

Exploring hadronic few-body interactions with femtoscopy

Maximilian Korwieser

Physics Department E62, Technical University Munich, 85748 Garching, Germany

The 23rd international Conference on Few-Body Problems in Physics

> Beijing, China 26th September 2024 max.korwieser@tum.de

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Experimental information from data on hypernuclei:

- \circ Measurements of the binding energy for 35 hypernuclei
- Indication of a repulsive ΛNN interaction

A. Gal, E. V. Hungerford, and D. J. Millener, RMP 88, 035004 (2016)

- $\circ~$ Neutron stars (NS) are dense (3-5 ρ_0) and compact (R = 10-14 km) objects
- Equation of state (EOS) depends on constituents and interactions

 \circ Hyperon production might be energetically favorable, however, repulsive ANN is needed to reach 2M₀

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Experimental information from data on hypernuclei:

- \circ Measurements of the binding energy for 35 hypernuclei
- \circ $\,$ Indication of a repulsive ANN interaction

A. Gal, E. V. Hungerford, and D. J. Millener, RMP 88, 035004 (2016)

Experimental information from NS:

 Phenomenological studies on the EOS of NS support repulsive ΛNN interaction

D. Logoteta et al., EPJA 55 (2019) 11, 207

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020) Ν π Ν Ν Short-range dynamics Three-body forces: Ν Ν g Ν Ν

 g_i constants to be fixed by the experimental data

Experimental information from data on hypernuclei:

- $\circ~$ Measurements of the binding energy for 35 hypernuclei
- \circ $\,$ Indication of a repulsive ANN interaction

A. Gal, E. V. Hungerford, and D. J. Millener, RMP 88, 035004 (2016)

Experimental information from NS:

 Phenomenological studies on the EOS of NS support repulsive ΛNN interaction

D. Logoteta et al., EPJA 55 (2019) 11, 207

Can we exploit momentum correlations?

Emission source $S(\vec{r})$

M.Lisa, S. Pratt et al., ARNPS 55 (2005), 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402

Maximilian Korwieser

Emission source $S(\vec{r})$

$$C(k^*) = \mathcal{N}(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^*$$

M.Lisa, S. Pratt et al., ARNPS 55 (2005), 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402

M.Lisa, S. Pratt et al., ARNPS 55 (2005), 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402

M.Lisa, S. Pratt et al., ARNPS 55 (2005), 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402

 Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^*$$

 \odot Two-component model

$$S(r^*) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^{*2}}{4r_{core}^2}\right) \times \frac{\text{Effect of short lived}}{\text{resonances (ct ~ 1 fm}}$$

ALICE pp
$$\sqrt{s} = 13 \text{ TeV}$$

High-mult. $(0 - 0.17\% \text{ INEL } > 0)$
 $m_T \in [1.26, 1.38) \text{ GeV}/c^2$
Gaussian Source
 $p - p \oplus \overline{p} - \overline{p}$
Coulomb + Argonne v_{18} (fit)
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5

 Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^*$$

 \odot Two-component model

 Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^*$$

 $\,\circ\,$ Two-component model

 Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^*$$

 \odot Two-component model

 Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^*$$

 \circ Two-component model

$$S(r^*) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^{*2}}{4r_{core}^2}\right) \times \frac{\text{Effect of short lived}}{\text{resonances (ct ~ 1 fm})}$$

ALICE Coll., PLB, 811 (2020), 135849

- \circ Universal source for all hadrons (cross-check for universality with K⁺-p, π-π, p-π)
- \odot Small particle-emitting source created in pp collisions at the LHC

ALI-PREL-576328

ALICE Coll., arXiv:2311.14527 accepted by EPJC ALICE Coll., PLB, 811 (2020), 135849 ALICE Coll., paper in preparation

 Point-like particle models anchored to scattering experiments

W. T. H. Van Oers et al., NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983); A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

- Coulomb + strong interaction using Lednický model
 Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009)
- Only s-wave interaction
- \odot Source radius evaluated using the universal $m_{\rm T}$ scaling; cross-checked with K+-d

ALICE Coll., PRX 14 (2024) 3, 031051

 Point-like particle models anchored to scattering experiments

W. T. H. Van Oers et al., NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983); A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

- Coulomb + strong interaction using Lednický model Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009)
 Only s-wave interaction
- \odot Source radius evaluated using the universal m_{τ} scaling; cross-checked with K⁺-d

Point-like particle description fails for p-d in small systems

ALICE Coll., PRX 14 (2024) 3, 031051

- Full three-body calculations are required: p-p-n forms p-d (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

ALICE Coll., PRX 14 (2024) 3, 031051 M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

- Full three-body calculations are required: p-p-n forms p-d (NN + NNN + Quantum Statistics)
- $\odot\,$ Hadron-nuclei correlations at the LHC can be used to study many-body dynamics
- $\,\circ\,$ Sensitivity to three-body forces up to 5%

ALICE Coll., PRX 14 (2024) 3, 031051 M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

- Full three-body calculations are required: p-p-n forms p-d (NN + NNN + Quantum Statistics)
- Run 3 data from 2022 already analysed and results are promising!

 $\,\circ\,$ In Run 3 expected uncertainty of 1%

Two-body femtoscopy

Correlation function:

$$C(k^{*}) = \int S(\vec{r}^{*}) \left| \psi(\vec{k}^{*}, \vec{r}^{*}) \right|^{2} d^{3}\vec{r}^{*}$$

Two-body scattering wave function

relative momentum:

$$k^* = \frac{1}{2} |\vec{\mathbf{p}}_a + \vec{\mathbf{p}}_b|$$

M.Lisa, S. Pratt et al., ARNPS 55 (2005), 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402 relative distance:

 r^*

Three-body femtoscopy

Correlation function:

$$C(Q_3) = \int S(\rho) |\psi(Q_3, \rho)|^2 \rho^5 d\rho$$

Three-body scattering wave function

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

Three-body femtoscopy

Correlation function:

$$C(Q_3) = \int S(\rho) |\psi(Q_3, \rho)|^2 \rho^5 d\rho$$

Three-body scattering wave function

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

Exp:

ALICE Coll., EPJ A 59, 145 (2023) ALICE Coll., EPJ A 59, 298 (2023) ALICE Coll. arXiv:2308.16120 (2023), accepted by PRX STAR Coll. arXiv:2208.05722 (2022), proceedings HADES Coll. arXiv:2402.09280 (2024), proceedings

Theory (ALICE): RDG et al. EPJC 82 (2022) 244 M. Viviani et al, PRC 108 (2023) 6, 064002 A. Kievsky, et al., PRC 109 (2024) 3, 034006 E. Garrido et al., arXiv: 2408.01750 (2024)

Three-body analyses in

- pp collisions at ALICE: p-p-p, p-p-Λ, p-p-K⁺⁻, p-p- π^{+-} , K-d, p-d, Λ-d
- Au-Au collisions at STAR: p-d, d-d
- Ag-Ag collisions at HADES: p-d, p-t, p-³He

Three-body femtoscopy

Correlation function:

$$C(Q_3) = \int S(\rho) |\psi(Q_3, \rho)|^2 \rho^5 d\rho$$

Three-body scattering wave function

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

Exp:

ALICE Coll., EPJ A 59, 145 (2023) ALICE Coll., EPJ A 59, 298 (2023) ALICE Coll. arXiv:2308.16120 (2023), accepted by PRX STAR Coll. arXiv:2208.05722 (2022), proceedings HADES Coll. arXiv:2402.09280 (2024), proceedings

Theory (ALICE): RDG et al. EPJC 82 (2022) 244 M. Viviani et al, PRC 108 (2023) 6, 064002 A. Kievsky, et al., PRC 109 (2024) 3, 034006 E. Garrido et al., arXiv: 2408.01750 (2024)

Three-body analyses in

- ο pp collisions at ALICE: p-p-p, p-p-Λ, p-p-K⁺⁻, p-p-π⁺⁻, K-d, p-d, Λ-d
- Au-Au collisions at STAR: p-d, d-d
- Ag-Ag collisions at HADES: p-d, p-t, p-³He

Source function in pp collisions at the LHC

 Three-particle source as independent Gaussian emitter

 $S(x_1, x_2, x_3) = S(x_1) S(x_2) S(x_3)$

• Pair radii r_{12} , r_{23} , r_{31} obtained from common source model using the m_T of the pairs in the triplets.

ALI-PREL-576328

ALICE Coll., arXiv:2311.14527 accepted by EPJC ALICE Coll., PLB, 811 (2020), 135849 ALICE Coll., paper in preparation

Source function in pp collisions at the LHC

Three-particle source as independent Gaussian emitter

 $S(x_1, x_2, x_3) = S(x_1) S(x_2) S(x_3)$

 \circ Pair radii r_{12} , r_{23} , r_{31} obtained from common source model using the $m_{\rm T}$ of the pairs in the triplets.

 $\,\circ\,$ In hyperspherical coordinates

$$S(\rho) = \frac{1}{\pi^3 \rho_0^6} e^{-\left(\frac{\rho}{\rho_0}\right)^2}$$

M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002 A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006 E. Garrido et al., arXiv: 2408.01750 (2024)

• The value of ρ_0 is determined the pair radii. • In pp collsions at $\sqrt{s} = 13$ TeV the LHC source: $\rho_0 = 1-3$ fm.

A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

p-p-p correlation function in Run 2

First-ever full three-body correlation function calculations

three-proton wave function

 $C(Q_3) = \int \rho^5 d\rho \, S(\rho, \rho_0) |\Psi(\rho, Q_3)|^2$

hyperradius

 Wave function via HH with AV18, Coulomb interaction and Quantum statistics

A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

 \circ Negligible contribution from NNN (via UIX) found < 1%

 $\,\circ\,$ Access the three-body source

 Need to study asymptotic behavior of wave function in detail (compare shape only since no normalization)

p-p-p correlation function in Run 3

p-p-p correlation function in Run 3

p-p-Λ correlation function in Run 2

 $\odot\,$ Two-body NN and ΛN interactions provide an overbinding of the hypertriton

BE($^{3}_{\Lambda}$ H) = 2.904 MeV

exp: 2.39 MeV

Binding energy from: https://hypernuclei.kph.uni-mainz.de

E. Garrido et al., arXiv: 2408.01750 (2024)

 \rightarrow three-body \land NN interaction

p-p-Λ correlation function in Run 2

 \circ Two-body NN and Λ N interactions provide an overbinding of the hypertriton

 $BE(^{3}_{\Lambda}H) = 2.904 \text{ MeV}$

E. Garrido et al., arXiv: 2408.01750 (2024)

exp: 2.39 MeV

Binding energy from: https://hypernuclei.kph.uni-mainz.de

- \rightarrow three-body ANN interaction
- ΛNN interaction gives 40% effect

p-p-Λ correlation function in Run 3

 $\,\circ\,$ ALICE Run 3 data from 2022 are promising!

 $\,\circ\,$ By the end of Run 3 x100 improvement software trigger

E. Garrido et al., arXiv: 2408.01750 (2024)

$p-p-\Lambda$ correlation function

E. Garrido et al., arXiv: 2408.01750 (2024)

$p-p-\Lambda$ correlation function

Conclusions and Outlook

Exciting results from femtoscopy:

- \circ p-d correlation function:
 - Many-body dynamics can be studied using hadron-deuteron correlations
 - ✓ Measured across several system sizes
- pp collisions at the LHC provide access to the interactions at short distances
- p-p-p correlation function:
 - ✓ negligible effect of three-body forces (< 1%)</p>
- \circ p-p- Λ correlations:
 - ✓ 40 % effect of three-body forces

On-going

- Access to precise data on three-particle correlations in Run 3 and future Run 4
- New results expected from HADES and STAR for femtoscopy of light nucleii

2.2 F

1.6

94. Kievsky set alt. PRC 1096

(2024) 3. 034006

AV18

Q, (GeV/c)

Backup

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Experimental information from hypernuclear data:

- Strongly dependent on the ΛN interaction
- \circ **Overbinding of hypernuclei** \rightarrow repulsive \land NN

Hypertriton:

		NL	O19		SMS N2LO			F
cutoff (MeV)	500	550	600	650	500	550	600	Exp.
$B(^3_{\Lambda}{ m H})({ m MeV})$	2.792	2.839	2.904	3.255	2.819	2.799	2.878	2.39

NLO19: J.Haidenbauer, U. Meißner, EPJA 56 (2020), 3, 91 N2LO: J.Haidenbauer, U. Meißner, A. Nogga, H. Le, EPJA 59 (2023), 3, 63 Exp: Mainz data base

- $\odot~$ Distances of about 2 fm and in the hypertriton the $\Lambda\text{-}d$ separation is 10 fm
- In dense nuclear matter (neutron stars) Large densities $(3-5\rho_0)$ → Small distances (0.8-1.0 fm)

Can we use three particle correlations?

Impact on dense nuclear matter (neutron stars) Large densities (3-5 ρ_0) \rightarrow Small distances (0.8-1.0 fm)

Small particle distances can be accessed using femtoscopy!

Source function in pp collisions at the LHC

• Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}) |\psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$$

measured known interaction

Gaussian parametrization

 $S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times$

- One universal source for all hadrons (cross-check with K⁺-p, π - π , p- Λ , p- π)
- Small particle-emitting source created in pp collisions at the LHG1.14527 ALICE COLL, PLB, 811 (2020), 135849

ALICE Coll, paper in preparation

Talk: Anton Riedel 11 Sep, 09:00

The $p\Lambda$ interaction in the femtoscopy era

• **Improvement:** combined analysis of femtoscopic and scattering data

D. Mihaylov, J. Haidenbauer and V. Mantovani Sarti, PLB 850 (2024) 138550

p-p-Λ correlation function

- Reference calculations:
 - → two-body NN and AN interactions provide an overbinding of the hypertriton

 $BE({}^{3}_{\Lambda}H) = 2.904 \text{ MeV}$ E. Garrido et al., arXiv: 2408.01750 (2024) exp: 2.39 MeVBinding energy from: https://hypernuclei.kph.uni-mainz.de

 \rightarrow three-body \wedge NN interaction

 ΛNN interaction gives 50% effect: only one partial wave (K=0) significantly contributes

Results from recent paper: E. Garrido et al., arXiv: 2408.01750 (2024)

NNN using proton-deuteron correlations The p-d correlation function, assuming that p-p-n forms p-d

$$C_{pd}(k) = \frac{1}{A_d} \frac{1}{6} \sum_{m_1, m_2} \int d^3 r_1 d^3 r_2 d^3 r_3 S_1(r_1) S_1(r_2) S_1(r_3) |\Psi_{m_1, m_2}|^2$$

where $S_1(r)$ is a single-particle Gaussian source and A_d is the formation probability of a deuteron

The **three-body wavefunction** of the p–d System

Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

ALICE Coll. arXiv:2308.16120 (2023), accepted by PRX M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

Influence of the source size

• Using m_{τ} (source size) differential studies we can probe the interaction with the distances

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Experimental information from hypernuclear data:

• Distances of about 2 fm \rightarrow in ${}^{3}_{\Lambda}$ H the Λ is 10 fm from d

A. Gal, E. V. Hungerford, and D. J. Millener, RMP 88, 035004 (2016)

Strongly dependent on the ΛN interaction

D. Mihaylov, J. Haidenbauer and V. Mantovani Sarti, PLB 850 (2024) 138550

The NA and NNA interactions in neutron

- Histaris in the core of neutron stars \rightarrow Production of hyperons as Λ at ρ = 2-3 ρ_0 and
 - softening of the equation of state (EoS)
 - → Incompatibility with astrophysical measurements of $M_{NS} \gtrsim 2 M_{\odot}$
- Repulsive 3-body ΛNN interaction can stiffen the EoS but: → Effect on EoS largely model dependent

D. Logoteta et al., EPJA 55 (2019); D. Lonardoni et al., PRL 114 (2019)

- \rightarrow Is ANN interaction repulsive at finite densities?
- \rightarrow How can we access the short range part of the interaction?

We can exploit femtoscopy measurements

D. Lonardoni et al., PRL 114 (2019)

Talk by I. Vidana

Effect of the three-body interaction

• Effect of the three-body interaction for different interaction models: 30% (Usmani) - 80% (NLO13)

The pA interaction in the femtoscop v_{H} era Meißner, EPJA 56 (

• Improvement: combined analysis of femtoscopic and scattering data

Scattering data

 $\Lambda p \rightarrow \Lambda p$

p-p-p correlation function

• Cumulant method provides first hint of effects beyond two-body correlations

- A deviation of $n\sigma = 6.7$ from lower-order contributions
- Theoretical predictions necessary to understand the origin of the deviation further

$p-p-\Lambda$ correlation function

• Cumulant method provides first hint of effects beyond two-body correlations

Compatible with lower-order contributions (nσ = 0.8)

Hvnerspherical Harmonics formalism

0

$$\left\{ egin{array}{l} m{x} = m{r}_2 - m{r}_1 \ m{y} = \sqrt{rac{4}{(1+2m/M)}} \,\, (m{r}_3 - rac{m{r}_1 + m{r}_2}{2}) \end{array}
ight.$$

We introduce the hyperradius and hyperangle: Ο

$$\rho = \sqrt{x^2 + y^2}$$
 $\phi = \arctan\left(\frac{y}{x}\right)$

Now the 6 variables are: $(
ho, \phi, \, \hat{\mathbf{x}} \, , \, \hat{\mathbf{y}} \,) \,
ightarrow 1$ radius, 5 angles Ο

Hyperspherical Harmonics formalism

$$\psi = \sum_{[K]} \rho^{-5/2} u_{[K]}(\rho) Y_{[K]}(\Omega)$$

Schroedinger equation with the interaction:

$$\left(\frac{\partial^2 u_{[K]}(\rho)}{\partial \rho^2} - \frac{(K+3/2)(K+5/2)}{\rho^2} u_{[K]}(\rho)\right) + \sum_{[K']} U_{[K][K']}(\rho) u_{[K']}(\rho) = Q^2 u_{[K]}(\rho)$$

Where the hypercentral potential is obtained as

$$U_{[K][K']}(\rho) = \int d\Omega Y_{[K]}^*(\Omega) [V_{12} + V_{23} + V_{31} + V_{123}] Y_{[K']}(\Omega)$$

Kaon/Proton-deuteron correlation

- Effective two-body system
 - Coulomb + Strong interactions via Lednický model; only s-wave
 - Anchored to scattering experiments
 - Emission source: from m_T scaling

System	Spin averaged		<i>S</i> =	1/2	S = 3/2		
	$a_0(\mathrm{fm})$	$d_0(\mathrm{fm})$	$a_0(\mathrm{fm})$	$d_0(\text{fm})$	$a_0(\mathrm{fm})$	$d_0(\mathrm{fm})$	
p-d			$1.30^{+0.20}_{-0.20}$	2 2	$11.40^{+1.80}_{-1.20}$	$2.05^{+0.25}_{-0.25}$	
			$2.73^{+0.10}_{-0.10}$	$2.27^{+0.12}_{-0.12}$	$11.88_{+0.40}^{-0.10}$	$2.63_{-0.02}^{+0.01}$	
			4.0		11.1	<u>a - 6</u> 2000	
			0.024		13.8		
	2		$-0.13^{+0.04}_{-0.04}$	2	$14.70^{+2.30}_{-2.30}$	<u>18 - 7</u> 5	
K ⁺ -d	-0.470	1.75					
	-0.540	0.0					

**R. Lednicky and V. L. Lyuboshits Sov. J. Nucl. Phys. 35 (1982)

$$C(k^*) = 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)^S}{r_0} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f(k^*)^S}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{2If(k^*)^S}{\sqrt{\pi}r_0} F_2(2k^*r_0) + \frac{2\Im f(k^*)^S}{\sqrt{\pi}r_0} F_2(2k^*r_0) + \frac{2\Im f(k^*r_0)^S}{\sqrt{\pi}r_0} + \frac{2\Im f(k^*r_$$

R. Lednický, Phys. Part. Nucl. 40, 307(2009)

W. T. H. Van Oers, & K. W. Brockman Jr, NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983);

A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

$$S = \text{spin state}$$

$$d_0^S = \text{effective range}$$

$$f_0^S = \text{scattering length}$$

$$f(\mathbf{k}^*)^S = \left(\frac{1}{f_0^S} + \frac{1}{2}d_0^S\mathbf{k}^{*2} - \mathbf{i}\mathbf{k}^*\right)^{-1}$$

$$S(r) = (4\pi r_0^2)^{-3/2} \cdot exp\left(-\frac{r^2}{4r_0^2}\right)$$

Kaon/Proton-deuteron correlation

It works very well for k-d since this interaction is only repulsive and there are no features of the interaction that appears only at short distances. The asymptotic description is sufficient

Proton-deuteron correlation

- The picture of two point-like particles does not work for p-d
 - the deuteron is a composite object
 - Pauli blocking at work for p-(pn) at short distances
 - The asymptotic interaction is different from the short distance one
 - One need a full-fledged three-body calculation

Proton-deuteron correlation

- The picture of two point-like particles does not work for p-d
 - the deuteron is a composite object
 - Pauli blocking at work for p-(pn) at short distances
 - The asymptotic interaction is different from the short distance one
 - One need a full-fledged three-body calculation

Pisa model: p-d as three-body system

- Starting with the p-p-n state that goes into p-d state:
 - Nucleons with the Gaussian sources distributions

Single-particle Gaussian emission source

$$A_{d}C_{pd}(k) = \frac{1}{6} \sum_{m_{2},m_{1}} \int d^{3}r_{1}d^{3}r_{2}d^{3}r_{3} \underbrace{S_{1}(r_{1})S_{1}(r_{2})S_{1}(r_{3})}_{|\Psi_{m_{2},m_{1}}|^{2}}$$

- $\Psi_{m_{(,m)}}(x, y)$ three-nucleon wave function asymptotically behaves as p-d state

Calculation done by PISA theory group: Michele Viviani, Alejandro Kievsky and Laura Marcucci

Pisa model: p-d as three-body system

- Starting with the p-p-n state that goes into p-d state:
 - Nucleons with the Gaussian sources distributions

Single-particle Gaussian emission source

$$A_{d}C_{pd}(k) = \frac{1}{6} \sum_{m_{2},m_{1}} \int d^{3}r_{1}d^{3}r_{2}d^{3}r_{3} \underbrace{S_{1}(r_{1})S_{1}(r_{2})S_{1}(r_{3})} |\Psi_{m_{2},m_{1}}|^{2},$$

- $\Psi_{m_i,m_j}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state
- A_d is the deuteron formation probability using deuteron wavefunction

Pisa model: p-d as three-body system

- Starting with the p-p-n state that goes into p-d state:
 - Nucleons with the Gaussian sources distributions

Single-particle Gaussian emission source

$$A_{d}C_{pd}(k) = \frac{1}{6} \sum_{m_{2},m_{1}} \int d^{3}r_{1}d^{3}r_{2}d^{3}r_{3} \underbrace{S_{1}(r_{1})S_{1}(r_{2})S_{1}(r_{3})} |\Psi_{m_{2},m_{1}}|^{2},$$

- $\Psi_{m_{(,m_{)}}}(x, y)$ three-nucleon wave function asymptotically behaves as p-d state
- A_d is the deuteron formation probability using deuteron wavefunction
- Final definition of the correlation with p-p source size R_M :

$$A_d C_{pd}(k) = rac{1}{6} \sum_{m_2,m_1} \int
ho^5 d
ho d\Omega \; rac{e^{-
ho^2/4R_M^2}}{(4\pi R_M^2)^3} |\Psi_{m_2,m_1}|^2 \; .$$

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)

NNN using proton-deuterc

• Point-like particle models anchored to scattering

experiments

W. T. H. Van Oers et al., NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983); A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

- Coulomb + strong interaction using Lednický model Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009)
- Only s-wave interaction
- Source radius evaluated using the universal m_{τ} scaling

Point-like particle description doesn't work for p-d

ALICE Coll. arXiv:2308.16120 (2023), accepted by PRX

p-d correlation function: d as composite object

The three body wave function with proper treatment of 2N and 3N interaction at very short distances goes to a p-d state.

• Three–body wavefunction for p–d: $\Psi_{m_2,m_1}(x, y)$ describing three-body dynamics,

anchored to p-d scattering observables.

- x = distance of p-n system within the deuteron
- y = p-d distance
- m_2 and m_1 deuteron and proton spin

• $\Psi_{m_2,m_1}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state:

p-d correlation function

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)

○ In large systems (STAR and HADES) point-like description seems to work (STAR and HADES) point-like description seems to work (HADES Coll. arXiv:2208.05722 (2022) (HADES Coll. arXiv:2208.05722 (2024) (HADES Coll. arXiv:2208.05722 (2024) (HADES Coll. arXiv:2208.05722 (2024) (HADES Coll. arXiv:2208.05722 (2024) (HADES Coll. arXiv:2408.0572 (HADES COLL ARXIV:2408.057

- Analysis based on phase shifts¹ and models the source using a transport model²

 1: B. K. Jennings et al. PRC 33 (1986),
 2: W. Zhao et al. PRC 98 5 (2018),
 3: S. Pratt https://web.pa.msu.edu/people/pratts/freecodes/crab/home.html.
- $\,\circ\,$ Shows sensitivity to the production mechanism of the d

• In large systems (STAR and HADES) point-like description seems to work (STAR and HADES) point-like description seems to work (HADES Coll. arXiv:2208.05722 (2022) (HADES Coll. arXiv:2402.09280 (2024)

