The 23rd international conference on few-body problems in physics

Two-neutron halos in EFT: neutron and E1 strength distributions

Matthias Göbel Istituto Nazionale di Fisica Nucleare - Sezione di Pisa

> in collaboration with H.-W. Hammer and D. R. Phillips

> > September 26, 2024

Overview

nn relative-energy distributions following core knockout

*E*1 strength distributions following Coulomb dissociation

nn relative-energy distributions of 2n halo nuclei

motivation: no high-precision value for the *nn* scattering length available

motivation: no high-precision value for the *nn* scattering length available

→ use the reaction ${}^{6}\text{He}(p, p'\alpha)nn$ to determine the scattering length from the final E_{nn} spectrum

motivation: no high-precision value for the *nn* scattering length available

→ use the reaction ${}^{6}\text{He}(p, p'\alpha)nn$ to determine the scattering length from the final E_{nn} spectrum

motivation: no high-precision value for the *nn* scattering length available
→ use the reaction ⁶He(*p*, *p*' α)*nn* to determine the scattering length from the final *E_{nn}* spectrum

- advantages of this approach
 - different from the previous methods → other systematics
 - final nn pair has high center-of-mass velocity in the lab system → avoids problems with detection efficiency
- experiment proposal from Aumann & SAMURAI collaboration approved by RIKEN RIBF NP2012-SAMURAI55R1 (2020)

Obtaining the E_{nn} spectrum at the example of ⁶He

■ approach: ⁶He in halo EFT

- 1. calculate wave function $\Psi_c(p,q)$ (& do comparisons with model calc.)
- 2. take final-state interaction (FSI) into account
- 3. calculate the probability distribution for E_{nn}

Obtaining the E_{nn} spectrum at the example of ⁶He

approach: ⁶He in halo EFT

- 1. calculate wave function $\Psi_c(p,q)$ (& do comparisons with model calc.)
- 2. take final-state interaction (FSI) into account
- 3. calculate the probability distribution for Enn

tool: halo EFT

- ∎ #EFT
- core & valence nucleons as degrees of freedom
- results are expanded in k/M_{hi}
 - \rightarrow systematic improvement possible

Obtaining the E_{nn} spectrum at the example of ⁶He

approach: ⁶He in halo EFT

- 1. calculate wave function $\Psi_c(p,q)$ (& do comparisons with model calc.)
- 2. take final-state interaction (FSI) into account
- 3. calculate the probability distribution for E_{nn}

tool: halo FFT

- #EFT
- core & valence nucleons as degrees of freedom
- results are expanded in k/M_{hi}
 - → systematic improvement possible

properties of ⁶He

- Borromean 2n halo
- separation of scales: $S_{2n} = 0.975 \text{ MeV} < E_{\alpha}^* \approx 20 \text{ MeV}$
- guantum numbers: $J^{\pi} = 0^+$ (⁴He: $J^{\pi} = 0^+$)
- leading-order (LO) halo EFT interaction channels:

- $nc: {}^{2}P_{3/2}$ (not at LO: ${}^{2}P_{1/2}, {}^{2}S_{1/2}$)

halo EFT for ⁶He formulated in Ji, Elster, Phillips, PRC 90 (2014) review of halo EFT in Hammer, Ji, Phillips, JPG 44 (2017)

Lagrangian

Faddeev equations

use EFT in dimer formalism

Faddeev equations

use EFT in dimer formalism

 $2 \times$

three-body force required for renormalization diagram shows case of vanishing three-body force

Results for the wave function

calculated ground-state wave functions and probability densities in halo EFT

Compare ground-state distribution from EFT with model calculations

- use ground-state momentum distribution $\rho(p_{nn}) \approx \int dq q^2 p_{nn}^2 |\Psi_c(p_{nn},q)|^2$
- model for comparison: local Gaussian model (LGM1), calc. done with FaCE Thompson, Nunes, Danilin, Comput. Phys. Commun. 161 (2004)

Göbel, Aumann, Bertulani, Frederico, Hammer, Phillips, PRC 104 (2021)

model calc. within uncertainty band of EFT

Handling the reaction ${}^{6}\text{He}(p, p'\alpha)nn$

• initial state: ⁶He bound state $|\Psi\rangle$

$$\left(K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\right)\left|\Psi\right\rangle=-B_{3}\left|\Psi\right\rangle$$

final state: $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)}) |p,q\rangle_c = (-B_3 + E_{KO}) |p,q\rangle_c$

• description of knock-out via operator or via V_{pc} (\rightarrow include p in the initial & final state)

Handling the reaction ${}^{6}\text{He}(p, p'\alpha)nn$

• initial state: ⁶He bound state $|\Psi\rangle$

$$\left(K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\right)\left|\Psi\right\rangle=-B_{3}\left|\Psi\right\rangle$$

- **final state:** $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)}) |p,q\rangle_c = (-B_3 + E_{KO}) |p,q\rangle_c$
- description of knock-out via operator or via V_{pc} (\rightarrow include p in the initial & final state)

final-state interactions (FSIs)

- definition: ints. which do not cause the transition but change the final state
- ∃ multiple FSIs in ⁶He($p, p'\alpha$)nn: $V_{nn}, V_{nc}, V_{np}, V_{3B}$, etc.
- kinematic suppression in ⁶He($p, p'\alpha$)nn @ high beam energies → only V_{nn} @ LO

Handling the reaction ${}^{6}\text{He}(p, p'\alpha)nn$

• initial state: ⁶He bound state $|\Psi\rangle$

$$\left(K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\right)\left|\Psi\right\rangle=-B_{3}\left|\Psi\right\rangle$$

■ **final state:** $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)})|p,q\rangle_c = (-B_3 + E_{KO})|p,q\rangle_c$

description of knock-out via operator or via V_{pc} (→ include p in the initial & final state)

final-state interactions (FSIs)

- definition: ints. which do not cause the transition but change the final state
- ∃ multiple FSIs in 6 He($p, p'\alpha$)nn: $V_{nn}, V_{nc}, V_{np}, V_{3B}$, etc.
- kinematic suppression in ${}^{6}\text{He}(p, p'\alpha)nn$ @ high beam energies \rightarrow only V_{nn} @ LO

E_{nn} spectrum before and after FSI

obtain distribution by using $\rho^{(t)}(p) = \int dq \ p^2 q^2 \left| \Psi_c^{(wFSI)}(p,q) \right|^2$ variation of a_{nn} : $a_{nn}^{(-)} = -20.7$ fm, $a_{nn}^{(0)} = -18.7$ fm, $a_{nn}^{(+)} = -16.7$ fm

E_{nn} spectrum before and after FSI

obtain distribution by using $p^{(t)}(p) = \int dq \ p^2 q^2 \left| \Psi_c^{(\text{wFSI})}(p,q) \right|^2$ variation of a_{nn} : $a_{nn}^{(-)} = -20.7 \text{ fm}$, $a_{nn}^{(0)} = -18.7 \text{ fm}$, $a_{nn}^{(+)} = -16.7 \text{ fm}$

Göbel, Aumann, Bertulani, Frederico, Hammer, Phillips, PRC 104 (2021)

Enn spectrum before and after FSI

obtain distribution by using $\rho^{(t)}(p) = \int dq \, p^2 q^2 \left| \Psi_c^{(wFSI)}(p,q) \right|^2$

variation of a_{nn} : $a_{nn}^{(-)} = -20.7$ fm, $a_{nn}^{(0)} = -18.7$ fm, $a_{nn}^{(+)} = -16.7$ fm

conclusions

- significant sensitivity on *nn* scattering length (≈ 10 % at peak position)
- sensitivity almost entirely caused by FSI → ⁶He is simply a suitable *n* source (nevertheless, ⁶He wave function is an important ingredient)

Enn spectrum of triton

T. Kirchner, M. Göbel, H.-W. Hammer

- experiment will also include t(p, pp)nn reaction as a "cross check"
- same kinematics: suppression of non-nn FSIs
- overall procedure and inclusion of FSIs is the same
- as for ⁶He for the ground state we solve three-body Faddeev eqs., but this time in pionless EFT Bedaque, Hammer, van Kolck, NPA 676 (2000), Bedaque et al., NPA 714 (2003)

interactions at LO and at NLO

- three two-body interaction channels: nn in ${}^{1}S_{0}$, np in ${}^{1}S_{0}$ and np in ${}^{3}S_{1}$
- two-body interactions specified in the form of t-matrices
 - for spin-singlet channels: $\tau_0 \propto (a_0^{-1} r_0/2k^2 + ik)^{-1}$

a for spin-triplet channel: pole expansion of the t-matrix: $\tau_d \propto (\gamma_d - \rho_d (\gamma_d^2 + p^2)/2 + ik)^{-1}$

- three-body interaction for renormalization
- NLO corrections are treated semi-perturbatively

E_{nn} spectrum of triton - before and after FSI (preliminary)

E_{nn} spectrum of triton - before and after FSI (preliminary)

Kirchner, Göbel, Hammer, in preparation

E_{nn} spectrum of triton - before and after FSI (preliminary)

Kirchner, Göbel, Hammer, in preparation

conclusions

- significant sensitivity on *nn* scattering length (≈ 10 % at peak position)
- sensitivity almost entirely caused by FSI \rightarrow triton is simply a suitable *n* source
- → situation analog to ⁶He

Universality of nn distributions of 2n halos

so far

- nn distributions as means to study nn interaction, halos as neutron source
- distributions have similar shapes
- now: distributions of different halos as means to study universality

nucleus	core	Jπ	S _{2n} [keV]	<i>E</i> * [keV]
Li-11		3/2 -	369.3 (6)	
	Li-9	3/2 -		2691 (5)
Be-14		0+	1270 (13)	
	Be-12	0+		2109 (1)
B-17		3/2 -	1380 (210)	
	B-15	?		
B-19		3/2 -	90 (560)	
	B-17	3/2 -		
C-22		0+	100	
	C-20	0+		1618 (11)

- all can be described via s-wave interactions
- core spin = total spin • core spin can be neglected (as long as V_{nc} is the same in $s_c - 1/2$ and $s_c + 1/2$)
- all have a separation of scales between S_{2n} and E^{*}(c)

data from https://www.nndc.bnl.gov/nudat3/ [except S2n of C-22]

Results: Different nuclei in comparison

normalization scheme: normalize to certain value @ some position (experimentally useful)

Results: Different nuclei in comparison

normalization scheme: normalize to certain value @ some position (experimentally useful)

Results: Different nuclei in comparison

normalization scheme: normalize to certain value @ some position (experimentally useful)

- hierarchy of S_{2n} becomes clearly visible: $S_{2n}(^{19}B) < S_{2n}(^{22}C) < S_{2n}(^{11}Li) < S_{2n}(^{14}Be) \approx S_{2n}(^{17}B)$
- significant influence of nn FSI

→ curves almost on top of each other → influence of a_{ii} and A on shape small

→ test unitarity limit $(t_{ij} \propto (1/a_{ij} + ip)^{-1} \rightarrow t_{ij} \propto (ip)^{-1})$

Unitarity limit in nuclear physics discussed in König, Grießhammer, Hammer, van Kolck, PRL 118 (2017)

use E_{nn}/S_{2n} instead of E_{nn} as variable

→ curves almost on top of each other → influence of a_{ij} and A on shape small → test unitarity limit $(t_{ij} \propto (1/a_{ij} + ip)^{-1} \rightarrow t_{ij} \propto (ip)^{-1})$

Unitarity limit in nuclear physics discussed in König, Grießhammer, Hammer, van Kolck, PRL 118 (2017)

universal description in terms of curve from double unitarity limit
benchmark in terms of relative deviation from exact LO FET result

Göbel, Hammer, Phillips, PRC 110 (2024)

- universality of the distribution
 - $$\begin{split} \tilde{\rho}(E_{nn}/S_{2n};V_{nn},V_{nc},S_{2n},A) &\approx \tilde{\rho}(E_{nn}/S_{2n};\bar{a}_{nn},\bar{a}_{nc},A) \approx \tilde{\rho}(E_{nn}/S_{2n};\bar{a}_{nn},A) \\ &\approx \tilde{\rho}(E_{nn}/S_{2n};A) \approx \tilde{\rho}(E_{nn}/S_{2n}) \end{split}$$
- started with LO EFT universalities, realized reduction-of-parameter universalities by going into the unitarity limit
- we extended universal description also to the final distribution

Part II

E1 strength distributions following Coulomb dissociation & finite-range interactions

Remarks

E1 strength as an interesting observable

- parameterizes the Coulomb dissociation cross section: $\frac{d\sigma}{dE} \propto \frac{dB(E1)}{dE}$
- characteristic property of halo nuclei
- for 2*n* halos reltd. to a large core distance *r_c*

see, e.g., Forssén, Efros, Zhukov, NPA 697 (2002), Acharya, Phillips, EPJ Web Conf. 113 (2016), Hagen, (2014) review of low-energy dipole response in Aumann, EPJA 55 (2019)

high-Z target
Remarks

E1 strength as an interesting observable

- parameterizes the Coulomb dissociation cross section: $\frac{d\sigma}{dE} \propto \frac{dB(E1)}{dE}$
- characteristic property of halo nuclei
- for 2*n* halos reltd. to a large core distance *r_c*

see, e.g., Forssén, Efros, Zhukov, NPA 697 (2002), Acharya, Phillips, EPJ Web Conf. 113 (2016), Hagen, (2014) review of low-energy dipole response in Aumann, EPJA 55 (2019)

high-Z target

September 26, 2024 | Istituto Nazionale di Fisica Nucleare - Sezione di Pisa | M. Göbel | 19

Remarks

E1 strength as an interesting observable

- parameterizes the Coulomb dissociation cross section: $\frac{d\sigma}{dE} \propto \frac{dB(E1)}{dE}$
- characteristic property of halo nuclei
- for 2*n* halos reltd. to a large core distance *r_c*

see, e.g., Forssén, Efros, Zhukov, NPA 697 (2002), Acharya, Phillips, EPJ Web Conf. 113 (2016), Hagen, (2014) review of low-energy dipole response in Aumann, EPJA 55 (2019)

high-Z target

E1 strength of ⁶He extensively investigated based on different models , e.g., Cobis et

al., PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002), Grigorenko et al., PRC 102 (2020)

- recent E(F)T results
 - using an asymptotic three-body w. f. Bertulani, PRC 108 (2023)
 - using coord.-space approach and pseudostate method for FSI Pinilla et al., arXiv (2024)

E1 strength of ⁶He extensively investigated based on different models , e.g., Cobis et

al., PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002), Grigorenko et al., PRC 102 (2020)

recent E(F)T results

- using an asymptotic three-body w. f. Bertulani, PRC 108 (2023)
- using coord.-space approach and pseudostate method for FSI Pinilla et al., arXiv (2024)
- halo EFT description of the ⁶He ground state is established Ji, Elster, Phillips, PRC 90 (2014), Göbel, Hammer, Ji, Phillips, FBS 60 (2019)

E1 strength of ⁶He extensively investigated based on different models , e.g., Cobis et

al., PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002), Grigorenko et al., PRC 102 (2020)

recent E(F)T results

- using an asymptotic three-body w. f. Bertulani, PRC 108 (2023)
- using coord.-space approach and pseudostate method for FSI Pinilla et al., arXiv (2024)
- halo EFT description of the ⁶He ground state is established Ji, Elster, Phillips, PRC 90 (2014), Göbel, Hammer, Ji, Phillips, FBS 60 (2019)
 - **α** for *p*-wave *nα* int. (²P_{3/2}): power counting of Bedaque, Hammer, van Kolck, PLB 569 (2003):

 $1/a_1 \sim M_{hi}M_{lo}^2$ and $r_1 \sim M_{hi} \rightarrow$ one fine tuning; $t_{nc} \propto (1/a_1 - r_1k^2/2)^{-1}$

E1 strength of ⁶He extensively investigated based on different models , e.g., Cobis et

al., PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002), Grigorenko et al., PRC 102 (2020)

- recent E(F)T results
 - using an asymptotic three-body w. f. Bertulani, PRC 108 (2023)
 - using coord.-space approach and pseudostate method for FSI Pinilla et al., arXiv (2024)
- halo EFT description of the ⁶He ground state is established Ji, Elster, Phillips, PRC 90 (2014), Göbel, Hammer, Ji, Phillips, FBS 60 (2019)
 - for *p*-wave *nα* int. (²*P*_{3/2}): power counting of Bedaque, Hammer, van Kolck, PLB 569 (2003):

$$1/a_1 \sim M_{hi}M_{lo}^2$$
 and $r_1 \sim M_{hi} \rightarrow$ one fine tuning; $t_{nc} \propto (1/a_1 - r_1k^2/2)^{-1}$

- zero-range rank-one separable int. requires energy dependency for reproduction of ERE
 - remark: rank-*n* separable int.: $V(p, p') = \sum_{i,j} g_i(p)\lambda_{i,j}g_j(p')$
 - zero-range halo EFT Lagrangian term:

$$\tilde{\mathcal{L}}_{nc}^{(2)} = d_m^{\dagger} \left(W_d \left(\mathrm{i} \partial_0 + \frac{2}{2M} \right) + \Delta_d \right) d_m - \frac{g_d}{2} \left(d_m^{\dagger} \left[n \left(\mathrm{i} \ddot{\partial} \right) c \right]_m - \mathrm{H.~c.} \right)$$

E1 strength of ⁶He extensively investigated based on different models, e.g., Cobis et Based on different models and a strength of ⁶He extensively investigated based on different models.

al., PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002), Grigorenko et al., PRC 102 (2020)

- recent E(F)T results
 - using an asymptotic three-body w. f. Bertulani, PRC 108 (2023)
 - using coord.-space approach and pseudostate method for FSI Pinilla et al., arXiv (2024)
- halo EFT description of the ⁶He ground state is established Ji, Elster, Phillips, PRC 90 (2014), Göbel, Hammer, Ji, Phillips, FBS 60 (2019)
 - for *p*-wave *nα* int. (²P_{3/2}): power counting of Bedaque, Hammer, van Kolck, PLB 569 (2003):

 $1/a_1 \sim M_{hi}M_{lo}^2$ and $r_1 \sim M_{hi} \rightarrow$ one fine tuning; $t_{nc} \propto (1/a_1 - r_1k^2/2)^{-1}$

- zero-range rank-one separable int. requires energy dependency for reproduction of ERE
 - remark: rank-*n* separable int.: $V(p, p') = \sum_{i,j} g_i(p)\lambda_{i,j}g_j(p')$
 - zero-range halo EFT Lagrangian term:

 $\tilde{\mathcal{L}}_{nc}^{(2)} = d_m^{\dagger} \left(w_d \left(\mathrm{i} \partial_0 + \frac{2}{2M} \right) + \Delta_d \right) d_m - \frac{g_d}{2} \left(d_m^{\dagger} \left[n \left(\mathrm{i} \vec{\partial} \right) c \right]_m - \mathrm{H.~c.} \right)$

■ in QM this corresponds to energy-dependent potentials $H \rightarrow H(E)$ solutions of H @ different E are in fact solutions of different H

Formánek, Lombard, Mareš, CJP 54 (2004)

→ corrections $\propto \partial_E V$ to expectation values and normalization are necessary

E1 strength of ⁶He extensively investigated based on different models, e.g., Cobis et a.g., Cobis et a.g., Cobis et

al., PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002), Grigorenko et al., PRC 102 (2020)

- recent E(F)T results
 - using an asymptotic three-body w. f. Bertulani, PRC 108 (2023)
 - using coord.-space approach and pseudostate method for FSI Pinilla et al., arXiv (2024)
- halo EFT description of the ⁶He ground state is established Ji, Elster, Phillips, PRC 90 (2014).

Göbel, Hammer, Ji, Phillips, FBS 60 (2019)

■ for *p*-wave *nα* int. (²P_{3/2}): power counting of Bedaque, Hammer, van Kolck, PLB 569 (2003):

 $1/a_1 \sim M_{hi}M_{lo}^2$ and $r_1 \sim M_{hi} \rightarrow$ one fine tuning; $t_{nc} \propto (1/a_1 - r_1k^2/2)^{-1}$

zero-range rank-one separable int. requires energy dependency for reproduction of FRF

- remark: rank-*n* separable int.:
$$V(p, p') = \sum_{i,j} g_i(p) \lambda_{i,j} g_j(p')$$

zero-range halo EFT Lagrangian term:

 $\tilde{\mathcal{L}}_{nc}^{(2)} = d_m^{\dagger} \left(w_d \left(\mathrm{i} \partial_0 + \frac{2}{2m} \right) + \Delta_d \right) d_m - \frac{g_d}{2} \left(d_m^{\dagger} \left[n \left(\mathrm{i} \vec{\delta} \right) c \right]_m - \mathrm{H.~c.} \right)$

• in QM this corresponds to energy-dependent potentials $H \rightarrow H(E)$ solutions of H @ different E are in fact solutions of different H

Formánek, Lombard, Mareš, CJP 54 (2004)

- \rightarrow corrections $\propto \partial_F V$ to expectation values and normalization are necessary
- probability density of ⁶He: $\forall p, q < M_{hi}$: corrections to the normalization have the

greatest influence, others are small Göbel, Hammer, Ji, Phillips, FBS 60 (2019) September 26, 2024 | Istituto Nazionale di Fisica Nucleare - Sezione di Pisa | M. Göbel | 20

Finite-range EFT

- implication for dB(E1)/dE: shape can be calculated straightforwardly in zero-range halo EFT, calc. of the absolute values would be more intricinate
- avoid energy dependency by using rank-one separable int., which is finite-range

Finite-range EFT

- implication for dB(E1)/dE: shape can be calculated straightforwardly in zero-range halo EFT, calc. of the absolute values would be more intricinate
- avoid energy dependency by using rank-one separable int., which is finite-range
- in contrast to zero-range interaction, might induce higher-order terms in the ERE
- EFT aim can still be realized: provide systematic improvability and in that way also uncertainty estimates (comparison of different-order results)

Finite-range EFT

- implication for dB(E1)/dE: shape can be calculated straightforwardly in zero-range halo EFT, calc. of the absolute values would be more intricinate
- avoid energy dependency by using rank-one separable int., which is finite-range
- in contrast to zero-range interaction, might induce higher-order terms in the ERE
- EFT aim can still be realized: provide systematic improvability and in that way also uncertainty estimates (comparison of different-order results)
- finite-range interactions in use: Yamaguchi (YM) interactions Yamaguchi, PR 95 (1954)
 - work well in momentum-space Faddeev calculations
 - have already two parameters \rightarrow ideal for *p*-wave $n\alpha$ int.
 - extension of YM form factors → more parameters → reproducability of more ERE terms
- Yamaguchi interaction is a rank-one separable interaction:

 $\langle p, l | V_{\bar{l}} | p', l' \rangle = \delta_{l,l'} \delta_{l,\bar{l}} g_l(p) \lambda_l g_l(p')$

with YM form factors $g_l(p) = p^l \frac{\beta_l^4}{(p^2 + \beta_l^2)^2}$

Leading-order results (preliminary)

Leading-order results (preliminary)

- \rightarrow zero-range (ZR) approach has convergence issue in Λ , related to V(E)
- → finite-range (FR) approach is convergent
- → results for the shape agree

Going to NLO (preliminary)

- inclusion of the different NLO effects in the finite-range approach (²S_{1/2} nc int., r₀-term of ¹S₀ nn int., (UT of ²P_{3/2} nc int. in FR already LO))
- I difficulties of NLO effects in the zero-range approach
 - **•** r_0 -term in the *nn* int. would create another V(E)
 - zero-range nn int. at NLO has an unphysical pole

Going to NLO (preliminary)

- inclusion of the different NLO effects in the finite-range approach (²S_{1/2} nc int., r₀-term of ¹S₀ nn int., (UT of ²P_{3/2} nc int. in FR already LO))
- I difficulties of NLO effects in the zero-range approach
 - **r**₀-term in the *nn* int. would create another V(E)
 - zero-range nn int. at NLO has an unphysical pole

Going to NLO (preliminary)

- inclusion of the different NLO effects in the finite-range approach (²S_{1/2} nc int., r₀-term of ¹S₀ nn int., (UT of ²P_{3/2} nc int. in FR already LO))
- I difficulties of NLO effects in the zero-range approach
 - **•** r_0 -term in the *nn* int. would create another V(E)
 - zero-range nn int. at NLO has an unphysical pole

- → NLO corrections have the expected size
- → NLO correction from ${}^{2}S_{1/2}$ nc int. much stronger than from nn r₀ term

Final-state interactions and partial waves

- *a priori* the matrix element of the t_i acting in the jk subsystem is known for $i (= S_i)$ as spectator $_i \langle p, q; \Omega | t_i(E_3) | p', q'; \Omega' \rangle_i \propto \delta_{\Omega,\Omega'} \delta_{(\Omega)jk,\Omega_i} \frac{\delta(q-q')}{q^2} \tau_{jk} (E_3 - q^2 / (2\mu_{i(jk)}))$
- → recoupling between states of different spectators and different partial waves in some cases necessary

Final-state interactions and partial waves

- *a priori* the matrix element of the t_i acting in the *jk* subsystem is known for $i (= S_i)$ as spectator $_i \langle p, q; \Omega | t_i(E_3) | p', q'; \Omega' \rangle_i \propto \delta_{\Omega,\Omega'} \delta_{(\Omega)_{jk},\Omega_i} \frac{\delta(q-q')}{q^2} \tau_{jk} (E_3 - q^2 / (2\mu_{i(jk)}))$
- → recoupling between states of different spectators and different partial waves in some cases necessary
 - strategy: make use of relation for $s_{,s'} \mathcal{F}_{\Omega,\Omega'}^{p,q|p',q'} f(p',q') \coloneqq$ $\int dp' p'^2 \int dq' q'^2 {}_{s} \langle p,q;\Omega|p',q';\Omega' \rangle_{s'} f(p',q')$
 - expression consists of sums over Clesch-Gordan coefficients, Wigner-3nj symbols, and partial-wave projections of f evaluated at shifted momenta (angle-dependent)
 - → lower number of num. integrals compared to naive approach

NLO results with FSIs (preliminary)

all FSIs (also ²S_{1/2} nc FSI) in comparison on the basis of the NLO ground state
overall E1 strength obtained from ⟨r²_c⟩ via sum rule

- → sum rule fulfilled except for one FSI, which is missing unitarity term (UT) according to power counting
- → nn FSI is more important than ${}^{2}P_{3/2}$ nc and ${}^{2}S_{1/2}$ nc FSIs

NLO results with FSIs (preliminary)

- also results of second order in FSIs obtainable
- here shown: result based on $\Omega_{nn}^{\dagger}\Omega_{nc}^{\dagger}$

Göbel, Hammer, Phillips, in preparation

Conclusion & Outlook

Part I

Conclusions

- nn distributions of ⁶He and triton have significant sensitivity on a_{nn}
- found universality of ground-state and final distributions
 - *nn* and *nc* interactions can be put in the unitarity limit

Outlook

- interesting possibilities for comparisons
- go to NLO to asses the accuracy of the univ. results better
- repeat the calcs. for different kinematics (additional FSIs)

Part II

Conclusions

- finite-range Halo EFT is an useful complement in the EFT toolbox
- NLO results for E1 distribution of ⁶He
- found dominance of nn FSI

Outlook

- finalize calculations
- investigate universality of E1 distributions

Backup slides on ${}^{6}\text{He}(p, p'\alpha)nn$

September 26, 2024 | Istituto Nazionale di Fisica Nucleare - Sezione di Pisa | M. Göbel | 28

Compare ground-state distribution from EFT with model calculations

- compare ground-state distributions $\rho(p_{nn}) \approx \int dq q^2 p_{nn}^2 |\Psi_c(p_{nn},q)|^2$
- \nexists published results for $\rho(p_{nn})$
- → USE FaCE Thompson, Nunes, Danilin, Comput.Phys.Commun. 161 (2004)

computer code: Faddeev with Core Excitations (FaCE)

- solves the Schrödinger equation of three-body cluster models
- input:
 - local *l*-dependent two-body potentials (central or spin-orbit)
 - phenomenological three-body force
- output: hyperspherical wave function components $\chi^{S}_{K,l}(\rho)$ with $\rho^2 = x^2 + y^2$

Compare ground-state distribution from EFT with model calculations: defining the model

the two-body potentials in use

use local, *l*-dependent Gaussian potentials

• central pot.:
$$\langle r; l, s | V_c^{(\bar{l})} | r'; l', s' \rangle \coloneqq \delta_{l, \bar{l}'} \delta_{l, \bar{l}'} \frac{\delta(r'-r)}{r'^2} \bar{V}_c^{(l)} \exp(-r^2 / (a_{c;l}^2))$$

spin-orbit pot.

"standard setting": local Gaussian model 1 (LGM1)

- **n** interaction: $V_c^{(0)}$
- **n** *c* interaction: $V_c^{(0)}$, $V_c^{(1)}$, $V_{SO}^{(1)}$, $V_c^{(2)}$, $V_{SO}^{(2)}$
- phenomenological three-body force

Calculating the wave function after FSI

treatments of FSI are based on two-potential scattering theory

Goldberger, Watson, "Collision Theory" (1964)

- evaluate $T_{\beta\alpha} = \langle \beta | T_{U+V}^{(+)} | \alpha \rangle$
 - with production potential V, FSI potential U and Hamiltonian H_0 of $|\alpha\rangle \& |\beta\rangle$
- **result** of two-pot. scattering theory: dissection of $T_{U+V}^{(+)}$ for this matrix element
- **a** additional adjustments for the case that $U \in H_0^{(\alpha)} \neq H_0^{(\beta)}$
- two approaches on this basis:
 - approximation by using FSI enhancement factors
 - exact calculation
- exact calculation is based on t_{nn}

Sensitivity of the E_{nn} spectrum on effective range

variation of r_{nn} : $r_{nn}^{(-)} = 2.0$ fm, $r_{nn}^{(0)} = 2.73$ fm, $r_{nn}^{(+)} = 3.0$ fm (simulation of an NLO effect)

conclusions

- significant sensitivity on nn scattering length
- almost no sensitivity on nn effective range

E_{nn} spectrum after FSI: Ratio plots

conclusions

- influence of the nn scattering length at peak position ≈ 10 %
- influence of the nn effective range small

September 26, 2024 | Istituto Nazionale di Fisica Nucleare - Sezione di Pisa | M. Göbel | 33

E_{nn} spectrum: uncertainty estimates

• estimate uncertainty of $\rho(E_{nn})$ based on $\Delta \rho(p_{nn}) \approx \rho(p_{nn}) \frac{p_{nn}}{M_{mn}}$

•
$$M_{hi} \approx \sqrt{2\mu_{nn}E_{hi}}$$
 with $E_{hi} = E_{\alpha}^{*} \approx 20$ MeV

results for the uncertainty estimates for E_{nn} < 1 MeV:</p>

- @LO: $\Delta \rho(E_{nn}) \lessapprox 20 \%$ @NLO: $\Delta \rho(E_{nn}) \lessapprox 5 \%$
- $(@N^2LO: \Delta \rho(E_{nn}) \leq 1\%$

Backup slides Universality of *nn* distributions

Some more formal thoughts about universality

- starting point: observable O being a function of
 - variable x (also measured)
 - system-specific parameters $\theta \rightarrow \mathcal{O}(x; \theta)$

Classifying the universality

- different curves describing different systems are (nearly) on top of each other
- some attempts to classification
 - **rescaling of the observable:** $\mathcal{O}(x;\theta) = \tilde{\mathcal{O}}(x)f(\theta)$
 - $\rightarrow \tilde{\mathcal{O}}(x) = \mathcal{O}(x;\theta)/f(\theta)$ universal
 - + rescaling of the variable: $\mathcal{O}(x;\theta) = \tilde{\mathcal{O}}(x/g(\theta))f(\theta)$
 - $\rightarrow \tilde{\mathcal{O}}(\tilde{x}) = \mathcal{O}(\tilde{x}g(\theta); \theta) / f(\theta)$ universal
 - reduction of parameters: $\mathcal{O}(x; \theta) = \mathcal{O}(x; \theta_2)$ with " $\theta_2 \subset \theta$ "
- combinations of these universalities can appear
- leading-order Halo EFT description provides reduction-of-parameter universality
- question: Display E_{nn} distributions universality beyond that?

Analysis in terms of dimensionless variables

- analysis in terms of dimensionless variables can reduce the number of parameters
- starting point: LO EFT universality

$$\rho(E_{nn}; S_{2n}, V_{nn}, V_{nc}, V_3, \{m_i\}) = \rho(E_{nn}; S_{2n}, a_{nn}, a_{nc}, V_3^{(\text{LO})}, A)$$

- way of analysis: step by step Faddeev equations \rightarrow overall wave function $\rightarrow E_{nn}$ distribution
- use $\sqrt{2\mu S_{2n}}$ as momentum scale & work with $\tilde{q} = q/\sqrt{2\mu S_{2n}}$ and $\bar{a}_{ij} = a_{ij}\sqrt{2\mu S_{2n}}$

→ result:
$$\rho(E_{nn}; S_{2n}, a_{nn}, a_{nc}, V_3^{(LO)}, A) \propto S_{2n}^{-1}\tilde{\tilde{\rho}}(E_{nn}/S_{2n}; \bar{a}_{nn}, \bar{a}_{nc}, A)$$

Understanding why the unitarity limit works so well

Dimensionless picture

influence of $\bar{a}_{ij} = \sqrt{2\mu S_{2n}} a_{ij}$ depends on

- size of *ā_{ij}*: the larger *ā_{ij}*, the smaller the influence
- interplay of the different forces (where the t-matrix is probed)

Dimensionfull picture

influence of a_{ij} depends on

- size of a_{ij}: the larger a_{ij}, the smaller the influence
- size of S_{2n}: the larger S_{2n}, the smaller the influence of a_{ij}
- interplay of the different forces

Universality of the final distributions

- universal curve: build on the ground-state findings
 - → use approx. technique of FSI enhancement factors
- benchmark: final distributions from LO EFT with FSI based on t-matrix
- ground state and nn FSI have unaligned universalities univ. driven by S_{2n} vs. "trivial univ." given by a_{nn}
- → $\tilde{\rho}/G$ should be an universal function of E_{nn}/S_{2n} $\tilde{\rho}^{(wFSI)}(E_{nn}/S_{2n}; V_{nn}, V_{nc}, S_{2n}, A) \approx \tilde{\rho}(E_{nn}/S_{2n}; A) G(a_{nn}\sqrt{2\mu E_{nn}}, r_{nn}\sqrt{2\mu E_{nn}})$

Göbel, Hammer, Phillips, PRC 110 (2024)

September 26, 2024 | Istituto Nazionale di Fisica Nucleare - Sezione di Pisa | M. Göbel | 39

Backup slides *E*1 strength distribution of ¹¹Li

September 26, 2024 | Istituto Nazionale di Fisica Nucleare - Sezione di Pisa | M. Göbel | 40

Different FSI approximation techniques

FSIs

Møller operators

$$\begin{split} \Omega &= \mathbb{1} + \int \mathrm{d}\xi \, \frac{1}{E_{\xi} - H_0 - V} V \left| \xi \right\rangle \left\langle \xi \right| \\ &= \mathbb{1} + \int \mathrm{d}\xi \, G_0 \big(E_{\xi} \big) t \big(E_{\xi} \big) \left| \xi \right\rangle \left\langle \xi \right| \end{split}$$

- matrix element of interest: $_{c}\langle p, q; \Xi_{f} | \Omega^{\dagger} \mathcal{M}(E1; \mu) | \Psi \rangle$ whereby $V = V_{nn} + V_{nc} + V_{n'c}$
- → approximations as an interesting alternative
 - insights in the role of specific interactions (e.g., nn or nc)
 - in certain kinematics favor specific interactions

Approximation strategies

• include only one FSI: use Ω_{nn} or Ω_{nc}

use series in G₀t_{ij} up to certain order, e.g., first order:

 $\Omega \approx \mathbb{1} + G_0 t_{nn} + G_0 t_{nc} + G_0 t_{n'c}$

🛕 not necessarily unitary

• use products of Møller operators, e.g.: $\Omega_{nc}\Omega_{nn}$ or $\Omega_{nc}\Omega_{n'c}\Omega_{nn}$ A does not commute with \mathcal{P}_{nn}

E1 strength of two-neutron halo nuclei Efficient organization of the calculations at the example of $\Omega_{nn}^{\dagger}\Omega_{n'c}^{\dagger}\Omega_{nc}^{\dagger}$

to simplify the calculation, certain subdiagrams can be reused

September 26, 2024 | Istituto Nazionale di Fisica Nucleare - Sezione di Pisa | M. Göbel | 42
Results for $^{\rm 11}{\rm Li}$ in comparison with experiment and other theory

- EFT uncertainty bands given by $\sqrt{E/E_c^*}$
- uncertainty of FSI calculation from difference of the two third-order results
- → theory from Hongo & Son (Hongo, Son, PRL 128 (2022)) is less suitable for ¹¹Li
- → reasonable agreement with experimental data (Nakamura et al., PRL 96 (2006))

Results for ¹¹Li - FSIs in detail

- convergence pattern in this approach is visible
- first-order approximation overshoots largely
- approximation scheme works, i.e., preserves probability

Backup slides *E*1 strength distribution of ⁶He

Final-state interactions and partial waves

¹¹Li

- all FSIs are s-wave
- one most important partial-wave component of the ground state
- → evaluation of recoupling was necessary for combining different FSIs, but partial-wave structure was limited

■ ⁶He

- FSIs are in different partial waves (s and p wave)
- one most important partial-wave component of the ground state (s wave)
- but: Could a p-wave FSI enhance a p-wave component of the ground state?
- → similar approach to FSI via products of Møller operators useful, but be more general regarding partial waves
- plan for ⁶He
 - evaluation of the E1 operator between arbitrary partial-wave states

$$_{c}\langle x',y';\Omega'|r_{c}Y_{1,\mu}(r_{c})|x,y;\Omega\rangle_{c}=\delta_{s,s'}\delta_{\sigma,\sigma'}\delta_{l,l'}\delta_{j,j'}$$

$$\times \sqrt{\frac{3}{4\pi}} f_c y \sqrt{\hat{j} \hat{l} \hat{l'}} \sqrt{\hat{\lambda} \hat{l}} \hat{c}_{\lambda,0,1,0}^{\lambda',0} C_{j,M,1,\mu}^{l',M'} (-1)^{2s+\sigma+\lambda'+j'} (-1)^{j+2j'} \begin{cases} 1 & l' & l \\ j' & J & J' \end{cases} \begin{cases} 1 & l' & l \\ \sigma & \lambda & \lambda' \end{cases}$$

with $\Omega = (l, [s_1, s_2] s) j(\lambda, \sigma) l; J, M$

evaluation of FSI between arbitrary many parital-wave states

Final-state interactions and partial-waves II Equations for *nc* FSI

$${}^{s,s'}\mathcal{J}^{p,q|p',q'}_{\Omega,\Omega'}f(p',q')\coloneqq \int \mathrm{d}p'\,p'^2 \int \mathrm{d}q'\,q'^2{}_{s}\langle p,q;\Omega|p',q';\Omega'\rangle_{s'}\,f(p',q')$$

$$\begin{split} \langle \boldsymbol{p}, \boldsymbol{q}; \boldsymbol{\Omega} | (\Omega_{nc} - \mathbb{1})^{\dagger} \mathcal{M}_{E1,\mu} | \Psi \rangle &= \sum_{\Omega_{i},\Omega_{m}} f_{E1,\mu}^{(\Omega_{m},\Omega_{i})} \sum_{\substack{\Omega' \text{ with} \\ (\Omega')_{nc} = \omega_{nc}}} cn \mathcal{T}_{\Omega,\Omega'}^{\boldsymbol{p},\boldsymbol{q}|\boldsymbol{p}',\boldsymbol{q}'} g_{l_{n}}(\boldsymbol{p}') \tau_{nc}(E_{\boldsymbol{p}'}) \\ &\times \int \mathrm{d}\tilde{p} \, \tilde{p}^{2} g_{l_{n}}(\tilde{p}) \frac{1}{E_{\boldsymbol{p}'} - \tilde{p}^{2}/(2\mu_{nc}) + \mathrm{i}\epsilon} \, {}^{nc} \mathcal{T}_{\Omega',\Omega_{m}}^{\tilde{p},\boldsymbol{q}'|\boldsymbol{p}'',\boldsymbol{q}''} D_{\boldsymbol{q}''}^{(\Omega_{m},\Omega_{i})} \Psi_{c,\Omega_{i}}(\boldsymbol{p}'',\boldsymbol{q}'') \end{split}$$

Example for the recoupling

ра І - 1 -	art 1 S 3 1 3	of 20 Omeg (3, (1, (0,	5 jas [1,1]2) [1,0]1) [1,1]0)	5 (4 3 (0 9 (1	,0)8; ,1)1; ,0)2;	2,0 2,0 2,0	3,[1,[0,[1,1 1,0 1,1]2)6]1)3]0)0	(4, (1, (1,	0)8; 1)1; 0)2;	2,0 2,0 2,0	(3, (1, (θ,	[1, [1, [1,	1]2)6 0]1)3 1]0)0	(4,0) (1,1) (1,0)	8; 3; 2;	2,0 2,0 2,0	(((3,[1 1,[1 0,[1	L,1]2 L,0]1 L,1]0)6)3)0	(4,0)8; (2,1)3; (1,0)2;	2,0 2,0 2,0	(3, (1, (0,	[1,1 [1,6 [1,1	1]2)6 9]1)3 1]0)0	(4 (2) (1	1,0)8; 1,1)5; 1,0)2;	2,0 2,0 2,0	
р; І 1 -	art 2 S 3 1 3	of 20 Ome (3, (1, (0,	5 gas [1,1]2) [1,0]1) [1,1]0)	5 (4 3 (3 9 (1	,0)8; ,1)5; ,0)2;	2,0 2,0 2,0	3,[1,[0,[1,1 1,0 1,1]2)6]1)3]2)2	(4, (0, (1,	0)8; 1)1; 0)2;	2,0 2,0 2,0	(3, (1, (1,	[1, [1, [1,	1]2)6 0]1)3 1]0)2	(4,0) (0,1) (0,0)	8; 1; 0;	2,0 2,0 2,0	(((3,[1 1,[1 1,[1	L,1]2 L,0]1 L,1]2)6)3)2	(4,0)8; (0,1)1; (0,0)0;	2,0 2,0 2,0	(3, (1, (1,	[1,1 [1,6 [1,1	1]2)6 9]1)3 1]0)2	(4 (8 (2	1,0)8;),1)1; 2,0)4;	2,0 2,0 2,0	
рі І - 1 -	art 3 S 3 1 3	of 20 0meg (3, (1, (1,	5 gas [1,1]2) [1,0]1) [1,1]2)	5 (4 3 (0 2 (2	,0)8; ,1)1; ,0)4;	2,0 2,0 2,0	3,[1,[(1,[1,1 1,0 1,1]2)6]1)3]2)4	(4, (0, (2,	0)8; 1)1; 0)4;	2,0 2,0 2,0	(3, (1, (2,	[1, [1, [1,	1]2)6 0]1)3 1]0)4	(4,0) (0,1) (1,0)	8; 1; 2;	2,0 2,0 2,0		3,[1 1,[1 2,[1	L,1]2 L,0]1 L,1]2)6)3)2	(4,0)8; (0,1)1; (1,0)2;	2,0 2,0 2,0	(3, (1, (2,	[1,1] [1,0] [1,1]	1]2)6 0]1)3 1]2)4	(4 (8 (1	1,0)8;),1)1; L,0)2;	2,0 2,0 2,0	
p; I - 1 -	art 4 S 3 1 3	of 20 0meg (3, (1, (2,	5 gas [1,1]2) [1,0]1) [1,1]0)	5 (4 3 (0 4 (3	,0)8; ,1)1; ,0)6;	2,0 2,0 2,0	[3,[[1,[[2,[1,1 1,0 1,1]2)6]1)3]2)4	(4, (0, (3,	0)8; 1)1; 0)6;	2,0 2,0 2,0	(3, (1, (2,	[1, [1, [1,	1]2)6 0]1)3 1]2)6	(4,0) (0,1) (3,0)	8; 1; 6;	2,0 2,0 2,0		3,[1 1,[1 3,[1	L,1]2 L,0]1 L,1]0)6)3)6	(4,0)8; (0,1)1; (2,0)4;	2,0 2,0 2,0	(3, (1, (3,	[1,1 [1,6 [1,1	1]2)6 9]1)3 1]2)4	(4 (8 (2	1,0)8; 1,1)1; 2,0)4;	2,0 2,0 2,0	
pi I - 1	art 5 S 3 1 3	of 20 Ones (3, (1, (3,	5 Jas [1,1]2) [1,0]1) [1,1]2)	5 (4 3 (0 5 (2	,0)8; ,1)1; ,0)4;	2,0 2,0 2,0	3,[1,[(3,[1,1 1,0 1,1]2)6]1)3]0)6	(4, (0, (4,	0)8; 1)1; 0)8;	2,0 2,0 2,0	(3, (1, (3,	[1, [1, [1,	1]2)6 0]1)3 1]2)6	(4,0) (0,1) (4,0)	8; 1; 8;	2,0 2,0 2,0		3,[1 1,[1 3,[1	L,1]2 L,0]1 L,1]2)6)3)8	(4,0)8; (0,1)1; (4,0)8;	2,0 2,0 2,0	(3, (1, (4,	[1,1 [1,6 [1,1	1]2)6 9]1)3 1]0)8	(4 (8 (3	1,0)8; 1,1)1; 3,0)6;	2,0 2,0 2,0	

scheme: (l, [2s₁, 2s₂]2s) 2j (λ, 2σ) 2l; 2J, 2M

Backup slides General slides

Calculation of wave functions & probability densities: Details

wave functions = overlaps of state $|\Psi\rangle$ with reference states

notation:
$$_{i}\langle p,q;(l,s)j,(\lambda,\sigma)\mathcal{I};J,M|\Psi\rangle$$

examples:

$$\Psi_{n}(p,q) \coloneqq_{n} \langle p,q; \left(1,\frac{1}{2}\right)\frac{3}{2}, \left(1,\frac{1}{2}\right)\frac{3}{2}; 0,0 \mid \Psi \rangle$$
$$\Psi_{c}(p,q) \coloneqq_{c} \langle p,q; \left(0,0\right)0, \left(0,0\right)0; 0,0 \mid \Psi \rangle$$

Calculation of wave functions & probability densities: Details

wave functions = overlaps of state $|\Psi\rangle$ with reference states

notation:
$$\left| \langle p, q; (l, s) j, (\lambda, \sigma) \mathcal{I}; J, M \right| \Psi \right\rangle$$

examples:

$$\begin{split} \Psi_{n}(p,q) &\coloneqq_{n} \langle p,q; \left(1,\frac{1}{2}\right)\frac{3}{2}, \left(1,\frac{1}{2}\right)\frac{3}{2}; 0,0 \mid \Psi \rangle \\ \Psi_{c}(p,q) &\coloneqq_{c} \langle p,q; \left(0,0\right)0, \left(0,0\right)0; 0,0 \mid \Psi \rangle \end{split}$$

complete description of ground state of ⁶He possible in terms of $\Psi_c^{(l,s=0)}(p,q) \coloneqq_c \langle p,q; (l,0)l, (l,0)l; 0, 0 | \Psi \rangle$ with *l* even $\Psi_c^{(l,s=1)}(p,q) \coloneqq_c \langle p,q; (l,1)l, (l,0)l; 0, 0 | \Psi \rangle$ with *l* odd $(J^{\pi} = 0^+ \text{ and antisymmetrization in } nn \text{ subsystem restrict possible states})$

General results from two-potential scattering theory

as discussed in Goldberger, Watson, "Collision Theory" (1964)

quantity of interest: $T_{\beta\alpha} = \langle \beta | T_{U+V}^{(+)} | \alpha \rangle$

Lippmann-Schwinger equation for t-matrix: T^(*)_{U+V} = (U + V) + (U + V) G^(*)₀T^(*)_{U+V}
production potential V
FSI potential U

- with the asympt. states $|\alpha\rangle \& |\beta\rangle$
 - fulfilling $H_0 |i\rangle = E_i |i\rangle$ $(i \in \{\alpha, \beta\})$ ■ $E_\alpha = E_\beta = E$

method & results

- use Møller operators: $\Omega_V^{(\pm)} = \mathbb{1} + (E H_0 V \pm i\epsilon)^{-1} V$
- → dissection of $T_{U+V}^{(+)}$ possible: $T_{U+V}^{(+)} = \left(\Omega_U^{(-)}\right)^{\dagger} V \Omega_{U+V}^{(+)} + \left(\Omega_U^{(-)}\right)^{\dagger} U$

$$\Rightarrow \text{ if } (H_0 + U) |\alpha\rangle = E_\alpha |\alpha\rangle \text{ holds instead of } H_0 |\alpha\rangle = E_\alpha |\alpha\rangle \\ T_{\beta\alpha} = \langle \beta | (\Omega_U^{(-)})^{\dagger} V (\mathbb{1} + (E - K - U - V + i\epsilon)^{-1} V) |\alpha\rangle$$

Faddeev equations: the quantum-mechanical picture

- equivalent to Schrödinger eq.: $H |\Psi\rangle = E |\Psi\rangle$
- introduce $|\psi_i\rangle \coloneqq G_0 V_i |\Psi\rangle$
- → system of eqs. for $|\psi_i\rangle$: $|\psi_i\rangle = G_0 t_i \sum_{j\neq i} |\psi_j\rangle$
- $\rightarrow |\Psi\rangle = \sum_i |\psi_i\rangle$
- advantage: interactions can be specified in terms of t-matrices
- introduce $|F_i\rangle \coloneqq (G_0 t_i)^{-1} |\psi_i\rangle$
- → system of eqs. for $|F_i\rangle$: $|F_i\rangle = \sum_{j\neq i} G_0 t_j |F_j\rangle$
- $\rightarrow |\Psi\rangle = \sum_i G_0 t_i \; |F_i\rangle$
- advantage: has nicer representations (function of only one variable can be formed in case of separable interactions)