

The Study of Single Signal Events from Atmospheric Neutrino Interaction with LS

曲振宁/Zhenning Qu

Institute of High Energy Physics, University of Chinese Academy of Sciences

September 26th, 2024

The 23rd International Conference on Few-Body Problems in Physics

I. Motivation

3

- Liquid scintillator (LS) detector can detect atmospheric v: KamLAND, JUNO
 - Lower E_{thr} , and better σ_E than water Cherenkov detector

FB23 Atmospheric ν Interaction with LS

primary cosmic ray

Different Kinds of Signal

FB23

Why atmospheric ν ?

 Large LS detector (e.g., JUNO) can detect sufficient atmospheric ν events:

Wide energy range, all flavors

- → Contain single, double [Jie Cheng, arXiv:2404.07429], and triple signals [Jie Cheng, Phys.Rev.D 103 (2021) 5, 053002]
- Relatively pure single signals from atmospheric ν , especially NC at low energy
 - 1. Separated energy window to other ν sources
 - 2. As the signal, new data to constrain NC model
 - 3. As the background of solar v and new physics, e.g., boosted dark matter

II. Single Signals from νN Interaction in LS

FB23

Processes to Form Single Signals

- No particles w/ delay signals (e.g., n, μ^{\pm}/π^{\pm})
- Neutral Current (NC): • **QEL**: Just recoil proton! • $\nu + {}^{1}H \rightarrow \nu + p$ Potentially good channel to constrain model • $\nu + {}^{12}C \rightarrow \nu + np + X^{(*)} (1p^{11}B^{(*)}, 2p^{10}Be^{(*)}, 3p^{9}Li^{(*)}, 4p^{8}He^{(*)}, ...)$ • **RES**: Neutrino Energy NC Spectrum • $\nu + {}^{1}\text{H} \rightarrow \nu + p + n\pi^{0}$ – All • $\nu + {}^{12}C \rightarrow \nu + np + n\pi^0 + X^{(*)}$ QEL v $^{1}H\rightarrow v1p$ QEL $v^{12}C \rightarrow v^{1}p^{11}B_{m}^{(1)}$ QEL $v^{12}C \rightarrow v \geq 2pX^{(1)}$ RES v¹H \rightarrow v1pn π^0 • Charge Current (CC): RES $v^{12}C \rightarrow v \ge 1 pn \pi^0 X$ 25 • QEL: • $\nu + {}^{12}C \rightarrow e^{\pm} + np + X^{(*)}$ (e⁻1p¹¹C^(*), e⁺1p¹¹Be^(*), ...) • RES • $\nu + {}^{12}C \rightarrow e^{\pm} + np + n\pi^{0} + X^{(*)}$ 10^{-1} Neutrino Energy [GeV]

• NC QEL:
$$\nu + {}^{1}H \rightarrow \nu + p$$
, $\nu + {}^{12}C \rightarrow \nu + np + X^{(*)}$

Affect by nuclear effects, i.e., nuclear model, final state interaction (FSI)

The leading proton smeared by **Fermi motion**, transferred momentum to other nucleons and knocked them out during **FSI**.

FB23

_	-			
	FSI	M_A [GeV]	Nuclear Model	Models
basel	hN (Cascade)	0.99	LFG	GENIE
	hA (Empirical)	0.99	LFG	GENIE
	hN (Cascade)	0.99	BRRFG	GENIE
	Cascade	1.03	LFG	NuWro
_	Cascade	1.03	SF	NuWro

GENIE hA: a single interaction based on data GENIE hN and NuWro cascade: multiple interactions

S. Dytman, et. al., *Phys. Rev. D* **104**, 053006

FB23 NC free nucleon QEL Cross Section

$$\frac{d\sigma}{dQ^2} = \frac{G_F^2 M_p^2}{8\pi E_v^2} \left(A \pm B \frac{s-u}{M_p^2} + C \frac{(s-u)^2}{M_p^4} \right)$$

•
$$s - u = 4M_p E_v - Q^2$$

•
$$A = \frac{Q^2}{M_p^2} \left(G_A^2 \left(1 + \frac{Q^2}{4M_p^2} \right) - F_1^2 \left(1 - \frac{Q^2}{4M_p^2} \right) + F_2^2 \left(1 - \frac{Q^2}{4M_p^2} \right) \frac{Q^2}{4M_p^2} + F_1 F_2 \frac{Q^2}{M_p^2} \right)$$

•
$$B = \frac{Q^2}{M_p^2} G_A(F_1 + F_2)$$

•
$$C = \frac{1}{4} \left(G_A^2 + F_1^2 + F_2^2 \frac{Q^2}{4M_p^2} \right)$$

•
$$G_A(Q^2) = \frac{1}{2} \frac{g_A(0)}{\left(1 + Q^2/M_A^2\right)^2} (1 + \eta)$$

Larger $M_A \rightarrow \text{larger } \sigma$

FB23 Comparison of Interaction Models

Neutrino Energy NC Spectrum

- Different nuclear models influence a lot, especially in low energy range.
- Larger M_A with higher rate as expected.

GENIE events with zero momentum nucleons are removed \rightarrow Slightly different between LFG+hN/hA

FB23 Comparison of Interaction Models

- ~10% max differences of events w/o n.
- Proton momentum of NC 1p¹¹B events are affected a lot.

Final State Neutron of NC Events

III. De-excitation Effect of Single Signals

- Remnant excited nucleus: de-excitation with additional γ , n, p.
- After de-excitation:
 - Less events w/o n, especially NC QEL
 - Less remnant nuclei w/ $T_{\underline{1}} \in [1 \text{ ms}, 1h]$, unstable but hard to exclude

NC QEL Channel Event Rate [kton⁻¹·yr⁻¹] vH not effected by de-excitation $\nu^{1}H \rightarrow \nu p$ 5.53→5.53 • Master effect: less NC 1p¹¹B events after $\nu^{12}C \rightarrow \nu p^{11}B$ 7.83→5.22 de-excitation \rightarrow less available single signal $\nu^{12}C \rightarrow \nu \geq 2pX$ 2.26→2.33 Final State Proton Momentum Spectrum Proton Momentum Spectrum after De-excitation <u>×1</u>0^{−3} ×10⁻³ Event Rate [kt ⁻¹ yr ⁻¹] / 100 MeV Event Rate [kt ⁻¹ yr ⁻¹] / 100 MeV 14 14 <u>−</u>ν ¹H→ν1p $-v^{1}H\rightarrow v1p$ $- v^{12}C \rightarrow v1p^{11}B^{(*)}$ 12 12 $-v^{12}C \rightarrow v1p^{11}B$ $- v^{12}C \rightarrow v \ge 2pX^{(*)}$ $-v^{12}C \rightarrow v \ge 2pX$ 10 10 8 8 **De-excitation** 6 6 ×10³ $\times 10^3$ 0 0.8 0.2 0.8 0.2 0.4 0.6 1.2 0.4 0.6 1.2 1.4 1.4 ŏ Momentum [MeV] Momentum [MeV]

IV. Detector Response of Single Signals

- Prompt Energy: particles deposit the kinetic energy quickly in first 1e3 ns.
- Exclusion of captured n mainly remained the QEL events

FB23

18

 ~7% less single signal after SI

FB23

 Many captured neutrons are produced by secondary interaction (SI)

Neutron in Secondary Interaction

 ~7% of NC single signals with uncaptured primary neutrons (single-like)

• NC QEL single signals: a relatively good linear relationship between proton kinetic energy and prompt energy

V. Available Spectrum of Single Signals

- $E_{\text{prompt}} < 100 \text{ MeV}$: main NC QEL events, especially w/ 1 recoil proton.
- Less NC 1p¹¹B events after selection
- Flatter E_{prompt} spectrum due to nuclear effect.
- Nuclear model affects more in low energy range of singles w/1 recoil proton.

- Expected NC singles spectrums show different between GENIE and NuWro, especially NuWro SF model.
- NuWro LFG model expects a quite different NC 1p¹¹B singles spectrum
- Validate and constrain the models for LS experiments.

Prompt Energy Distribution of NC Singles Events

Summary

- Single signals from atmospheric ν events with recoil proton, γ , π^0 , e^{\pm}
 - Especially NC QEL with just recoil proton
- Nuclear model, QEL, and FSI combine to influence the single signals
- De-excitation is an important factor: ~30% less $\nu^{12}C \rightarrow \nu p^{11}B$
- Available single signals suffer slight lost and are mimicked by a few events with primary neutron due to SI
- *E*_{prompt} < 100 MeV relatively pure single signal events from NC QEL with just recoil proton
- Potentially good data to validate and to constrain νN interaction models

Thank you for your attention!