

Analysis strategy

- * Measure lifetime ratio $\tau_{\Xi_{h}}/\tau_{\Lambda_{h}^{0}}$
 - (precision dominated by LHCb $\Xi_{h}^{-} \rightarrow \Xi_{c}^{0} \pi^{-}$) • World average: $(\tau_{\Xi_{\overline{h}}}/\tau_{\Lambda_{h}^{0}})_{WA} = 1.089 \pm 0.028$
 - Latest HQE prediction: $(\tau_{\Xi_{\overline{h}}}/\tau_{\Lambda_{h}^{0}})_{HQE} = 1.078 \pm 0.021$ [J. High Energ. Phys. 2023, 34 (2023)]
- * Measure the ratio of efficiency-corrected signal yields as a function of decay time

$$R(t) \equiv \frac{N[\Xi_b^- \to \Xi_c^0 \pi^-](t)}{N[\Lambda_b^- \to \Lambda_c^0 \pi^-](t)} \cdot \frac{\epsilon[\Lambda_b^- \to \Lambda_c^0 \pi^-](t)}{\epsilon[\Xi_b^- \to \Xi_c^0 \pi^-](t)} \cdot \frac{\lambda}{\epsilon[\Xi_b^- \to \Xi_c^0 \pi^-](t)} = \frac{1}{\tau_{\Lambda_b^0}} - \frac{1}{\tau_{\Xi_b^-}} = \frac{1}{\tau_{\Xi_b^-}} = \frac{1}{1 - \lambda \tau_{\Lambda_b^0}}$$

 $\frac{\frac{1}{c}\pi^{-}](t)}{\frac{1}{c}\pi^{-}](t)} = R_{0}exp(\lambda t)$

Results

- * Most precise measurement of the Ξ_h^- lifetime
- Improvement on the world-average value by about a factor of two
- * Consistent with HQE expectation

Run2 (this work)	Run1+2
$076 \pm 0.013 \pm 0.006$	$1.078 \pm 0.012 \pm 0.00$
$\pm 0.019 \pm 0.009 \pm 0.011$	$1.578 \pm 0.018 \pm 0.010 \pm$

Submitted to PRL

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters using $\Lambda_b^0 \to \Lambda_c^+ h^-$ decays

[arXiv: 2409.02759]

Introduction

Decay parameters were first proposed by Lee and Yang to study parity violation in hyperon decays $\gamma \equiv \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}, \quad \begin{array}{l} \mbox{[Phys. Rev. 108 (1957) 1645]} \\ \mbox{with } \alpha^2 + \beta^2 + \gamma^2 = 1 \end{array}$

$$\alpha \equiv \frac{2\text{Re}(S^*P)}{|S|^2 + |P|^2}, \qquad \beta \equiv \frac{2\text{Im}(S^*P)}{|S|^2 + |P|^2},$$

S: Parity violating S-wave amplitude, P: Parity conserving P-wave amplitude

* Probe parity ($\alpha \neq 0$) and charge conjugation parity (CP) violation ($\alpha \neq -\bar{\alpha}, \beta \neq -\beta$)

* Can be defined for
$$\Lambda_b^0 \to \Lambda_c^+ h^-: (\frac{1}{2})^+ \to (\frac{1}{2})^+ 0^-$$
 decays:

$$A_{\alpha} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -\tan \Delta \delta \tan \Delta \phi \qquad \bullet \Delta \delta: \bullet$$
$$R_{\beta_1} = \frac{\beta + \bar{\beta}}{\alpha - \bar{\alpha}} = \tan \Delta \phi$$
$$R_{\beta_2} = \frac{\beta - \bar{\beta}}{\alpha - \bar{\alpha}} = \tan \Delta \delta.$$

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters [arXiv: 2409.02759]

strong phase difference

weak phase difference between the S and P wave amplitudes

Analysis overview

- * For charm-baryon decays
 - Precisely measured α parameters
 - Limited precision of β, γ

 $\beta(\Lambda_c^+ \to \Lambda \pi^+) = -0.06^{+0.58+0.05}_{-0.47-0.06}$ $\gamma(\Lambda_c^+ \to \Lambda \pi^+) = -0.60^{+0.96+0.17}_{-0.05-0.03}$ $\beta(\Xi_c^+ \to \Xi^0 \pi^+) = -0.64 \pm 0.69$ $\gamma(\Xi_c^+ \to \Xi^0 \pi^+) = -0.77 \pm 0.58$

[Phys. Rev. D100 (2019) 072004] [Phys. Rev. Lett. 132 (2024) 031801]

* $\alpha(\Lambda \rightarrow p\pi^+)$ has a great precision measured by BESIII [Phys. Rev. Lett. 129, 131801 (2022)]

* No previous result for bottom-baryon decay

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters [arXiv: 2409.02759]

Decay channels

* Decay parameters extracted from angular distribution

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters [arXiv: 2409.02759]

 $_{1,2} = \pi, K$

$$\Lambda_b^0 \to \Lambda_c^+ (\to p K_S^0) h_2^-$$

$$\frac{d\Phi}{d\Omega} = 1 + \alpha_b \alpha_c \cos\theta$$

Results

- * No CPV observed in these decay modes
 - A_{α}, R_{β} are compatible with 0
 - $\alpha \approx -1$ in Λ_h^0 decays shows V A nature of the weak current and maximal parity violation. Various model predict $\alpha \approx -1$ [Phys. Rev. D105 (2022) 073005]
- * β, γ of $\Lambda_c^+ \to \Lambda \pi^+/K^+$ are measured most precisely, serve as essential inputs for some theoretical model. Strong and weak phase differences between S and P waves

Decay	Parameter	Result
$\Lambda_c^+ \to \Lambda \pi^+$	β	$0.368 \pm 0.019 \pm 0.008$
	$ar{eta}$	$-0.387 \pm 0.018 \pm 0.010$
	γ	$0.502 \pm 0.016 \pm 0.006$
	$ar{\gamma}$	$0.480 \pm 0.016 \pm 0.007$
$\Lambda_c^+ \to \Lambda K^+$	β	$0.353 \pm 0.124 \pm 0.046$
	$ $ \bar{eta}	$-0.316 \pm 0.104 \pm 0.028$
	γ	$-0.743 \pm 0.067 \pm 0.023$
	$ar{\gamma}$	$-0.828 \pm 0.049 \pm 0.020$

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters [arXiv: 2409.02759]

Decay
$$\Lambda_c^+ \to \Lambda \pi^+$$
 $\Lambda_c^+ \to \Lambda K^+$
 $\Delta \phi \quad 0.01 \pm 0.02 \quad -0.448 \pm 0.017$
 $\Delta \delta \quad -0.03 \pm 0.015 \quad -0.57 \pm 0.19$

Results

* Independent measurement of Λ , consistent with BESIII

Decay	Our result	
lpha	$0.717 \pm 0.017 \pm 0.009$	
$ar{lpha}$	$-0.748 \pm 0.016 \pm 0.007$	
$\langle \alpha \rangle$	$0.733 \pm 0.012 \pm 0.006$	
A_{lpha}	$-0.022 \pm 0.016 \pm 0.007$	

* Comparison between baryon decays with different flavour

Decay	lpha
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	$-1.010 \pm 0.011 \pm 0.003$
$\Lambda_c^+ \to \Lambda \pi^-$	$-0.782 \pm 0.009 \pm 0.004$
$\Lambda \to p \pi^-$	$0.717 \pm 0.017 \pm 0.009$

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters [arXiv: 2409.02759]

PDG 2024 0.747 ± 0.009 -0.757 ± 0.004 -0.001 ± 0.004

Comments

Fully left-handed Nearly left-handed Not left-handed

[Phys. Rev. D 99, 014023]

- * Production, decays, b-baryon properties and CPV are presented
- Demonstrate great potential at LHCb to study baryon decays, especially in CP violation via angular analysis
- * Valuable insights into weak decay dynamic of baryons
- * Other precise measurements are ongoing

• Ξ_b^0, Ω_B^0 lifetime measurement

0

. . .

Back up

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters Helicity formalism [arXiv: 2409.02759]

 $\Lambda_h^0 \to \Lambda_c^+ (\to \Lambda h_1^+) h_2^-$

 $\mathrm{d}^5\Gamma$ $d\cos\theta_0 d\cos\theta_1 d\phi_1 d\cos\theta_2 d\phi_2 \propto$

 $(1 + \alpha_b \alpha_c \cos \theta_1 + \alpha_c \alpha_s \cos \theta_2 + \alpha_b \alpha_s \cos \theta_1 \cos \theta_2)$ $-\alpha_b \gamma_c \alpha_s \sin \theta_1 \sin \theta_2 \cos \phi_2 + \alpha_b \beta_c \alpha_s \sin \theta_1 \sin \theta_2 \sin \phi_2)$ $+P_z \cdot (\alpha_b \cos \theta_0 + \alpha_c \cos \theta_0 \cos \theta_1 + \alpha_b \alpha_c \alpha_s \cos \theta_0 \cos \theta_2)$ $+ \alpha_s \cos \theta_0 \cos \theta_1 \cos \theta_2$ $-\gamma_b \alpha_c \sin \theta_0 \sin \theta_1 \cos \phi_1$ $+ \beta_b \alpha_c \sin \theta_0 \sin \theta_1 \sin \phi_1$ $-\gamma_c \alpha_s \cos \theta_0 \sin \theta_1 \sin \theta_2 \cos \phi_2$ $+ \beta_c \alpha_s \cos \theta_0 \sin \theta_1 \sin \theta_2 \sin \phi_2$ $-\gamma_b \alpha_s \sin \theta_0 \sin \theta_1 \cos \theta_2 \cos \phi_1$ $+ \beta_b \alpha_s \sin \theta_0 \sin \theta_1 \cos \theta_2 \sin \phi_1$ $+ \beta_b \beta_c \alpha_s \sin \theta_0 \sin \theta_2 \cos \phi_1 \cos \phi_2$ $+ \beta_b \gamma_c \alpha_s \sin \theta_0 \sin \theta_2 \cos \phi_1 \sin \phi_2$ $+ \gamma_b \beta_c \alpha_s \sin \theta_0 \sin \theta_2 \sin \phi_1 \cos \phi_2$ $+ \gamma_b \gamma_c \alpha_s \sin \theta_0 \sin \theta_2 \sin \phi_1 \sin \phi_2$ $-\gamma_b \gamma_c \alpha_s \sin \theta_0 \cos \theta_1 \sin \theta_2 \cos \phi_1 \cos \phi_2$ $+ \gamma_b \beta_c \alpha_s \sin \theta_0 \cos \theta_1 \sin \theta_2 \cos \phi_1 \sin \phi_2$ $+ \beta_b \gamma_c \alpha_s \sin \theta_0 \cos \theta_1 \sin \theta_2 \sin \phi_1 \cos \phi_2$ $-\beta_b\beta_c\alpha_s\sin\theta_0\cos\theta_1\sin\theta_2\sin\phi_1\sin\phi_2)$

(33)where $\alpha_b, \beta_b, \gamma_b$ are decay parameters in Λ_b^0 decay, $\alpha_c, \beta_c, \gamma_c$ are decay parameters in Λ_c^+ decay, α_s is decay parameter in Λ^0 decay.

Helicity formalism

$$\Lambda_b^0 \to \Lambda_c^+ (\to p K_S^0) h_2^-$$

 $\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\cos\theta_{0}\mathrm{d}\cos\theta_{1}\mathrm{d}\phi_{1}} \propto 1 + \alpha_{b}\alpha_{c}\cos\theta_{1}\mathrm{d}\phi_{1}$ $+P_z \cdot (\alpha_b \cos \theta_0)$ (26) $+ \alpha_c \cos \theta_0 \cos \theta_1$ $-\gamma_b \alpha_c \sin \theta_0 \sin \theta_1 \cos \phi_1$ $+ \beta_b \alpha_c \sin \theta_0 \sin \theta_1 \sin \phi_1$ where $\alpha_b, \beta_b, \gamma_b$ are decay parameters in Λ_b^0 decay, α_c is decay parameter in Λ_c^+ decay.

Measurement of the Λ_b^0 , Λ_c^+ and Λ decay parameters [arXiv: 2409.02759]

$$\cos heta_1$$

Fit to Λ_{h}^{0} and $\bar{\Lambda}_{h}^{0}$ simultaneously Λ_{b}^{0} , Λ_{c}^{+} and Λ decay parameters [arXiv: 2409.02759]

Eight independent fit parameters, without external input

$$\begin{array}{l} \alpha_b^{\pi}, \ \alpha_b^{K}, \ \alpha_c^{\Lambda\pi}, \delta_c^{\Lambda\pi}, \ \alpha_c^{\Lambda K}, \delta_c^{\Lambda K}, \ \alpha_c^{pK_{\rm S}^0}, \ \alpha_s \\ \\ \alpha_b^{\pi}, \ \alpha_b^{K}, \ \beta_c^{\Lambda\pi}, \gamma_c^{\Lambda\pi}, \ \beta_c^{\Lambda K}, \gamma_c^{\Lambda K}, \ \alpha_c^{pK_{\rm S}^0}, \ \alpha_s \end{array}$$

Table 36: Decays involved and the corresponding measurable decay parameters. Note, $\delta =$ $\arctan \beta / \gamma$.

Decay	Parameter	
$\begin{array}{c} \Lambda^0_b \to \Lambda^+_c \pi^- \\ \Lambda^+_c \to p K^0_{\rm S} \end{array}$	$lpha_b^{\pi} \cdot lpha_c^{pK_{ m S}^0}$	
$\begin{array}{c} \Lambda^0_b \to \Lambda^+_c K^- \\ \Lambda^+_c \to p K^0_{\rm S} \end{array}$	$lpha_b^K \cdot lpha_c^{pK_{ m S}^0}$	
$ \begin{array}{c} \Lambda^0_b \to \Lambda^+_c \pi^- \\ \Lambda^+_c \to \Lambda \pi^+ \end{array} $	$egin{array}{c} lpha_b^\pi & lpha_b^{\Lambda\pi}, \ lpha_c^{\Lambda\pi}, \ eta_c^{\Lambda\pi}, \ \gamma_c^{\Lambda\pi}, \ \delta_c^{\Lambda\pi} \end{array}$	
$\Lambda \to p \pi^-$	$lpha_s$	
$\Lambda^0_b \to \Lambda^+_c K^-$	α_b^K	
$\Lambda_c^+\to\Lambda\pi^+$	$lpha_{c}^{\Lambda\pi}, \; eta_{c}^{\Lambda\pi}, \; \gamma_{c}^{\Lambda\pi}, \; \delta_{c}^{\Lambda\pi}$	
$\Lambda \to p\pi^-$	$lpha_s$	
$\Lambda^0_b o \Lambda^+_c \pi^-$	$lpha_b^\pi$	
$\Lambda_c^+\to\Lambda K^+$	$lpha_{c}^{\Lambda K},\ eta_{c}^{\Lambda K},\ \gamma_{c}^{\Lambda K},\ \delta_{c}^{\Lambda K}$	
$\Lambda \to p \pi^-$	$lpha_s$	

