

Contribution ID: 143 Type: 2.Parallel session talk

Relativistic three-body scattering and the $D^0D^{*+}-D^+D^{*0}$ system

Wednesday, 25 September 2024 11:25 (20 minutes)

Scattering amplitudes involving three-particle scattering processes are investigated within the isobar approximation which respects constraints from two- and three-body unitarity. The particular system considered is the $D^0D^{*+}-D^+D^{*0}$, where the $D^{*+-c}(D^{*0})$ enters as a p-wave $D^+\pi^0$ or $D^0\pi^{+-c}(D^0\pi^0)$ or $D^+\pi^-$) resonance. The interaction potentials in the coupled-channel $D^0D^{*+}-D^+D^{*0}$ system contain the σ,ρ,ω and π -exchange. The analytic continuation of the amplitudes across the three-body unitary cuts is investigated to search for poles on the unphysical Riemann sheets. Associated with an unstable particle $D^{*+-c}(D^{*0})$ is a complex two-body unitarity cut, through which one can further analytically continue into another unphysical Riemann sheet. Dynamical singularities emerged from the π -exchange potential are stressed. The pole generated from the $D^0D^{*+}-D^+D^{*0}$ interaction and its line shape in $D^0D^0\pi^+$ break-up production are in agreement with double-charmed tetraquark T_{cc}^+ observed by the LHCb Collaboration.

Primary author: ZHANG, Xu (Institute of Theoretical Physics)

Presenter: ZHANG, Xu (Institute of Theoretical Physics)

Session Classification: Parallel 2: Hadrons and related high-energy physics

Track Classification: Hadrons and related high-energy physics