

Status of the lifetime and binding energy measurements for light hypernuclei in the WASA-FRS and EO7 emulsion experiments 23rd International Conference on Few-Body Problems in Physics

24/09/2024

Christophe Rappold IEM – CSIC, Madrid - Spain

For ML-Emulsion collaboration & WASA-FRS / Super-FRS Experiment collaboration

Current puzzles for light hypernuclei: ${}^{3}_{\Lambda}H \& {}^{3}_{\Lambda}n$

• In our first experiment, HypHI Phase 0:

Two puzzling observations were made:

- Possible signal of $nn\Lambda$ bound state
 - <u>All theoretical calculations show</u>
 <u>negative results</u>
 - E. Hiyama et al., Phys. Rev. C89 (2014) 061302(R)
 - A. Gal et al., Phys. Lett. B736 (2014) 93
 - H. Garcilazo et al., Phys. Rev. C89 (2014) 057001
 - and much more publication
- Short lifetime of ${}^{3}_{\Lambda}H$:
 - Our published value : 183 +43 -32 ps [C. Rappold et al., Nucl. Phys. A 913 (2013) 170]
 - Plus other recent measurements : Combined lifetime analysis excludes all current models of ³_ΛH
 [C. Rappold et al., Phys. Lett. B 728, 543 (2014)]

[C. Rappold et al., PRC 88 (2013) 041001]

Current puzzles for light hypernuclei: ${}^{3}_{\Lambda}H \& {}^{3}_{\Lambda}n$

- Yet the puzzles deepen :
 - Over the years more data from ALICE and STAR experiments : More tension on the combined lifetime measurements
 - ALICE: 181^{+54}_{-39} ps $\rightarrow 237^{+34}_{-38}$ ps [PLB 128 (2019) 134905]
 - STAR : 155^{+25} -22 ps $\rightarrow 142^{+24}$ -21 ps $\rightarrow 221$ +- 15 ps [PRL 128 (2022) 202301]
 - HypHI: 183⁺⁴²-32 ps

We will provide one very precise data point with our new WASA-FRS experiment

- Hot topics in nuclear experiments:
 - STAR, ALICE, J-PARC, ELPH, HADES, HYDRA and WASA-FRS
- <u>Still no clear theoretical explanation for the short lifetime, is it ?</u>

Current puzzles for light hypernuclei: ³_AH & ³_An

- Hypertriton: bound state of p, n, Λ0
 - New data from HI collisions conflicting with theory

[D. Gazda et al., Phys. Rev. C 109, 024001 (2024)]

50

Current puzzles for light hypernuclei: ³_AH & ³_An

- Yet the puzzles deepen :
 - Binding energy of hypertriton :

Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton The second second

The Λ binding energy, B_{Λ} , for ${}^{3}_{\Lambda}$ H and ${}^{3}_{\overline{\Lambda}}\overline{H}$ is calculated using the mass measurement shown in equation (1). We obtain

 $B_{\Lambda} = 0.41 \pm 0.12 (\text{stat.}) \pm 0.11 (\text{syst.}) \text{ MeV}$ (3)

- Previously accepted value: $B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV}$
- And still : ALICE measured a Λ binding energy of :
 - $B_{\Lambda} = 0.072 \pm 0.063 \pm 0.36 \text{ MeV}$

[arXiv:2209.07360]

The STAR Collaboration*

Deep learning in study of those puzzles

• Our contributions to solve : 2 experiments to measure \rightarrow Binding energy: \rightarrow Lifetime & radius: WASA-FRS experiment at GSI-FAIR E07 experiment at JPARC MWDC. Emulsion-Counter hybrid method quadrupole magnet TA F1 F3 K⁺ identification Beam from F2 SC41 by SKS spectrometer **SIS-18** SSD SC42 SC43 1.8 GeV/c dipole magnet K^+ SC31 *K*⁻ beam Tag WASA central detector. Target 10m Ξfiber trackers, start counter, target $^{3}_{\Lambda}H \rightarrow \pi^{-} + ^{3}He \quad ^{4}_{\Lambda}H \rightarrow \pi^{-} + ^{4}He \qquad nn\Lambda + Superconducting$ Tag $nn\Lambda \rightarrow \pi^- + d + n$ solenoid magnet **MFT1.2** 50 cm MDC UFT1.2.3 **DFT1.2** to FRS ⁶Li beam ³He, F4 ⁴He. d Start counter Diamond Iron yoke target

WASA-FRS experiment

- Future of HypHI project : Exotic hypernuclei / strangeness cluster
 - Use of heavy ion and RI beam to study hypernuclei at FRS & SuperFRS
 - Hypernuclei toward the proton and neutron drip lines with Exotic beam
 - $\Lambda \Sigma$ coupling in the nuclear matter
 - Lifetime of exotic hypernuclei
 - Chance to repeat the observation of $nn\Lambda$
 - Why @ FRS / SuperFRS ?
 - High momentum resolution for forward fragments :
 - 10⁻⁴ δp / p optimal
 - Exotic hypernuclei ; Need RI beam
 - With high energy ~ 2 AGeV
 - With high intensity
 - Can optimize each data taking for one decay / species

WASA-FRS Experiment : Concept & Layout

24/09/2024

WASA-FRS Experimental campaign: Jan. – March 2022

• At the middle focal plane of FRS:

• At the middle focal plane of FRS:

• At the final focal plane of FRS:

• At the final focal plane of FRS:

Photos by Jan Hosan and GSI/FAIR

- Analysis of high resolution spectrometer for fragments:
 - Momentum analysis : High acceptance & high resolution
 - \rightarrow Needs ion-optics calibration: Several datasets with fixed parameters

After correction and ion-optics up to second order :

- A momentum resolution for fragments : 5 10⁻⁴
- Position & angular resolutions : [x,y] ~ 0.2 mm & [a, b] ~ 0.8 and 0.7 mrad

- Analysis of WASA central system for hadron measurements :
 - PID at S2 middle focal plane of FRS:

WASA PID PSB GNN

→Improved the track finding with Graph Neural Network: Estimator resolutions: momentum 8.8%, angular 2.3 mrad [H. Ekawa et al., Eur. Phys. J. A 59, 103 (2023)]

• Invariant mass at 15 cm behind the target:

 Analysis of Radius of products with WASA-FRS: Distribution of production position of observed products in target

[Y. Gao et al., in preparation for publication]

E07 experiment with machine learning

• E07 experiment at JPARC:

Emulsion-Counter hybrid method

E07 nuclear emulsion

Hypernuclear Event Search with Machine Learning

- Production training data:
- surrogate images from MC simulation + GAN Geant4 Geant4 +Real emulsion background (A) (B) Simulated image: ³He Converted by GAN Mask for training (C (D) Mask (Target event)

[A. Kasagi et al., NIM A 1056, 168663 (2023)]

Status of WASA-FRS & E07 ML

³^AH

π-

Hypernuclear Event Search with Machine Learning

- Object detection model for ³^AH event topology
 - Mask R-CNN model:

Simulation

Training data (Simulated image)

50 µm

[A. Kasagi et al., NIM A 1056, 168663 (2023)]

Hypernuclear Event Search with Machine Learning

• First ³_AH found with Deep learning model:

Current status: Found in 0.6% of the data: • 49 ${}^{3}_{\Lambda}H$ • 163 ${}^{4}_{\Lambda}H$

Statistical error on binding energy: $\sim 100 \text{ keV}$ \rightarrow improve with more statistics

Systematic error on binding energy: $\sim 14 \text{ keV}$

[T. Saito et al., Nat. Rev. Phys. 3, 803 (2021)]

Event analysis from the ML topology search

- Calibration of the range energy:
 - Measure of all the ranges of the decay daughters
 - Translates measured range into kinetic energy
- ${}^4_{\Lambda}H \rightarrow {}^4He + \pi$ -

Event analysis from the ML topology search

- Calibration of the π range:
 - Ref. from MAMI-C (${}^{4}_{\Lambda}H \rightarrow \pi$ + ${}^{4}He$) [A1 collaboration, Nucl. Phys. A 954, 149 (2016)]
 - P_{π} = 132.851 ± 0.011 (stat.) ± 0.101 (syst.) MeV/c

Summary

- Steps for tackling ³_ΛH and nnΛ puzzles:
 - HypHI WASA-FRS:
 - The experiment took place beginning 2022, it was very successfully !
 - Currently, the analysis is advancing:
 - Calibrations carrying-on & track finding / fitting / vertexing R&D → Hypernuclear events are under reconstruction
 - Lifetime & radius measurement soon
 - E07 emulsion with deep learning:
 - Analysis with DL pipeline is fixed and statistics on hypernuclear topologies are accumulating.
 - Light hypernuclei found: their binding energy extracted.
 - Extenting the search for more decay topologies:
 - three-body decay & double strangeness hypernuclei
 - Candidates already found and kinematics study ongoing