Towards Inclusive Neutrino-Nucleon Interaction from Lattice QCD Calculation of Hadronic Tensor

Jian Liang

South China Normal University

09/26/2024 @ The 23rd International Conference on Few-Body Problems in Physics

Phys.Rev.D 101 (2020) 11, 114503 2311.04206

Hadronic tensor

for lepton-nucleon scatterings

 $W_{\mu\nu}$ **1** $\frac{1}{4\pi}$ $\int d^4z e^{iq\cdot z} \left\langle p,s \right\rvert \left\vert J_\mu^{\dagger} \right\rangle$

 $W_{\mu\nu} = \frac{-g_{\mu\nu} + f_{\mu\nu}}{2}$ *qμq^ν*

$$
\frac{(\mu q_{\nu})}{q^2}\bigg) F_1(x, Q^2) + \frac{\hat{P}_{\mu} \hat{P}_{\nu}}{P \cdot q} F_2(x, Q^2)
$$

the hadronic tensor
$$
W_{\mu\nu} = \frac{1}{4\pi} \int d^4 z e^{iq \cdot z} \langle p, s | [J_{\mu}^{\dagger}(z) J_{\nu}(0)] | p, s \rangle
$$
 $W_{\mu\nu} = \frac{1}{\pi} \text{Im} [T_{\mu\nu}]$

$$
\frac{d^2\sigma}{dx dy} = \frac{2\pi y \alpha^2}{Q^4} \sum_j \eta_j L_j^{\mu\nu} W_{\mu\nu}^j
$$

It can be further decomposed into structure functions, and encodes the nonperturbative nature of the nucleon.

Hadronic tensor and neutrino-nucleus scattering

- ◆ Neutrino-nucleus scattering experiments to explore the properties of neutrinos.
- ◆ Besides nuclear effects and modeling, inputs of fundamental **neutrino-nucleon scattering** are needed.
- ◆ Challenge: at different neutrino energies, different contributions dominate the cross section.

J.A. Formaggio and G.P. Zeller, RMP84, 1307 (2012)

Hadronic tensor and neutrino-nucleus scattering

J.A. Formaggio and G.P. Zeller, RMP84, 1307 (2012) **4**

$$
\sum_{x} \left| \sum_{x} \sum_{y} \frac{1}{y} \right|^{2} = 2 \text{Im} \left(\sum_{x} \sum_{y} \left(\sum_{y} \right)^{2} \right)
$$

 $\int_{\mu}^{t}(0)|n\rangle\langle n|J_{\nu}(0)|p,s\rangle(2\pi)^{3}\delta^{4}(q-p_{n}+p)$

Lattice QCD and neutrino-nucleus scattering

Regular Article - Theoretical Physics | Published: 14 November 2019

Volume 55, article number 196, (2019) Cite this article

$$
W_{\mu\nu} = \frac{1}{4\pi} \int d^4 z e^{iq \cdot z} \left\{ p, s \left[\left[J_{\mu}^{\dagger}(z) J_{\nu}(0) \right] \right] s, s \right\}
$$

$$
= \frac{1}{2} \sum_{n} \int \prod_{i}^{n} \left[\frac{d^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \right] \langle p, s \mid J_{\mu}^{\dagger}(0) \mid n \rangle \langle n \mid
$$

the only way that lattice QCD could help in all energy regions

USQCD white paper

Calculating hadronic tensor on the lattice

Lattice QCD: Euclidean field theory using the path-integral formalism.

Time dependent matrix elements can be problematic.

 $W_{\mu\nu} =$ 1 $\frac{1}{4\pi}$ $\int d^4z e^{iq \cdot z} \left\langle p, s \right\rceil \left\lfloor J^{\dagger}_{\mu} \right\rceil$

$$
W'_{\mu\nu} = \frac{1}{4\pi} \sum_{n} \int dt e^{(\nu - (E_n - E_p))t} \int d^3 \vec{z} e^{i\vec{q} \cdot \vec{z}} \langle p, s | J_{\mu}^{\dagger}(\vec{z}) | n \rangle \langle n | J_{\nu}(0) | p, s \rangle
$$

=
$$
\frac{1}{4\pi} \sum_{n} \frac{e^{(\nu - (E_n - E_p))T} - 1}{\nu - (E_n - E_p)} \int d^3 \vec{z} e^{i\vec{q} \cdot \vec{z}} \langle p, s | J_{\mu}^{\dagger}(\vec{z}) | n \rangle \langle n | J_{\nu}(0) | p, s \rangle
$$

divergences when $\nu - (E_n - E_p) > 0$.

A simple change from Fourier transform to Laplace transform in the time direction leads to

$$
\left\langle p, s \left| \left[J_{\mu}^{\dagger}(z) J_{\nu}(0) \right] \right| s, s \right\rangle
$$

Calculating hadronic tensor on the lattice

$$
\widetilde{W}_{\mu\nu}(\vec{p},\vec{q},\tau) = \frac{E_p}{m_N} \frac{\text{Tr}[\Gamma_e C_4]}{\text{Tr}[\Gamma_e C_2]} \rightarrow \sum_{\substack{\vec{x}_2 \vec{x}_1}}\frac{1}{\sqrt{\pi \tau}}.
$$

Define **Euclidean hadronic tensor**:

$$
C_4 = \sum_{\vec{x}_f} e^{-i\vec{p}\cdot\vec{x}_f} \sum_{\vec{x}_2 \vec{x}_1} e^{-i\vec{q}\cdot(\vec{x}_2 - \vec{x}_1)} \left\langle \chi_N(\vec{x}_f, t_f) J_\mu^\dagger(\vec{x}_2, t_2) J_\nu(\vec{x}_1, t_1) \bar{\chi}_N(\vec{0}, t_0) \right\rangle
$$

\n
$$
C_2 = \sum_{x_f} e^{-i\vec{p}\cdot\vec{x}_f} \left\langle \chi_N(\vec{x}_f, t_f) \bar{\chi}_N(\vec{0}, t_0) \right\rangle
$$

\nK.F. Liu and S. J. Don
\nK.F. Liu and S. J. Don

 $e^{-i\vec{q}\cdot(\vec{x}_2-\vec{x}_1)}\langle p,s|J_{\mu}(\vec{x}_2,t_2)J_{\nu}(\vec{x}_1,t_1)|p,s\rangle$

K.-F. Liu, PRD 62, 074501 (2000) J. Liang et. al., EPJ Web Conf. 175, 14014 (2018) K.F. Liu and S. J. Dong, PRL 72, 1790 (1994) J. Liang et. al., PRD 11, 114503 (2020)

The energy transfer is determined by the energy of the intermediate states.

$$
= \sum_{n} \langle p, s | J^{\dagger}_{\mu}(\vec{q}) | n \rangle \langle n | J_{\nu}(-\vec{q}) | p, s \rangle e^{-(E_{n}-E_{p})(t_{2}-t_{1})} \equiv \sum_{n} A_{n} e^{-\nu_{n}\tau}
$$

Contractions

valence and connected-sea (CS) parton

> The latter three are **suppressed** when the momentum and energy transfers are large. The CS anti-partons are supposed to be responsible for the Gottfried sum rule violation.

parton and antiparton

CS anti-parton (Gottfried sum rule violation)

K.-F. Liu, PRD 62, 074501 (2000) K.F. Liu and S. J. Dong, PRL 72, 1790 (1994) T.-J. Hou, M. Yan, J. Liang et. al., PRD106, 096008 (2022)

Back to Minkowski space

Formally, inverse Laplace transform

$$
W_{\mu\nu}(\boldsymbol{p},\boldsymbol{q},\nu) = \frac{1}{i} \int_{c-i\infty}^{c+i\infty} d\tau e^{\nu\tau} \tilde{W}_{\mu\nu}(\boldsymbol{p},\boldsymbol{q},\tau)
$$

$$
\text{lem} \qquad \tilde{W}_{\mu\nu}(p,q,\tau) = \int d\nu W_{\mu\nu}(p,q,\nu)e^{-\nu\tau}
$$

Practically, need to solve the inverse problem *^W*˜ *μν*(*p*, *^q*, *^τ*) ⁼ [∫] *^dνWμν*(*p*, *^q*, *^ν*)*e*−*ντ*

solving the inverse problem

◆ Backus-Gilbert (BG)

Y. Burnier and A. Rothkopf, PRL 111, 182003 (2013) C. S. Fischer el. al., PRD98:014009 (2018)

…

◆ Maximum Entropy (ME)

◆ Bayesian Reconstruction (BR) — best resolution, may have oscillations in the flat regions

◆ **Smoothed BR** — balanced resolution and smoothness

A Benchmark test: R ratio from lattice QCD

Results without smearing

Additional ϕ peek by applying separate BR on light and strange correlators

The R ratio from lattice QCD

11

Lattice finite-volume discrete spectrum!

$$
\rho^{S}(\omega, L, \Delta) = \int d\omega' \mathcal{S}(\omega, \omega') \rho(\omega', L)
$$

$$
\rho(\omega) = \lim_{\Delta \to 0} \lim_{L \to \infty} \rho^S(\omega, L, \Delta)
$$

M. T. Hansen et al., Phys. Rev. D 96, 094513 (2017)

$$
\rho^{S}(\omega,\Delta) = \lim_{L \to \infty} \rho^{S}(\omega,L,\Delta) \leftrightarrow \rho^{S}_{P}(\omega,\Delta)
$$

$$
\mathcal{S}_{\Delta}(\omega, \omega') \sim \exp\left(-\frac{(\omega - \omega')^2}{2\Delta^2}\right)
$$

The R ratio from lattice QCD

In the smooth region, the smeared lattice results (inclusive contribution) are physical.

Volume dependence

After smearing, no significant volume dependence is found!

Preliminary results on muon anomaly

$$
\Big)^2 \int_{s_{thr}}^{\infty} ds \frac{K(s)}{s^2} R(s) = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{s_{thr}}^{\infty} d\omega T(\omega)
$$

$$
u(t) = \int d\omega \frac{\rho(\omega)}{\omega^2} e^{-\omega t} \omega^2 = \int d\omega \frac{24\pi^2 K(\omega)\rho(\omega)}{\omega^5} \frac{\omega^5 e^{-\omega t}}{24\pi^2 K(\omega)}
$$

T(*ω*)

$$
a_{\mu}^{a \to 0} = 6.822 \times 10^{-8}
$$

The resonance effects are also properly extracted!

Nucleon hadronic tensor and form factors

$$
\tilde{W}_{44}(\vec{p}, \vec{q}, \tau) = \sum_{\vec{x}_2, \vec{x}_1} e^{-i\vec{q} \cdot (\vec{x}_2 - \vec{x}_1)} \langle p, s | J_4(\vec{x}_2, t_2) J_4(\vec{x}_1, t_1) | p
$$
\n
$$
= \sum_{n} \langle p, s | J_4(\vec{q}) | n \rangle \langle n | J_4(-\vec{q}) | p, s \rangle e^{-(E_n - E_p)}
$$
\n
$$
A_0 = \langle p, s | J_4(\vec{q}) | n = 0 \rangle \langle n = 0 | J_4(-\vec{q}) | p, s \rangle = G_E^2(Q^2)
$$
\n
$$
A_1 = \langle p, s | J_4(\vec{q}) | n = 1 \rangle \langle n = 1 | J_4(-\vec{q}) | p, s \rangle = G_E^{*2}(Q^2)
$$
\n1.0
\n0.8
\n0.8
\n1.0
\n0.2
\n0.3
\n0.4
\n0.2
\n0.3
\n0.5.0 7.5 10.0 12.5 15.0 17.5 20.0

Elastic form factor

 $A_0 = \langle p, s | J_4(\vec{q}) | n = 0 \rangle \langle n = 0 | J_4(-\vec{q}) | p, s \rangle = G_E^2(Q^2)$

J. Liang et. al., 2311.04206

The transition form factor

The transition form factor

$$
A_1 = \langle p, s | J_4(\vec{q}) | n = 1 \rangle \langle n = 1 | J_4(-\vec{q}) | p, s \rangle = G_E^{*2}
$$

2.4

Not supposed to be a precise study 370 MeV pion mass at finite lattice spacing

a demonstration of the feasibility

amplitude involving resonances

J. Liang et. al., 2311.04206

Summary and outlook

- scatterings from first principles.
- the RES and SIS regions.
- as demonstrations of the method.
-

 \triangleleft Calculating the hadronic tensor on the lattice helps study neutrino-nucleus

 \rightarrow This is so far the only known lattice approach that gives inclusive results in both

 \blacklozenge We now have obtained very nice results for the R-ratio and nucleon form factors

◆ New results of inclusive nu-N scatterings at higher energies are coming soon.

Th*ank you!*

