

Host Institute of High Energy Physics, Chinese Academy of Sciences Institute for Advanced Study, Tsinghua University University of Chinese Academy of Sciences China Center of Advanced Science and Technology Institute of Theoretical Physics, Chinese Academy of Sciences South China Normal University Co. hard Chinaca Dhucical Sociaty (CDS) High Fan

Searching for Hoyle-analog States in light nuclei

Bo Zhou (周波)

Fudan University

2024.09.26@Beijing

Cluster states of ¹²C

Hoyle-analog states

T.Yamada

Search for the 5α condensate state

B. Zhou, Y. Funaki, H.Horiuchi, Y-G. Ma, G. Röpke,P. Schuck, A. Tohsaki & T. Yamada

study of alpha condensate in finite nuclei

Hoyle states of ¹²C

 $\Psi_{3\alpha}^{\text{THSR}} = A \Big\{ \exp \Big[-\frac{2}{R^2} (X_1^2 + X_2^2 + X_3^2) \Big] \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3) \Big\}$ = $\exp\left(-\frac{6}{R^2}\xi_3^2\right)A\left\{\exp\left(-\frac{4}{3R^2}\xi_1^2-\frac{1}{R^2}\xi_2^2\right)\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\right\},\right.$ $\xi_1 = X_1 - \frac{1}{2}(X_2 + X_3),$ $\xi_2 = X_2 - X_3,$ $\xi_3 = \frac{1}{2}(X_1 + X_2 + X_3)$

 3α Bose-Einstein state

Rev. Mod. Phys. **89**, 011002 (2017)

Ground state and Hoyle state

 $[\alpha \otimes [\alpha \otimes \alpha]_0]_0 \otimes [0 \otimes 0]_0$

$$
\mathcal{Y}_c^{J\pi}(a_1,a_2) = \sqrt{\frac{A!}{C_1!C_2!C_3!}}\,\left\{\frac{\delta(r_1-a_1)\delta(r_2-a_2)}{r_1^2r_2^2}\left[[Y_{l_1}(\hat{r}_1)\otimes Y_{l_2}(\hat{r}_2)]_L\otimes\left[\Phi_{C_1}^{j_1\pi_1}\otimes\left[\Phi_{C_2}^{j_2\pi_2}\otimes\Phi_{C_3}^{j_3\pi_3}\right]_{j_{23}}\right]_{j_{123}}\right]_{JM}\right|\Psi_M^{J\pi}\right\}
$$

De-ye Tao

Alpha condensate in ¹⁶O

Multi-alpha condensation

 $25 (a)$ Dilute multi- α cluster condensed states with $20₁$ $E(^{12}C)$ ~ 0.0 MeV spherical and axially deformed shapes are $15 E({}^{16}O) \sim 2$ MeV studied with the Gross-Pitaevskii equation $E(MeV)$ $E(^{20}Ne) \sim 3$ MeV and Hill-Wheeler equation where the α $10₁$ cluster is treated as a structureless boson, **it is predicted to exist in heavier self**conjugate $4N$ nuclei up to $N=10$. 0 8 6 10 12 T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004). N

Some candidates for α condensate were found from experiments for ${}^{12}C$ and ${}^{16}O$. Rev. Mod. Phys. **89**, 011002 (2017).

No experimental signatures for α condensation were observed An experimental way of testing Bose-Einstein condensation of clusters in the atomic nucleus is reported. The enhancement of cluster emission and the multiplicity partition of possible emitted clusters could be direct signatures for the condensed states.

Phys. Rev. C **100**, 034320 (2019)

PRL **96,** 192502 (2006)

Recent experiment for 5*a* **condensation**

 $^{22}Ne(p,t)^{20}Ne$

Spectroscopy of narrow, high-lying, low-spin states in 20 Ne

J. A. Swartz,^{1,2,*} B. A. Brown,^{3,4} P. Papka,^{1,2} F. D. Smit,² R. Neveling,² E. Z. Buthelezi,² S. V. Förtsch,² M. Freer,⁵ Tz. Kokalova,⁵ J. P. Mira,^{1,2} F. Nemulodi,^{1,2} J. N. Orce,⁶ W. A. Richter,^{2,6} and G. F. Steyn² ¹ Physics Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa ²iThemba Laboratory for Accelerator Based Sciences, P.O. Box 722, Somerset West 7129, South Africa ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁵ School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom ⁶Physics Department, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa (Received 29 August 2014; revised manuscript received 18 February 2015; published 16 March 2015)

The state at *Ex=22.5 MeV*, which could not be interpreted by the shell-model calculations, is a tentative candidate for the 5α cluster state.

Recent experiment for 5α **condensation**

Search for the 5alpha condensate state

Theoretical Framework

To solve the configurations problem:

Conventional cluster model

Container model

Schematic illustrations of two distinct microscopic cluster models. **a** The conventional cluster model of Φ^B , in which the inter-cluster variables $\{S_i\}$ are the Jacobi coordinates of $\{R_i\}$. **b** Container picture for $4\alpha + \alpha$ cluster structure of ²⁰Ne. The β_1 is the size variable for the description of 4 α and β_2 for the description of the relative motion between 4α and α clusters.

To solve the configurations problem:

$$
\Psi(\beta_1, \beta_2) = \int d^3 R_1 d^3 R_2 d^3 R_3 d^3 R_4 d^3 R_5
$$

\n
$$
\times \exp\left[-\frac{1/2S_1^2 + 2/3S_2^2 + 3/4S_3^2}{\beta_1^2} - \frac{4/5S_4^2}{\beta_2^2}\right] \Phi^B(R_1, R_2, R_3, R_4, R_5)
$$

\n
$$
= n_0 \mathcal{A}\left\{\exp\left[-\frac{2\xi_1^2 + 8/3\xi_2^2 + 3\xi_3^2}{2(b^2 + 2\beta_1^2)}\right] \exp\left[-\frac{16/5\xi_4^2}{2(b^2 + 2\beta_2^2)}\right] \prod_{i=1}^5 \varphi_i^{\text{int}}(\alpha)\right\},
$$

$$
\begin{pmatrix}\n\mathbf{0} & \mathbf{0} & \mathbf{
$$

 $\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$

 $\frac{1}{\sqrt{2}}$

$$
\Phi^{B}(R_1, R_2, R_3, R_4, R_5) = \frac{1}{\sqrt{20!}} \mathcal{A}[\phi_1(R_1) \dots \phi_5(R_2) \dots \phi_{20}(R_5)]
$$

$$
\propto \phi_g \propto \left\{ \exp \left[-\frac{2(\xi_1 - S_1)^2 + 8/3(\xi_2 - S_2)^2 + 3(\xi_3 - S_3)^2}{2b^2} \right] \times \exp \left[-\frac{16/5(\xi_4 - S_4)^2}{2b^2} \right] \prod_{i=1}^5 \varphi_i^{\text{int}}(\alpha) \right\},
$$

with the single-nucleon wave function,

$$
\phi_i(R_k) = \left(\frac{1}{\pi b^2}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2b^2}(r_i - R_k)^2\right] \chi_i \tau_i.
$$

To solve the interaction problem:

The Hamiltonian for ²⁰Ne in this work can be written as:

$$
\mathcal{H} = -\frac{\hbar^2}{2M} \sum_{\pmb{i}} \nabla_{\pmb{i}}^2 - T_G + \sum_{\pmb{i} < \pmb{j}} V^C_{\pmb{i} \pmb{j}} + \sum_{\pmb{i} < \pmb{j}} V^{(2)}_{\pmb{i} \pmb{j}} + \sum_{\pmb{i} < \pmb{j} < \pmb{k}} V^{(3)}_{\pmb{i} \pmb{j} \pmb{k}},
$$

The effective nucleon-nucleon potential part is taken a Gaussian form, which is expressed as:

$$
V_{ij}^{(2)} = \sum_{n} v_n^{(2)} \exp \left\{-\left(\frac{r_{ij}}{r_n^{(2)}}\right)^2\right\} (W_n^{(2)} + M_n^{(2)} P_{ij})
$$

and

$$
V_{ijk}^{(3)} = \sum_{n} v_n^{(3)} \exp \left\{-\left(\frac{r_{ij}}{r_n^{(3)}}\right)^2 - \left(\frac{r_{jk}}{r_n^{(3)}}\right)^2\right\}
$$

$$
\times (W_n^{(3)} + M_n^{(3)} P_{ij})(W_n^{(3)} + M_n^{(3)} P_{jk}),
$$

Tohsaki F1 three-body interaction was used.

A. Tohsaki,Phys. Rev. C **49**, 1814 (1994).

To solve the resonance problem:

Radius-Constraint Method for treating the resonance states,

$$
\sum_{\boldsymbol{\beta}_1',\boldsymbol{\beta}_2'}\langle\hat{\Phi}_{4\alpha+\alpha}^{0^+}\ket{(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2)}\vert\sum_{i=1}\frac{1}{20}(\boldsymbol{r}_i-\boldsymbol{X}_G)^2\vert\hat{\Phi}_{4\alpha+\alpha}^{0^+}\ket{(\boldsymbol{\beta}_1',\boldsymbol{\beta}_2')}\times g^{(\gamma)}(\boldsymbol{\beta}_1',\boldsymbol{\beta}_2')
$$

$$
=\{R^{(\gamma)}\}^2g^{(\gamma)}(\boldsymbol\beta_1,\boldsymbol\beta_2)\langle\hat{\Phi}_{4\alpha+\alpha}^{0^+}\quad(\boldsymbol\beta_1,\boldsymbol\beta_2)|\hat{\Phi}_{4\alpha+\alpha}^{0^+}\quad(\boldsymbol\beta_1',\boldsymbol\beta_2')\rangle
$$

$$
\Psi^{0^+}_{\rm GCM}=\sum_{\boldsymbol{\beta}_1,\boldsymbol{\beta}_2}g^{(\gamma)}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2)\hat{\Phi}^{0^+}_{4\alpha+\alpha}~(\boldsymbol{\beta}_1',\boldsymbol{\beta}_2').
$$

Here, $R^{(\gamma)} \leq R_{\text{cut}}$ and R_{cut} is the radius cut-off parameter.

Y. Funaki, et al., Prog.Theor.Phys.115,115(2006).

To solve the resonance problem

To solve the resonance problem

Energy level above the threshold

Two 0⁺ states around 3 MeV are found in our calculations.

S 2 factor of different channels

Reduced width amplitude

The reduced width amplitudes of the ground state and excited states above 5 α threshold in ²⁰Ne in the channel of ¹⁶O (0⁺₆) + α . The ground state 0⁺₁, 0⁺₁₇ (0⁺₁), and 0⁺₁₉ (0⁺₁₁) states are shown in solid lines. The 0⁺₁₅, 0⁺₁₆, and 0⁺₁₈ states

$$
y(a) = \sqrt{\frac{20!}{4!16!}} \left\langle \left[\left[\Psi_{\text{gcm}}^{0_{s}^{+}}(^{16}O)\varphi_{5}(a) \right]_{0^{+}} Y_{00}(\hat{\xi}_{4}) \right]_{0^{+}} \frac{\delta(\xi_{4} - a)}{\xi_{4}^{2}} \middle| \Psi_{\text{gcm}}^{0_{A}^{+}}(^{20}Ne) \right\rangle, \right.
$$

Another simple way to confirm the condensate state

The decay scheme and connections

The 6 THSR calculations

A. Tohsaki et al. / Nuclear Physics A738 (2004) 259-263

Table 1

 $\omega_{\rm{max}}$

The independent number of permutations for each kernel. Here, the case of the norm kernel for 24Mg is added. The final row shows a full number of permuations without any reduction for the norm kernel.

$$
\langle \Psi_{n\alpha}^{\text{THSR}}(\beta) | \mathcal{O} | \Psi_{n\alpha}^{\text{THSR}}(\beta') \rangle = \sum_{p=0}^{m_p^{\left(1\right)-1}} W_p^{\left(1\right)} I_p^{\left(1\right)} = \left(a_0 a_0' \right)^{-3n/2} \sum_{l=0} t^l \sum_{m=n_p} \gamma_l^{\left(1\right)} \chi_{n_l}^{m_l}
$$

261

Neutron Pairs Condense in Excited Helium-8

Prog. Theor. Exp. Phys. 2018, 041D01 (10 pages) DOI: 10.1093/ptep/pty034

Letter

New trial wave function for the nuclear cluster structure of nuclei

Bo Zhou*

Institute for International Collaboration, Hokkaido University, Sapporo 060-0815, Japan Department of Physics, Hokkaido University, Sapporo 060-0810, Japan *E-mail: bo@nucl.sci.hokudai.ac.jp

Received December 5, 2017; Revised February 21, 2018; Accepted March 2, 2018; Published April 16, 2018

A new trial wave function is proposed for nuclear cluster physics, in which an exact solution to the long-standing center-of-mass problem is given. In the new approach, the widths of the

$$
\Psi(\mathbf{r}) = \Phi_{\mathrm{g}}(\mathbf{r}_g) \Phi_{\mathrm{int}}(\mathbf{r}_i - \mathbf{r}_j)
$$

$$
\begin{split} \n\text{new} &= \hat{L}_{n-1}(\beta)\hat{G}_n(\beta_0)\hat{D}(Z)\Phi_0(r) \\ \n&= \int d^3\widetilde{T}_1\cdots d^3\widetilde{T}_{n-1}\exp[-\sum_{i=1}^{n-1}\frac{\widetilde{T}_i^2}{\beta_i^2}]\int d^3R_1\cdots d^3R_n \exp[-\sum_{i=1}^n(\frac{A_i}{\beta_0^2-2b_i^2})(R_i-Z_i-T_i)^2]\Phi_0(r-R) \\ \n&= n_0\exp[-\frac{A}{\beta_0^2}X_g^2]\mathcal{A}\{\prod_{i=1}^{n-1}\exp[-\frac{1}{2B_i^2}(\xi_i-S_i)^2]\prod_{i=1}^n\phi_i^{\text{int}}(b_i)\}. \n\end{split}
$$

a tool for studying the cluster correlations

Cluster structure of $3\alpha + p$ states in ¹³N

J. Bishop \bullet ,^{1,2} G. V. Rogachev,^{1,3,4} S. Ahn,⁵ M. Barbui \bullet ,¹ S. M. Cha,⁵ E. Harris \bullet ,^{1,3} C. Hunt,^{1,3} C. H. Kim \bullet ,⁶ D. Kim,⁵ S. H. Kim, 6 E. Koshchiy \mathbb{D} , 1 Z. Luo, 1,3 C. Park \mathbb{D} , C. E. Parker \mathbb{D} , E. C. Pollacco \mathbb{D} , B. T. Roeder, M. Roosa \mathbb{D} , 1,3 A. Saastamoinen.¹ and D. P. Scriven $\bullet^{1,3}$ ¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA ²School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U **&M University, College Station, Texas 778** ³Department of Physics & Astronomy, 1 ⁴Nuclear Solutions Institute, Texas *Iniversity, College* Station, Texas 77843 sic Science, 34126 Daejeon, Republ ⁵ Center for Exotic Nuclear Studies, $\frac{1}{2}$ rsity, Suwon46449, Republic of K ⁶Department of Physics, Sung F-91191 Gif-Sur-Wette, France ⁷IRFU. CEA, Université Paris-,

Conclusions: These states are seen to have a $[^9B(g.s) \otimes \alpha/p + ^{12}C(0_2^+)]$, $[^9B(\frac{1}{2}^+) \otimes \alpha]$, $[^9B(\frac{5}{2}^+) \otimes \alpha]$, and $[{}^{9}B(\frac{5}{2}^+)$ $\otimes \alpha]$ structure, respectively. A previously seen state at 11.8 MeV was also determined to have a [p + ¹²C(g.s.)/ $p + {}^{12}C(0_2^+)$] structure. The overall magnitude of the clustering is not able to be extracted, however,

The 3/2- states of ¹³N

- \triangleright The N α condensate problem. Study of ²⁴Mg is in progress.
- \triangleright Search for the novel clustering states in N α +X system.

Thanks for my collaborators and your attention.