<u>S. Abe, Phys. Rev. D 109, 036009 (2024)</u> <u>https://github.com/SeishoAbe/NucDeEx</u>

Validation and application of nuclear deexcitation event generator NucDeEx

FB23 - 26th September, 2024

Seisho Abe

seisho@icrr.u-tokyo.ac.jp

Kamioka Obs., ICRR, the University of Tokyo

- Introduction: Neutrino experiments & ν -nucleus interaction

- Deexcitation models/generators
- Novel deexcitation generator NucDeEx
- Validations with nuclear experiments
- Application to Geant4, neutrino generators, etc.

The reason why we need a precise description of deexcitation.

New era of neutrino experiments

More **exclusive** measurements are coming!

- Low-energy particles Strongly affected
- neutrons via capture by nuclear effects Needs a precise understanding of interactions to maximize performance.

FB23 2024/09/26

Water Cerenkov

https://www-sk.icrr.u-tokyo.ac.jp/sk/ https://www-sk.icrr.u-tokyo.ac.jp/hk/

Super-Kamiokande Gd Hyper-Kamiokande

C. Cerna et al., NIMA 958 162183 (2020) https://www.fnal.gov/ https://www.t2k-experime

Liquid Argon TPC

DUNE

2.0 m

Scintillator

Neurino-nucleus interactions

• Various experiments evaluate/constrain the models for each process. • But, it's the dominant syst. unc. in ν physics (oscillation, DSNB, etc.)

FB23 2024/09/26

Nuclear deexcitation

PWIA: Plane wave impulse approximation

FB23 2024/09/26

Example: Neutron detection via recoil/capture

FB23

Precise understanding of deexcitation is essential for capture.

Importance of nuclear experiments and theory

- deexcitation process and estimate errors.

FB23 2024/09/26

- Difficult to constrain deexcitation model by ν experiments. We need nuclear theory and experiments to precisely simulate

tı	rac	∶ke	er	
		7		

Deexcitation in ν generators

- Deexcitation is not simulated in major ν generators (NEUT, **GENIE**, NuWro) with a few exceptions*.
 - * NEUT employs a naive data-driven model for ¹⁶O only.
 - * A study of ABLA coupled with INCL++ was conducted in NuWro.
 - A. Ershova et al., Phys. Rev. D 108, 112008 (2023).

A dedicated software of deexcitation is necessary.

Therefore, I developed… NucDeEx: S. Abe, Phys. Rev. D 109, 036009 (2024)

- GitHub: <u>https://github.com/SeishoAbe/NucDeEx</u>
- Open-source & standalone.
 - Easy to be integrated into ν generators.
- Based on the nuclear reaction calculator TALYS.
- Supports ¹²C and ¹⁶O.

features:

A. Koning et al., Eur. Phys. J. A 59, 131 (2023).

- Deexcitation models/generators
- Novel deexcitation generator NucDeEx
- Validations with nuclear experiments
- Application to Geant4, neutrino generators, etc.

Introduction: Neutrino experiments & ν -nucleus interaction

The reason why we need a precise description of deexcitation.

Deexcitation (evaporation) models

Model	
Weisskopf-Ewing (WE)	Angular n
Hauser-Feshbach (HF)	It conside
Generalized Evaporation Model (GEM)	A specific
Fermi breakup (FB)	All decays used for li

- favored, but that's for heavy nuclei.
- It's not clear which model is the best for light nuclei, carbon and oxygen.

Features

nomentum is NOT conserved.

V. F. Weisskopf and D. H. Ewing <u>Phys. Rev. 57 472, 935 (1940</u>).

ers angular momentum conservation.

W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1951).

model based on WE prescription. S. Furihara, Nucl. Instrum. and Meth. B 171 (2000) 251.

s happen at the same time. Frequently ight nuclei (A \leq 16). E. Fermi, Prog. Theor. Phys. 5 570 (1950).

The more sophisticated HF model is known to be generally

Generator	Model	Comments
NucDeEx v2.1	HF	Open-source & standalone event generator based on TALYS.
INCL++/FB	FB	Default model for light nuclei (A ≤ 16) in INCL++
INCL++/ABLAv3p	WE	Alternative model in INCL++. Not considers low-lying discrete excited states.
G4PreCompundModel	GEM and FB	Default model in Geant4.
CASCADE	HF	Closed-source. Citing values of branching ratio from paper.

Generator	Model	Comments
NucDeEx v2.1	HF	Open-source & standalone event generator based on TALYS.
INCL++/FB	FB	Default model for light nuclei (A \leq 16) in INCL++
INCL++/ABLAv3p	WE	Alternative model in INCL++. Not considers low-lying discrete excited states.
G4PreCompundModel	GEM and FB	Default model in Geant4.
CASCADE	HF	Closed-source. Citing values of branching ratio from paper.
· Hauser-Feshbash (H	F) base.	<u>S. Abe, Phys. Rev. D 109, 036009 (2024).</u> <u>F. Pühlhofer, Nucl. Phys. A 280 267 (1977)</u>

- NucDeEx is open-source, but CASCADE is closed.

Generator	Model	Comments
NucDeEx v2.1	HF	Open-source & standalone event generator based on TALYS.
INCL++/FB	FB	Default model for light nuclei (A ≤ 16) in INCL++
INCL++/ABLAv3p	WE	Alternative model in INCL++. Not considers low-lying discrete excited states.
G4PreCompundModel	GEM and FB	Default model in Geant4.
CASCADE	HF	Closed-source. Citing values of branching ratio from paper.

- From INCL++ cascade simulators.
- Simulate deexcitation part individually

tors. lividually

<u>S Leray, et al., J. Phys. Conf. Ser. 420, 012065 (2013).</u>

J. Benlliure et al., Nucl. Phys. A628, 458-478 (1998).

A.R. Junghans et al., Nucl. Phys. A629, 635-655 (1998).

Generator	Model	Comments
NucDeEx v2.1	HF	Open-source & standalone event generator based on TALYS.
INCL++/FB	FB	Default model for light nuclei (A ≤ 16) in INCL++
INCL++/ABLAv3p	WE	Alternative model in INCL++. Not considers low-lying discrete excited states.
G4PreCompundModel	GEM and FB	Default model in Geant4.
CASCADE	HF	Closed-source. Citing values of branching ratio from paper.

 Many neutrino experiments use Geant4 for detector simulation.

J. M. Quesada et al., Progress in Nuclear Science and Technology 2, 936 (2011).

Contents

Deexcitation models/generators

- Novel deexcitation generator NucDeEx
- Validations with nuclear experiments
- Application to Geant4, neutrino generators, etc.

Introduction: Neutrino experiments & ν -nucleus interaction

The reason why we need a precise description of deexcitation.

Concepts of NucDeEx

- Open-source and standalone ► 12C and 16O

generators.

NucDeEx

Provide library

 ν generators <u>enie</u> INIVERSAL NEUTRINO GENERAT

are pre-tabulated (it does not link TALYS library)

Branching ratios are calculated with TALYS.

Opened in GitHub: <u>https://github.com/SeishoAbe/NucDeEx</u>

• Easy to be integrated into ν generators and nucleon decay Because it's standalone

Y. Hayato et al., Eur. Phys. J. Special Topics 230, 4469 (2021).

C. Andreopoulos et al., Nucl. Instrum. Methods Phys. Res., Sect. A 614, 87 (2010).

T. Golan et al., Phys. Rev. C 86, 015505 (2012).

Branching ratios (BR) calculated with TALYS (Hauser-Feshbash)

Algorithm

- **Discrete:** Simple \rightarrow Refer to experimental data.

To be discussed later Continuum + Multi-holes: Complicated Use TALYS (Hauser-Feshbach model).

Contents

Introduction: Neutrino experiments & ν -nucleus interaction

- Deexcitation models/generators
- Novel deexcitation generator NucDeEx
- Validations with nuclear experiments
- Application to Geant4, neutrino generators, etc.

The reason why we need a precise description of deexcitation.

- NucDeEx agrees within ~15%.
- FB shows different trends.

S. Abe et al., Phys. Rev. D 107, 072006 (2023).

H. Hu et al., Phys. Lett. B 831, 137183 (2022).

Panin et al., Phys. Lett. B 753, 204 (2016).

Gamma-ray BRs at RCNP

Normal, ¹⁶O(p,2p)¹⁵N*

	γ branching	
	$3 < E_{\gamma,tot} < 6 \text{ MeV}$	6
NucDeEx v2.1	31.1	
INCL++/FB	31.1	
INCL++/ABLAv3p	0 *	
G4PreCompundModel	22.9	
Experiment (RCNP)	$27.9 \pm 1.5^{+3.4}_{-2.6}$	

- NucDeEx: Underestimates BR above 6 MeV (unknown reason).
- FB: Looks nice, but not good for hadronic particles (next page).
- G4PreCo: Neither BR reproduces well.

FB23 2024/09/26

• ABLA: Has no predictive power for γ . Not suitable for Super-K.

21

Hadronic particle BRs at RCNP

Solid/hatched: Two-body decays. Open: Three or more body decays (sequential decay).

M. Yosoi et al., Phys. Lett. B 551, 255 (2003). <u>M. Yosoi et al., Phys. Atom. Nucl. 67, 1810 (2004).</u> <u>H. Hu et al., Phys. Lett. B 831, 137183 (2022).</u>

<u>S. Abe et al., Phys. Rev. D 107, 072006 (2023).</u>

FB23

Hadronic particle BRs at RCNP

Conorator	χ²/ndf
Generaloi	RCNP ¹¹ E
NucDeEx v2.1	483/8
INCL++/FB	1038 / 8
INCL++/ABLAv3p	7320 / 8
G4PreCompundModel	1181 / 8
Abe et al. (TALYS)	947 / 8
Hu et al. (TALYS)	674 / 8
Yosoi et al. (CASCADE)	676 / 8

It seems that the Hauser-Feshbach model tends to give better agreements also for carbon & oxygen (light nuclei) - The same conclusion with heavy nuclei.

FB23 2024/09/26

Contents

Introduction: Neutrino experiments & ν -nucleus interaction

- Deexcitation models/generators
- Novel deexcitation generator NucDeEx
- Validations with nuclear experiments
- Application to Geant4, neutrino generators, etc.

The reason why we need a precise description of deexcitation.

Bonus study: Application to Geant4

- Geant4 has an original deexcitation model G4PreCompoundModel. But, it does not agree with experimental data well

- What happen if we use NucDeEx instead of G4PreCo?
 - Super-K and E525/E487 (neutron beam) reported that INCL++ & G4PreCo gives better agreement with data than BIC and BERT.
 - I developed an interface of NucDeEx for INCL++ in

Geant4.

<u>S. Sakai et al., Phys. Rev. D 109, L011101 (2024).</u> Y. Hino, poster at Neutrino2024.

FB23 2024/09/26 27 Validation by E525/E487 @ RCNP (neutron beam)

• Inclusive γ measurement with n+¹⁶O.

Y. Ashida et al., PRC 109, 014620 (2024).

T. Tano et al., arXiv:2405.15366 (2024).

Future prospects

- Integration into ν generators
- 1st interface for NEUT is almost done.
 - Planning to be included in the next release.
- Other generators? Welcome to use.
- Application to SKG4 (Super-K Geant4) - Initial investigation is ongoing.
- Extension to argon for MicroBooNE & DUNE etc. ?
- An effective method is necessary. Still under consideration.

- The larger atomic number, the harder to prepare tables.

Summary

- We need to understand neutrino-nucleus interactions further for ongoing/coming neutrino experiments ("exclusive" measurements). A dedicated deexcitation generator based on reliable (and validated) nuclear models is necessary.
- NucDeEx is released with many nice features:
 - Open-source & standalone. For ¹²C & ¹⁶O
 - Based on TALYS (Hauser-Feshbach model)
- Validations with nuclear exp. show good reproducibility.
- Application to NEUT & Geant4 is ongoing. Stay tuned!

Excitation energy (Ex) distribution from Benhar SF

- Benhar SF provides missing energy.
- Ex is obtained by subtracting the separation energy.

Selected for comparison with experiment as s_{1/2}-hole states.

O. Benhar et al., Phys. Rev. D 72, 053005 (2005).

FB23

Energy spectra of deexcited particles

 $^{15}N^* 20 < Ex < 40 MeV$

FB23 2024/09/26

Detection threshold in exp. by Yosoi et al.

Energy spectra of deexcited particles

¹¹B* 16 < Ex < 35 MeV

neutron

FB23 2024/09/26

Issue in ABLAv3p

- Very large α branching ratios in ABLAv3p
- Calculate S.E. using energies of generated particles
- Found energy is not conserved in α emissions
- Might overestimate the phase space
 INCL++/FB

Should be like this: Monochromatic peak at true value True S.E. = 8.7 MeV, 11.1 MeV 10^{-2}_{-20} -15 -10 -5 0 Separation energy (MeV)

