

★ 图 斜 这 院 精密测量科学与技术创新研究院 INNOVATION ACADEMY FOR PRECISION MEASUREMENT SCIENCE AND TECHNOLOGY, CAS

Heteronuclear Efimov universality with positive intraspecies scattering length

Huili Han

2024-9-24

Outline

Efimov physics

- **Efimov features in three-body collision**
- Theoretical investigation of three-body collision using Rmatrix propagate method in the hyperspherical coordinates: ⁸⁷Rb-⁸⁷Rb-⁴⁰K, ¹³³Cs-¹³³Cs-⁶Li
- Universality of Efimov features in heteronuclear systems
 Summary

What's the Efimov effects?

Condition for Efimov effects: $a \gg r_0$

[1] V. Efimov, Physics Letters B 33, 563 (1970).

[2] P. Naidon and S. Endo, Reports on Progress in physics 80, 056001 (2017).

Universality of Efimov effects

scaling parameter

$$\lambda = e^{\pi / s_0}$$

 $\mathbf{E}^{(\mathbf{N})} = \boldsymbol{\lambda}^2 \mathbf{E}^{(\mathbf{N}-1)}$ $a^{(N)} = \lambda a^{(N-1)}$

s₀determined by the mass ratio and resonant condition of the system; For three identical particles, $s_0 = 1.00624$, $\lambda =$ 22.7(very large scaling factor, the factor of Russian doll is 1.3)

[1]P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017).

Signature of Efimov features

- *a*₋ : Efimov states approach the three-body threshold
- a₊ :minima in the three-body recombination rate caused interference effects
- *a*_{*}: Efimov trimer state degenerates with the atom-molecule threshold

Schematic showing the location of Efimov features.

[1] V. Efimov, Physics Letters B 33, 563 (1970).

[2] P. Naidon and S. Endo, Reports on Progress in physics 80, 056001 (2017).

Efimov features in three-body collision (a < 0)

\Box Three-body recombination in $a < 0 : B + B + B \rightarrow B_2 + B$

a_: Efimov states approach the three-body threshold

[1] V. Efimov, Physics Letters B 33, 563 (1970).
[2] P. Naidon and S. Endo, Reports on Progress in physics 80, 056001 (2017).

Efimov features in three-body collision (a > 0)

□ Three-body recombination in a>0: B + B + B → B₂ + B recombination into weakly bound molecules.

 a_+ : minima in the three-body rate coefficient.

[1] V. Efimov, Physics Letters B 33, 563 (1970).

[2] P. Naidon and S. Endo, Reports on Progress in physics 80, 056001 (2017).

Observe efimov effects in ultracold quantum gas

 ultracold atomic gas + feshbach resonance = ideal test bed for Efimov physics

[1]T. Kraemer et al, Nature 440, 315-318 (2006) [2]Bo Huang (黄博), and Rudolf Grimm, PRL 112, 190401 (2014)

Outline

Efimov physics

- **Efimov features in three-body collision**
- Theoretical investigation of three-body collision using Rmatrix propagate method in the hyperspherical coordinates: ⁸⁷Rb-⁸⁷Rb-⁴⁰K, ¹³³Cs-¹³³Cs-⁶Li
- Universality of Efimov features in heteronuclear systems
 Summary

Three-body collision in heavy-heavy-light system

Theoretical method: R-matrix propagation in hyperspherical coordinates

- > Two-body model potential: $v(r_{ij}) = -\frac{C_{6,ij}}{r_{ij}^6} \left[1 \frac{1}{2} \left(\frac{\lambda_{ij}}{r_{ij}} \right)^6 \right]$
- > Three-body interaction potential:

$$V(R;\theta,\phi) = v(r_{12}) + v(r_{13}) + v(r_{23})$$

> The Schrodinger equation is:

$$\left[-\frac{1}{2\mu}\frac{d^2}{dR^2} + \left(\frac{\Lambda^2 - \frac{1}{4}}{2\mu R^2} + V(R;\theta,\phi)\right)\right]\psi_{\upsilon'}(R;\Omega) = E\psi_{\upsilon'}(R;\Omega)$$

R-matrix propagate

$$\underline{\mathcal{R}}(R) = \underline{F}(R) \left[\underline{\widetilde{F}}(R)\right]^{-1} \quad \underline{\mathcal{R}}(a_2) = \underline{\mathcal{R}}_{22} - \underline{\mathcal{R}}_{21} \left[\underline{\mathcal{R}}_{11} + \underline{\mathcal{R}}(a_1)\right]^{-1} \underline{\mathcal{R}}_{12}.$$

Three-body collision in heavy-heavy-light system

□ Hyperspherical potential curves for positive intraspecify scattering length: $a_{HH} > 0$ $a_{HL} < 0$ $a_{HL} > 0$

D On the negative side of interspecifies scattering length: $a_{RbK} < 0$

One normal three-body bound state is found at $a_{\rm RbK} = -155 a_0$

 a_{ad} is the ⁴⁰K - ⁸⁷Rb⁸⁷Rb scattering length σ_2 is the elastic scattering cross section

 $r_{\rm vdw,RbRb} = 83 \ a_0$, $E_{\rm vdw,RbRb} = 9.25 \times 10^{-10}$ a.u. $|a_{\rm RbK}| = 155 \ a_0 < 2 \times r_{\rm vdw,RbRb}$, $E > E_{\rm vdw,RbRb}$

D On the negative side of interspecifies scattering length: $a_{RbK} < 0$

> Three-body recombination rates K_3 : $K_3 = \frac{k}{\mu}\sigma_3 = \sum_{J,\Pi} K_3^{J,\Pi} = 2! \sum_{J,\Pi} \sum_{f,i} \frac{32(2J+1)\pi^2}{\mu k^4} |S_{i\to f}^{J,\Pi}|^2$

No Efimov features between -200 a_0 — 40000 a_0

D On the positive side of interspecifies scattering length: $a_{RbK} > 0$

An Efimov recombination minima on the total rates is shown at $a_{\rm RbK} = 3638 a_0$.

D On the positive side of interspecifies scattering length: $a_{RbK} > 0$

> Vibrational relaxtion resonance

The vibrational relaxtion resonance is shown at $a_{\rm RbK} = 133 a_0$

Three-body collision in Cs-Cs-Li system

□ Cs + CsLi collision on the positive interspecifies scattering length *a*_{CsCs} =200 a.u. E=100 nK

Two minima are found: $a_{CsLi} = 737$ a.u. and $a_{CsLi} = 2881$ a.u.

Outline

Efimov physics

- **>** Efimov features in three-body collision
- Theoretical investigation of three-body collision using Rmatrix propagate method in the hyperspherical coordinates: ⁸⁷Rb-⁸⁷Rb-⁴⁰K, ¹³³Cs-¹³³Cs-⁶Li
- Universality of Efimov features in heteronuclear systems
 Summary

The universal relations between Efimov features from same scattering observables.

[1] J. P. D'Incao, J. Phys. B: At. Mol. Opt. Phys. 51 043001 (2018).

The universal relations between Efimov features from different scattering observables.

$$a_{\alpha,i}/a_{\beta,j} = \theta_{\beta}^{\alpha} \ (e^{\pi/s_0})^{i-j}$$

where α and β assuming the values "-", "+" and "* ", and *i* and *j* running over the index labeling the Efimov states

> For homonuclear system, θ^a_β is as following

$$\theta_{-}^{+} = a_{+}/a_{-} \approx -0.209914,$$

 $\theta_{-}^{*} = a_{*}/a_{-} \approx -0.046938,$
 $\theta_{+}^{*} = a_{*}/a_{+} \approx 0.223604.$

^[1] J. P. D'Incao, J. Phys. B: At. Mol. Opt. Phys. 51 043001 (2018).

The universal relations between Efimov features from different scattering observables.
1

$$a_{\alpha,i}/a_{\beta,j} = \theta_{\beta}^{\alpha} \ (e^{\pi/s_0})^{i-j}$$

For heteronuclear system, θ^a_β is related with mass ratio

[2] K. Helfrich, H.-W. Hammer, and D. S. Petrov, Phys. Rev. A 81, 042715 (2010).
[3] B. Acharya, C. Ji, and L. Platter, Phys. Rev. A 94, 032702 (2016).

• Efimov features in ⁸⁷Rb-⁸⁷Rb-⁴⁰K system

Universal relation predicted by zero-range model:

System	$\delta = m_X / m_B$	θ_*	θ_{+}^{*}	 θ _+	s ₀	$exp(\pi/s_0)$	$1/\exp(\pi/2s_0)$
⁸⁷ Rb ⁸⁷ Rb ⁴⁰ K	0.459836	0.0041	0.0458	0.0894	0.653	122.8562	0.090

---Experiment values[3]: $a_* = 230 a_0$

---Present results : $a_{*} = 133 a_{0}$, $a_{+} = 3638 a_{0}$

---Predict Efimov resonance through universal relationship:

 $a = 40693 a_0$ with $a = 3638 a_0$ and $a = 56097 a_0$ with $a = 230 a_0$

[2] K. Helfrich, H.-W. Hammer, and D. S. Petrov, Phys. Rev. A 81, 042715 (2010).
[3]R. S. Bloom, M.-G. Hu, T. D. Cumby, and D. S. Jin, Phys. Rev. Lett. 111, 105301 (2013).

• Efimov features in ¹³³Cs¹³³Cs⁶Li system

Universal relation predicted by zero-range method:

System	$\delta = m_X / m_B$	θ _*	θ_{+}^{*}	 θ _+	s ₀	$exp(\pi/s_0)$	$1/\exp(\pi/2s_0)$
¹³³ Cs ¹³³ Cs ⁶ Li	0.045113	0.0251	0.0558	0.4551	1.983	4.8757	0.4528

----Experiment values[4]: when $a_{cscs} = 200 a_0$, $a_{-}^{(1)} = -2130 a_0$, $a_{-}^{(1)} = -8500 a_0$

---Present results :
$$a_{cscs} = 200 a_0$$
, $a_+^{(1)} = 737 a_{0,} a_+^{(2)} = 2881 a_0$
 $a_-^{(1)} = -1476 a_0$, $a_-^{(2)} = -7264 a_0$

---Universal relationship with present results is: $\lambda = a_+^{(2)} / a_+^{(1)} = 3.91$, $|\theta_+| = 0.499$ ---Efimov scaling λ with experiment results is : $\lambda = a_-^{(2)} / a_-^{(1)} = 3.99$

^[2] K. Helfrich, H.-W. Hammer, and D. S. Petrov, Phys. Rev. A 81, 042715 (2010).

^[4] J. Ulmanis, S. H"afner, R. Pires, E. D. Kuhnle, Y. Wang, C. H. Greene, and M. Weidem" uller, Phys. Rev. Lett. 117, 153201 (2016)

- We investigated the three-body collisions in Rb-Rb-K and CsCsLi system
- Using the calculated minima of three-body recombination, We explored the universality of Efimov features in these systems.

Thank you for your attention!