Introduction	
000	

Resonances 000000 Quark model resonances

< ロ > < 同 > < 回 > < 回 >

Outlook 000

Resonances in the quark model

Jean-Marc Richard

Institut de Physique Des 2 Infinis de Lyon Université de Lyon–IN2P3-CNRS, France

23th Few Body Conference, September 27, 2024

• • • • • • • • • • • • • •

Table of contents

Introduction

- Quark model bound states
 - Introduction
 - Chromomagnetic binding
 - Chromoelectic binding

3 Resonances

- Introduction
- Real scaling (stabilization)
- Complex scaling
- Method of complex absorption
- Quark model resonances
 - Introduction
 - Real scaling applied to quark model
 - Complex scaling applied to quark model
 - Complex absorption applied to quark model
- 5 Outlook

Based on recent or past work with J.-P. Ader, P. Taxil, J. Vijande,

- A. Valcarce, Cafer Ay, Hyam Rubinstein, S. Zouzou, C. Gignoux,
- B. Silvestre-Brac, S. Fleck, M. Genovese, Fl. Stancu, J.-L. Ballot,

E. Hernandez, E. Hiyama, M. Oka, A. Hosaka ...

Introduction	
000	

Resonances 000000 Quark model resonances

< ロ > < 同 > < 回 > < 回 >

Outlook 000

Introduction

- Many candidates for exotic hadrons along the years
- Z-baryons in the 60s
- Baryonium in the 70s and 80s
- Θ⁺ pentaquark, etc.
- not confirmed

More recently

- XYZ hidden-flavor tetraquarks
- Anticharmed pentaquarks
- Fully-charmed tetraquarks cccc
- etc.

Introduction OOO Quark model bound states

Resonances

Quark model resonances

Outlook

P 21

Introduction

- Stable with respect to DD*
- Slightly unstable due to the D^* width $T_{cc} \rightarrow DD\pi$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction

- Quark model suited for bound states
- For instance, early prediction of QQqq
- Is quark model also applicable for resonances?
- Outline
 - Brief review on QM bound states
 - Chromomagnetic vs. chromoelectic binding
 - Brief review on resonances in toy models or atomic physics
 - Application of methods to QM

Quark model bound states

Resonances 000000 Quark model resonances

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlook

Binding or not?

- Binding is rarely obvious
- Consider for instance

$$H = \frac{\boldsymbol{p}_1^2}{2m} + \dots + \frac{\boldsymbol{p}_4^2}{2m} + \sum g_{ij} v(r_{ij}), \qquad G = \sum_{i < j} g_{ij} = 2 \quad v(r) \text{ attractive}$$

threshold
$$\{g_{ij}\} = \{0, 1, 0, 1, 0\}$$
 $\sum g_{ij} = 2$

- An example is Ps_2 with v(r) = -1/r weakly bound
- But for $QQ\bar{Q}\bar{Q}$ with v(r) = r and

$$\{g_{ij}\} = \left\{rac{1}{2}, rac{1}{4}, rac{1}{4}, rac{1}{4}, rac{1}{4}, rac{1}{2}
ight\}$$

a tetraquark with color $\overline{3}3$, it is above the threshold.

- Way out to bind tetraquarks?
 - Better {g_{ij}} (CM)
 - Unequal masses (CE)

Quark model bound states

Resonances

Quark model resonances

Outlook

Chromomagnetic binding

$$H = ssuudd$$
 vs. $\Lambda(sud) + \Lambda(sud)$

• In the SU(3) limit, $g_{ij} \propto \tilde{\lambda}_i . \tilde{\lambda}_j \sigma_i . \sigma_j v(r_{ij})$ (spin-color)

$$\sum_{H} g_{ij} = \frac{3}{2} \left[\sum_{\Lambda} g_{ij} + \sum_{\Lambda} g_{ij} \right]$$

If short-range corr. $\langle v(r_{ij}) \rangle$ taken the same as for baryons

150 MeV extrabinding for H vs. ΛΛ

But, if

- SU(3) breaking
- 6-body problem solved (with kin. ener. and spin-indep. terms)
- In particular $\langle v(r_{ij}) \rangle$ calculated, not guessed

H unbound in potential models.

Similar scenario: $P = \bar{c}uuds$, $\bar{c}ddsu$, $\bar{c}ssud$. (Lipkin, Gignoux et al.)

Introd	luction
000	

Resonances

Quark model resonances

Outlook 000

Introduction

- *H* dibaryon with S = -2 actively searched in several experiments
- Never identified, including in double hypernuclei

Nuclear Physics A553 (1993) 667c-674c North-Holland, Amsterdam NUCLEAR PHYSICS A

< ロ > < 同 > < 回 > < 回 > < 回 > <

Search for Double Strangeness Systems

Kenichi Imai Department of Physics, Kyoto University, Kyoto 606, Japan

Abstrací

Recently, the double strangeness systems, an H-dibaryon and double hypernuclei, have been searched for at various laboratories. Evidence of the weak decay of double hypernuclei was found by an emulsion-counter hybrid experiment and the lower limit of the H-dibaryon mass was provided as 2200 MeV/c². The results of this experiment are reported togelher with the current status of on-going experiments at KEX and BNL.

Quark model bound states

Resonances

Quark model resonances

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlook

Chromoelectric binding

Unequal masses

$$H = \frac{p_1^2}{2 m_1} + \cdots + \frac{p_4^2}{2 m_4} + \sum_{i < j} g_{ij} v(r_{ij}) .$$

- In the case of QED, it was observed that H₂ more deeply bound than Ps₂ (as compared to respective threshold energy)
- Due to favorable *C*-symmetry breaking (Adamowski et al., Richard et al.)
- Other symmetry breakings starting from Ps₂ do not work

Quark model bound states

Resonances

Quark model resonances

< ロ > < 同 > < 三 > < 三 > -

Outlook

Breaking charge conjugation

- $(M^+M^+m^-m^-)$ vs. $(\mu^+\mu^+\mu^-\mu^-)$ with 2 $\mu^{-1} = M^{-1} + m^{-1}$
- Same threshold
- The decomposition $H = H_{even} + H_{odd}$

$$\frac{p_1^2}{2M} + \frac{p_2^2}{2M} + \frac{p_3^2}{2m} + \frac{p_4^2}{2m} + V = \left[\sum \frac{p_i^2}{2\mu} + V\right] + \left(\frac{1}{4M} - \frac{1}{4m}\right) \left[p_1^2 + p_2^2 - p_3^2 - p_4^2\right]$$

- Implies E(H) < E(H_{even})
- This explains why H₂ is more stable than Ps₂.
- Same reasoning holds for QQqq in a central interaction:

- It starts unstable for *M* = *m*
- It becomes stable if *M*/*m* large enough

duction O Quark model bound states

Resonances 000000

< ロ > < 同 > < 回 > < 回 > < 回 > <

- In practice, the critical *M*/*m* at which purely chromoelectric binding occurs is rather elusive.
- But QQūd benefits from the help of a favorable CM interaction in the light sector.
- Transition \rightarrow stability near Q = c, as observed exp.

Resonances

Quark model resonances

Outlook

Remarks about bound states in QM

Diquark approximation dangerous, as antivariational

- Color mixing crucial
- Born-Oppenheimer fine
- $V_{\rm BO}(QQ\bar{q}\bar{q})$ and $V_{\rm BO}(QQq)$ similar

Quark model bound states

Resonances

Quark model resonances

< ロ > < 同 > < 回 > < 回 >

Outlook 000

Resonances: Introduction

- All candidates, X, Y, Z, pentaquarks, are resonances
- Recently in the all-heavy sector: $J/\psi J/\psi$ resonances at LHC
- Challenge: estimate masses and widths in the quark model
- Strategy: learn from toy models and try to apply to quark physics
- In particular:
 - Real scaling
 - Complex scaling
 - External absorption

Quark model bound states

Resonances

Quark model resonances

< ロ > < 同 > < 回 > < 回 >

Outlook

P 21

Real scaling (stabilization)

• Initially
$$\psi = \sum_{i=1}^{N} \gamma_i \varphi(\underline{\alpha}; \underline{r})$$
 as a function of *N*.

• More often, $\Psi(\underline{\alpha}; \underline{r}) \rightarrow \Psi(\underline{\alpha}; \underline{\lambda} \underline{r})$ as a function of $\underline{\lambda}$

- Left: Bardsley potential $V(r) = 7.5 r^2 \exp(-r)$, m = 1
- Right: H⁻ resonance

Introduction	1
000	

Resonances

Quark model resonances

Outlook

IP 21

э

Complex scaling, variational-like variant

$$r \rightarrow r \exp(it) \quad \Leftrightarrow \quad a_i \rightarrow a_i \exp(-nit)$$

in a exp. (*n* = 1) or G. (*n* = 2) expansion $\sum_i \gamma_i \exp(-a_i x^n - \cdots)$
Example: H⁻
Basis = a few exponentials (that fit the ground state)
$$\stackrel{-E}{\underset{0,30}{}}$$

Resonances

Quark model resonances

Outlook

Complex scaling, Bardsley potential

real part, -200 imaginary part

Note: real + complex scaling $r \rightarrow r \lambda \exp(i t)$ and search for stationary energies by varying λ and t.

Quark model bound states

Resonances

Quark model resonances

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlook

Complex absorption

Supplement

$$H \rightarrow H' = H - i \eta W$$

For instance

$$W = \sum_{i < j} (r_{ij} - r_0)^2 \underbrace{\Theta(r_{ij} - r_0)}_{\text{Heaviside}}$$

 Limit η → 0 if one uses a large basis otherwise stationary energies when η is varied

JMR Resonances QM

troduction	Quark model bound states	Resonances	Quark model resonances	

Complex absorption: example

Comparison of w.f.

Blue= Re Red=Im, solid=Exact, Dashed= Complex scaling, Dotted= Complex absorption

IP 21

tion	Quark model bound states	Resonances 000000	Quark mode

Quark model resonances

<ロト <回ト < 回ト < 回ト :

크

Outlook

Resonances: example $(J/\psi J/\psi)$

From Wang et al.

Quark model bound states

Resonances

Quark model resonances

イロト イヨト イヨト イヨト

Outlook 000

Resonances: example $(J/\psi J/\psi)$

From Wang et al.

Resonances QM

Resonances 000000 Quark model resonances

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlook

Quark model resonances: Introduction

- A very long way!
- No simple ansatz to get an approximate estimate (unlike the case of bound states)
- One always get energies above the ground state
- The problem is to separate genuine resonances from states paving the continuum.
- Up to now, big computations
- Attempts to elaborate laptop-size methods not yet successful

Intro	du	cti	or	1
000	С			

Quark model resonances: Real scaling

- Hiyama et al. applied real scaling to various pentaquark configurations
- Further studies by Japanese and/or Chinese teams
- Now considered as a seminal work
- Demonstrate the possibility of separating resonances from the discrete states mimicking the continuum
- Not very accurate for the widths (Simons formula)

Resonances

Quark model resonances

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlook

Quark model resonances: Real scaling-2

Also applied to bbūd
 bbūd

• Qi Meng et al., Phys.Lett.B 824 (2022) 136800

Quark model bound states

Resonances

Quark model resonances

• • • • • • • • • • • •

Outlook

Quarl model resonances: Real scaling-3

Very recent example. T_{ss} in a chiral quark model Jiazheng Ji, Yuheng Xing, Xinxing Wu, Ning Xu, and Yue Tan

Quark model bound states

Resonances

Quark model resonances

Outlook 000

Complex scaling applied to the quark model

- Wang, Meng and Oka, for instance, used a standard quark model combined to Gaussian expansion, to study ccccc.
- Interesting spectrum of resonances
- For instance, for spin S = 2, two states near 7 i 0.04 GeV

Complex scaling applied to the quark model-2

- Such calculations are technically delicate
- In some papers, crucial details are omitted
- For instance, if $\psi = \sum_{i=1}^{N} \gamma_i \exp(-a_i x^2 2b_i x.y \cdots)$
- Real scaling $(a_i, b_i,) \ldots \rightarrow \lambda (a_i, b_i, \ldots)$
- Complex scaling $(a_i, b_i,) \ldots \rightarrow \exp(-2i\theta)(a_i, b_i, \ldots)$
- Are well explained, but the starting point is elusive
- If N is large, the eigenvalue equation

$$\mathbb{H}\left\{\gamma_{i}\right\} = \boldsymbol{E} \mathbb{N}\left\{\gamma_{i}\right\}$$

becomes singular!

• And requires a careful handling. Similar pb. in large shell-model calculations in NP

Complex absorption applied to quark model

- Same model as in the previous slide
- $-i \eta (r_{ij} r_0)^2 \Theta(r_{ij} r_0)$ added to each pair
- Spectrum as a function of η and r_0
- At first glance, slightly confusing

A D b 4 A b

IP 21

Complex absorption applied to quark model

- After some adjustments
- And some filtering
- One confirms the results of the Sino-Japanese collaboration

JMR

• • • • • • • • • • • •

Quark model bound states

Resonances 000000

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlook-1

- The calculation of multiquark resonances is rather delicate
- Especially the width
- Already significant progress done, and published using
 - Real scaling
 - Complex scaling (variational-like version)
- The method of imaginary external absorption seems promising
- A strategy for starting values of the range parameters in the wf is needed
- Not satisfactory to start with thousands of states, of which only a few dozens are effective

Introduction	
000	

Resonances 000000

< ロ > < 同 > < 回 > < 回 > < 回 > <

P 21

Outlook-2

- Binding? Strong competition between
 - Collective 4-body
 - 2+2 threshold
- Interesting analogies between
 - 4 unit charges in atomic physics
 - tetraquarks in the quark model
- Better understanding of symmetry breaking in quark models
- This is a new effect (chromo-electric) atop the more advertised chromomagnetic effect of Jaffe, ...
- T_{bb} ... new chapter of weak interaction
- Hopefully T_{bc} and T_{bb} actively searched for at LHC (LHCb, ..., ALICE) and elsewhere.
- If properly treated, the quark model offers a comprehensive picture including compact states and hadron-hadron resonances

Introductio	n
000	

Resonances 000000 Quark model resonances

イロン イ理 とく ヨン イヨン

Outlook

P 21

2

The End

