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Background
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✦ Studying hadron spectra helps to understand their inner structure and 

the underlying dynamics

✦ Baryon resonances’ properties (  ) can be studied through 
scattering interactions

✦ Traditional analyzing method includes partial wave analysis by  fitting
✦ Neural Networks has been extensively applied in high energy physics
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What can a NN do (in studying baryon resonances)?
In general, a NN can mimic an arbitrary function up to any required precision.

NN can be used to find out hidden relationships and correlations.

NN: alternative option other than  fit!χ2

✓ Classification  probability ( )

✓ Regression parameters ( ) 

✓ No initial value dependence, more stable

✓ Statistical and systematic uncertainties

✓ Joint CA and RE

→ JP

→ M, Γ, g

NNexp-data resonance 
properties



NN application in a toy model
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Abg =
a + bqcm + c cos θ + dqcm cos θ + e cos θ2 + fqcm cos θ2

s + s0

AR,l =
gR

s − M2
R + iMRΓR

Pl(cos θ)

dσ
d cos θ

=
1
s

|Abg + ∑
i

ARi,l |
2

considering a toy model

l = 0,1,2

s ∈ [1.3, 1.7] GeV
MR ∈ [1.4, 1.8] GeV
ΓR ∈ [0.01, 0.2] GeV

✓ 320000 training data sets
✓ 40000 validating data sets (hyper parameter tuning)
✓ 40000 testing data sets (final performance check)

each data set contains 256  data 
dσ

d cos θ

hyper parameter: learning rate, batch size, loss function weighted parameter…



Loss function
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CA loss: cross entropy

RE loss: mean squared error

loss function for a joint CA and RE NN model: lossCA+αlossRE

example when adding 1 additional resonance:



Procedure for more than one resonance
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labels when adding two resonances:

all: l0l0, l0l1, l0l2, l1l1, l1l1, l2l2
l0X : l0l0, l0l1, l0l2
l1X : l0l1, l1l1, l1l2
l2X : l0l2, l1l2, l2l2

✦ first add 1 resonance (1R)
✦ then 2R with one  fixed
✦ then 3R with two  fixed

JP

JP



Status of  resonanceΣ

7

PDG

   mass of lowest :

✓ classical quark model: ~1650 MeV

✓ pentaquark model: ~1400 MeV

Σ 1/2−

Zou, NPA 914(2013)



 resonances from  interactionΣ KN
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t-channel u-channel

s-channel

, , I(π) = 1 I(π) = 1 I(Λ) = 0 ⇒ Is = 1

, I(K ) = 1/2 I(N ) = 1/2 ⇒ Is = 0, 1

 s-channel only ⇒ Σ, Σ*

 ideal reaction to study  resonancesKN → πΛ Σ

Single channel analysis for comparison and feasibility check



 fitting-based PWAχ2
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Try ONE additional  resonance in the initial fits, pick the one with 
the smallest  as the most probable one. Get its parameters in the 
same fit.

Add another  resonance in the following fits while keeping the 
first picked one. Find out the second most probable resonance by 
the  criterion and determine the parameters.

Σ
χ2

Σ

χ2

’s of different candidates can be 
close. 
χ2

Gao, Zou, Sibirtsev, Nucl.Phy.A 867(2011),  
Gao, Shi, Zou, Phys. Rev. C 86(2012)

From 2nd resonance, some of 
the errors are over 100% and 
the fit of some parameters 
reach boundaries.

Initial value dependence
(systematic error) not taking
into account

Probability?



Theoretical formalism

10

t-channel u-channel

s-channel

Using Crystal Ball 2009 data
S. Prakhov et.al., Phys. Rev. C 80(2009) 

Effective Lagrangian

dσ
dΩ

=
1

64π2s
q
k

|ℳ |2

PΛ = 2Im (ℳ 1
2

1
2
ℳ*1

2
−1
2 )/ |ℳ |2



Data generation
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In total,  million data sets.3 × 4 × 2.56 M = 30.72

1R, 2R and 
3R cases

Σ 1/2±, 3/2± Random sampling 
in the allowed 
parameter space

✓ 10.00 M training data sets
✓ 0.12 M validating data sets (hyper parameter tuning)
✓ 0.12 M testing data sets (final performance check)

additional resonance(s):
 ,
 
 

M ∈ [1.44, 1.9] GeV
Γ ∈ [0.01, 0.4] GeV
g ∈ [−10, 10]

Background: t-channel , u-channel ,
s-channel 
                

K* p
Σ(1189)1/2+, Σ(1385)3/2+,
Σ(1670)3/2−, Σ(1775)5/2−
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Data structure inspired joint NN model 

 with lossCA+αlossRE α = 0.2

Artificially expanded training data sets in Gaussian distribution (AED) 
for error tolerance



NN performance (on test sets)
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Sophisticated error handling
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E1 = 1 - Accuracy on test sets (CA)
E1 = relative error on test sets (RE)

E2 = standard error of 20 trials

20 models trained independently with different initial values in each case!

E3 = standard deviation of 4000 
sets of mock experimental data 

sampled assuming normal 
distribution

Systematic errors

Statistical error

Quadratic 
sum for 
total error

CA: probabilities of  with 
RE: properties of 

Σ* JP

Σ*



Results for 1R case
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accuracy:
98.5  

1/2+ 1/2− 3/2+ 3/2−

100.0(3.0)       0.0(0.6)        0.0(0.8)      0.0(1.6)

CA

RE

PDG Σ(1660)1/2+ : M ∈ [1.64, 1.68] GeV, Γ ∈ [0.1, 0.3] GeV

 fitting-based PWA : χ2 Σ 1/2+ M = 1.633 ± 3 GeV, Γ = 0.121+4
−7 GeV

Gao, Zou, Sibirtsev, Nucl.Phy.A 867(2011),  
Gao, Shi, Zou, Phys. Rev. C 86(2012)



CA results for 2R
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2R 

1/2+1/2+ 1/2+1/2− 1/2+3/2+ 1/2+3/2−

0.0(3.4)           15.5(27.6)         72.2(23.6)       12.3(29.8)

accuracy: 94.8



CA results for 3R
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1/2+1/2−1/2+ 1/2+1/2−1/2− 1/2+1/2−3/2+ 1/2+1/2−3/2−

0.0(15.8)          0.0(29.5)               0.0(5.7)             100.0(30.9)

1p1mX

 

1p3pX

1p3mX

1/2+3/2+1/2+ 1/2+3/2+1/2− 1/2+3/2+3/2+ 1/2+3/2+3/2−

        1.6(17.2)              1.3(9.7)               0.3(28.3)           96.8(32.2)

1/2+3/2−1/2+ 1/2+3/2−1/2− 1/2+3/2−3/2+ 1/2+3/2−3/2−

0.3(27.9)            98.9(10.1)            0.6(5.7)               0.3(23.4)

acc: 79.5

acc: 81.6

acc: 86.3

 

probability propagation: 1p1m3m 27.62(40.68)%, 1p3p3m 70.02(32.59)%



Final CA results
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✦ 1R:  100(3)%
✦ 1pX:  72.2(23.7)%
✦ 1p3pX:  96.8(32.2)%

1p (1/2+)
3p (3/2+)

3m (3/2−)

✦  : 100(3)%
✦  : 28.5(41)%
✦  : 72.3(23.7)%
✦ : 97.7(52.3)%

1p (1/2+)
1m (1/2−)
3p (3/2+)
3m (3/2−)

Assuming 3 resonances are needed:



Final predictions of  resonance parametersΣ
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PDG:
*** 
*** 
*   
*   

Σ(1660)1/2+

Σ(1750)1/2−

Σ(1780)3/2+

Σ(1580)3/2−

Final prediction is from a weighted average of different combinations in 3R 
by probability 



Error source analysis
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E1 = 1 - Accuracy on test sets (CA)

E1 = relative error on test sets (RE)

E2 = standard error of 20 trials

E3 = standard deviation of 4000 
sets of mock experimental data 

sampled assuming normal 
distribution

CA of  in 2R:
72(2)(10)(21)

1/2+3/2+

RE(mass) of  in 2R:
1.636(0.111)(0.004)(0.008)

:1.705(0.059)(0.012)(0.022)

1/2+3/2+

1/2+ :
3/2+

CA: E3 the biggest
1/2~1/3 uncertainties of exp 
to determine the most 
significant second 
resonance

RE: E1 the biggest
possibly larger training 
sets, more powerful NN or 
multi-channel PWA may 
improve

better 
determine 
the lowest 
1/2−



Summary and outlook
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✓ We constructed a CA+RE joint NN to do PWA to study  resonances

✓ The NN works very well

✓ Comparing with  fitting-based PWA, NN can give probability, 
independent of initial values and more stable, signals for the second 
and third resonance are better

✓ Sophisticated probability propagation and error analysis

✓ NN is potentially another powerful tool in studying baryon resonances

✓ Further applications of NN-based PWA is expected with future 
experimental data and more sophisticated theoretical formulae

Σ

χ2

Thank you!


