

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

Study of the neutron-rich nucleus ⁶H in an electron

scattering experiment at MAMI-A1

Tianhao Shao (邵天浩) (for A1-Tohoku collaboration)

Johannes Gutenberg-University Mainz Fudan University

Outline

Motivation

- Experiment principle
- MAMI-A1 setup
- Calibration
- Data analysis
- Summary

Motivation

³ He z: 2 n: 1 Jπ 1/2+ T _{1/2} :stable	⁴ He z: 2 n: 2 Jπ 0+ T _{1/2} :stable	⁵ He z: 2 n: 3 Jπ 3/2- T _{1/2} :0.648 meV decay n ?%	°He z: 2 n: 4 Jπ 0+ T _{1/2} :806.7 ms 1.5 decay β- 100%	⁷ He z: 2 n: 5 Jπ: (3/2)- T _{1/2} :150 keV 20 decay n ?%	⁸ He z: 2 n: 6 Jπ 0+ T _{1/2} :119.1 ms 1.2 decay β- 100% β- n 16%
² H z: l n: l Jπ l+ T _{l/2} :stable	³ H z: 1 n: 2 Jπ 1/2+ T _{1/2} :12.32 y 0.02 decay β- 100%	⁴ H z: 1 n: 3 Jπ 2- T _{1/2} : decay n 100%	⁵ H z: 1 n: 4 Jπ (1/2+) T _{1/2} :5.3 meV 0.4 decay ec SF 100%	⁶ H z: 1 n: 5 Jπ ? T _{1/2} :1.55 meV 0.44 ?	⁷ H z: 1 n: 6 Jπ (1/2+) T _{1/2} :0.09 meV +94-6 ?

- ⁴H, ⁵H: clear signal observed
- ⁶H, ⁷H : Indistinct signal, controversial results
- Largest neutron-to-proton ratios known so far. Good platforms to study NN and many-nuclei interactions in neutron-rich environments.

Motivation

Experiments with ⁶H signal

Yu.B.Gurov et. al., JETP Letters, Vol.78, No.4, 2003, pp. 183-187

Motivation

Theoretical calculations

E. Hiyama et. al., Physics Letters B 833 (2022) 137367

⁷H

1/2+

t+xn

The story of ⁶H has not ended.

Few Body 23, September 22-27, Beijing ⁶H ground

state from

database

nuclear

Experiment principle

- **Reaction**: 7 Li(e, e'p π^{+})
- Measure the momentum of the scattered electron, the produced proton and π+. Then reconstruct the miss-mass spectrum.
- Expected rate: 1 count in interested region per day.
- Expected missing mass resolution: 1.18 MeV with 1mm thickness target

MAMI-A1 setup

MAMI-B: 855 MeV electron beam

MAMI-A1 setup

Choice of kinematics: 1. W ~ 1200 MeV for proton to produce Delta⁺(1232); 2. low momentum transfer to ⁶H; 3. feasible with the setups of three spectrometers.

Optical properties of the A1 spectrometers

	units	Α	В	С
Configuration	-	QSDD	D	QSDD
dispersive plane	-	point-ponit	point-ponit	point-ponit
non dispersive plane	-	parallel-ponit	point-ponit	parallel-ponit
Maximum momentum	[MeV/c]	735	870	551
Reference momentum	[MeV/c]	630	810	459
Central Momentum	[MeV/c]	665	810	490
Solid Angle	[msr]	28	5.6	28
Scattering Angle	-	-	-	-
minimum angle	-	18°	7°	8°
maximum angle	-	160°	62°	160°
Momentum acceptance	-	20%	15%	25%

Target setup

- Empty
- C12
- Aluminum

Ta

 Li-7 (run_2023: 92.7% natural lithium, run_2024: 99.99% enriched lithium-7)

Beam time summary

Kinematic 1

Date	July 2023	July 2023	Sep 2023	April 2024	Spectromet er	Degree (°)	Momentum (MeV/c)
Beam energy (MeV)	855	855	855	855	A (proton)	-23.8	379
Beam current	400	400	400	700	B (e')	15.1	531
	4	0	0	0	C (π ⁺)	59.1	162
Kinematic	1	2	2	2	Kinematic 2		
Target	Natural Li	Natural Li	Natural Li	Enriched ⁷ Li			
Target length	4.5	4.5	4.5	2.5	Spectromet er	Degree (°)	Momentum (MeV/c)
(cm)					A (proton)	-23.8	417
Target width (mm)	0.75	0.75	0.75	1.0	B (e')	15.1	421
Effective time	~ 120 h	~ 120 h	~ 160 h	~ 160 h	C (π ⁺)	59.1	273

Momentum calibration

- Principle: Electron scattering with ¹⁸¹Ta and ¹²C target. Compare with the certain input momentum the correction factors can be obtained.
- Ebeam (MeV) = 180, 195, 210 with undulator (~10keV uncertainty); 225, 420 without undulator (~160 keV uncertainty)
- Electron scattering with several target positions and momentum settings.
- Calibration beam time has been done in May 2024.

Analysis of calibration data is on going.

Data analysis

Select the events in the region of triple coincidence.

Data analysis

- Combine the data from all setups, run_2023 + run_2024. With preliminary calibrations.
- Clear peak of H6 ground state at about 3 MeV Preliminary!
- Count and resolution are similar as we expected.

Summary

- To study the neutron-rich nucleus ⁶H, an electron scattering experiment with triple coincidence is designed and done with several beam times at MAMI-A1.
- Calibration data taking for the three spectrometers are done. Analysis work is going on.
- Preliminary results show the ground state ⁶H energy is near 3 MeV.

Outlook

- Finalize the calibration work of the detectors.
- Analyze the systematic uncertainties for the result.

Thank our co-workers : Patrick Achenbach, Jinhui Chen, Mirco Christmann, Michael O. Distler, Luca Doria, Anselm Esser, Julian Geratz, Christian Helmel, Matthias Hoek, Ryoko Kino, Pascal Klag, Yu-Gang Ma, David Markus, Harald Merkel, Miha Mihovilović, Ulrich Muller, Sho Nagao, Kotaro Nishi, Fumiya Oura, Jonas Pätschke, Josef Pochodzalla, Bj örn S ören Schlimme, Concettina Sfienti, Marcell Steinen, Michaela Thiel, Andrzej Wilczek, and Luca Wilhelm

Backups

Data analysis

- Can the signal come from ⁶Li which can produce ⁵H? About 7.3% ⁶Li in natural lithium.
- The peak near 3 MeV can also be seen with enriched ⁷Li target.
- Replace ⁷Li with ⁶Li in analysis. The energy is about 10 MeV, which is much large than ⁵H ground state ~ 1.8 MeV.

Backup

Can the signal come from the C, N, and O in air?

Replace the target with C, N, or O. The obtained energies are also much larger than ground states.

Backup: Momentum calibration

- Scattering electron on ¹⁸¹Ta target
- $\Delta p = p_{in} p_{measured}$, energy losses in target and detector system are considered.
- Fit function: Landau (energy loss) and Gaussian (detector resolution) convolution.

Spectrometer	${\scriptstyle riangle p}$ (MeV/c)	Correction factor
А	0.136821	1.00032587
В	0.36578	1.00087166
С	-0.87746	0.99791517

Momentum calibration

- Scattering electron on ¹⁸¹Ta target
- $\Delta p = p_{in} p_{measured}$, energy losses in target and detector system are considered.
- Fit function: Landau (energy loss) and Gaussian (detector resolution) convolution.

Momentum calibration

Correction factor check: missing mass spectrum of ¹²C ground and excited states.

