BLFQ 000 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions 00000

PROTON STRUCTURE IN A LIGHT-FRONT HAMILTONIAN APPROACH

Chandan Mondal

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

BLFQ Collaboration

Siqi Xu, Yiping Liu, Hongyao Yu, Jiangshan Lan..., Xingbo Zhao (IMP), Yang Li (USTC) and James P. Vary (ISU)

September 26, 2024

Basis Light-Front Quantization (BLFQ) to

```
Proton : (|qqq\rangle + |qqqg\rangle)
```

Proton : $(|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle)$

Conclusions

PRD 108 094002 (2023); PLB 847 138305 (2023); PLB 855 138829 (2024); PLB 855 138831 (2024); 2408.11298 [hep-ph]

BLFQ 000 $\begin{array}{l} |qqq\rangle + |qqqg\rangle \\ 0000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions 00000

Fundamental Properties: Mass and Spin

- About 99% of the visible mass is contained within nuclei
- Nucleon: composite particles, built from nearly massless quarks ($\sim 1\%$ of the nucleon mass) and gluons
- Quantitative decomposition of *nucleon spin* in terms of quark and gluon degrees of freedom is not yet fully understood.
- To address these fundamental issues
 → nature of the subatomic force
 between quarks and gluons, and the
 internal landscape of nucleons.
- Ideal facilities : EIC & EicC

talked by H. Gao and S. Peng

¹Yang, et al., PRL 121, 212001 (2018)

²Bhattacharya, et al., PRL 128, 182002 (2022); PRL 133, 051901 (2024)

³Pictures (top to bottom) adopted from A. Signori, S. Peng, C. Lorce

• $x \rightarrow$ longitudinal momentum fraction; $k_{\perp} \rightarrow$ parton transverse momentum; $r_{\perp} \rightarrow$ transverse distance from the center.

Nonperturbative Approaches

Lagrangian formalism Euclidean space-time correlators: $\langle \mathcal{O}(x_1, \cdots, x_n) \rangle$ $\langle \mathcal{O}
angle = \int \mathcal{D}_{\psi} \mathcal{O} \exp\left(-S_E[\psi]\right) \quad H |\psi_h
angle = E_h |\psi_h
angle$

Hamiltonian formalism Minkowski space-time wave functions: $|\psi_h\rangle$ $- i\frac{\partial}{\partial t}|\psi_h(t)\rangle = H|\psi_h(t)\rangle$

Lattice QCD, Dyson-Schwinger, FRG

DLCQ, BLFQ, Tamm-Dancoff, RGPEP

Schrödinger Equation $H|\psi\rangle = E|\psi\rangle$

nonrelativistic few-body quant, AMO

nonrelativistic many-body nucl, quant chem

relativistic many-body hadron, QFT

¹Adopted from Yang Li

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions 00000

Basis Light-Front Quantization (BLFQ)

A computational framework for solving relativistic many-body bound state problems in quantum field theories

- $P \equiv P \pm P$: light-from momentum (Hamiltonian)
- First-principle / effective Hamiltonian as input
- Access to mass (M) and LFWFs

Evaluate observables

 $O\sim \langle \Psi|\hat{O}|\Psi\rangle$

¹Vary, Honkanen, Li, Maris, Brodsky, Harindranath, et. al., Phys. Rev. C 81, 035205 (2010).

Int	ro	d	u	С	t	0	n	
00	0							

BLFQ 0●0 $\begin{array}{c} |qqq\rangle + |qqqg\rangle \\ 00000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}$ 000000 Conclusions 00000

• Fock expansion of baryonic bound states:

 $|\text{Proton}\rangle = \psi_{(3q)}|qqq\rangle + \psi_{(3q+1g)}|qqqg\rangle + \psi_{(3q+q\bar{q})}|qqqq\bar{q}\rangle + \dots ,$

Solution proposed by BLFQ

Discrete basis and their direct product

2D HO $\phi_{nm}(p^{\perp})$ in the transverse plane

Plane-wave in the longitudinal direction

Light-front helicity state for spin d.o.f.

 $\begin{aligned} \alpha_i &= (k_i, n_i, m_i, \lambda_i) \\ &|\alpha\rangle &= \otimes_i |\alpha_i\rangle \end{aligned}$

 $\frac{\text{Truncation}}{\sum (2n + |m| + 1) < N}$

$$\sum_{i} (2n_i + |m_i| + 1) \leq N_{\max}$$

$$\sum_{i} \kappa_{i} = \mathbf{K}, \quad x_{i} = \frac{1}{\mathbf{K}}$$
$$\sum_{i} (m_{i} + \lambda_{i}) = M_{J}$$

Fock sector truncation

Large N_{\max} and $K \to \text{High UV}$ cutoff & low IR cutoff

• Exact factorization between center-of-mass motion and intrinsic motion

¹Vary, Honkanen, Li, Maris, Brodsky, Harindranath, et. al., Phys. Rev. C 81, 035205 (2010).

BLFQ 00●

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$

Conclusions 00000

Nucleon within BLFQ

• The LF eigenvalue equation: $H_{\text{eff}}|\Psi\rangle = M^2|\Psi\rangle$

$$\begin{split} H_{\text{eff}} = & \sum_{a} \frac{\vec{p}_{\perp a}^{2} + m_{a}^{2}}{x_{a}} + \frac{1}{2} \sum_{a \neq b} \kappa^{4} \left[x_{a} x_{b} (\vec{r}_{\perp a} - \vec{r}_{\perp b})^{2} - \frac{\partial_{x_{a}} (x_{a} x_{b} \partial_{x_{b}})}{(m_{a} + m_{b})^{2}} \right] \\ & + \frac{1}{2} \sum_{a \neq b} \frac{C_{F} 4 \pi \alpha_{s}}{Q_{ab}^{2}} \bar{u}_{s_{a}'} (k_{a}') \gamma^{\mu} u_{s_{a}} (k_{a}) \bar{u}_{s_{b}'} (k_{b}') \gamma^{\nu} u_{s_{b}} (k_{b}) g_{\mu\nu} \end{split}$$

Publications:

- Mondal et al., Phys. Rev. D 102, 016008 (2020) : Form Factors, PDFs,...
- Xu et al., Phys. Rev. D 104, 094036 (2021) : Nucleon structure, ...
- Liu et al., Phys. Rev. D 105, 094018 (2022) : Angular Momentum, ...
- Hu et al., Phys. Lett. B 833, 137360 (2022) : TMDs, ...
- Kaur et al., Phys. Rev. D 109, 014015 (2024) : Chiral-odd GPDs, ...
- Zhang et al., Phys. Rev. D 109, 034031 (2024) : Twist-3 GPDs, ...
- Liu et al., Phys. Lett. B 855, 138809 (2024) : Skewed GPDs, ...
- Nair et al., Phys. Rev. D 110, 056027 (2024) : GFFs, ...
- Peng et al., coming soon : Double parton correlations, ...

on BLFQ $|q\rangle$

 $|qqq\rangle + |qqqg\rangle$ •0000000000 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 000000

 $P^-=P^-_{\rm QCD}+P^-_C$

Conclusions 00000

$\begin{array}{l} \mbox{Proton with One Dynamical Gluon} \\ P^+P^- |\Psi\rangle = M^2 |\Psi\rangle & |\mbox{proton}\rangle = \psi_{uud} |uud\rangle + \psi_{uudg} |uudg\rangle \end{array}$

QCD Interaction:

$$\begin{split} P_{\rm QCD}^- &= \int \mathrm{d}x^- \mathrm{d}^2 x^\perp \Big\{ \frac{1}{2} \bar{\psi} \gamma^+ \frac{m_0^2 + (i\partial^\perp)^2}{i\partial^+} \psi \\ &- \frac{1}{2} A_a^i \left[m_g^2 + (i\partial^\perp)^2 \right] A_a^i + g_s \bar{\psi} \gamma_\mu T^a A_a^\mu \psi \\ &+ \frac{1}{2} g_s^2 \bar{\psi} \gamma^+ T^a \psi \frac{1}{(i\partial^+)^2} \bar{\psi} \gamma^+ T^a \psi \Big\}, \end{split}$$

Confinement only in leading Fock:

$$P_{\rm C}^- P^+ = \frac{\kappa^4}{2} \sum_{i \neq j} \left\{ \{ \vec{r}_{ij\perp}^{\ 2} - \frac{\partial_{x_i}(x_i x_j \partial_{x_j})}{(m_i + m_j)^2} \right\}$$

Parameters:

Truncation: Nmax=9, K=16.5 HO parameters: b=0.7GeV, b_{inst}=3GeV

 $^{1}{\rm S.}$ Xu, CM, X. Zhao, Y. Li, J. P. Vary, Phys.Rev.D 108 (2023) 094002.

²Brodsky, Teramond, Dosch and Erlich, Phys. Rep. 584, 1 (2015).

³Li, Maris, Zhao and Vary, Phys. Lett. B (2016); M. Burkardt, Phys. Rev. D 58, 096015 (1998).

¹S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, Phys.Rev.D 108 (2023) 094002.

Diagonalizing $H_{\text{eff}} \Rightarrow \text{LF}$ wavefunction \Rightarrow Initial PDFs \Rightarrow Scale evolution

Model scale $\mu_0^2 = 0.24 \pm 0.01~{\rm GeV}^2$

- Quark momentum : $\langle x \rangle_u = 0.261 \pm 0.005$, $\langle x \rangle_d = 0.109 \pm 0.005$ at 10 GeV².
- Quark spin: $\frac{1}{2}\Sigma_u = 0.438 \pm 0.004$, $\frac{1}{2}\Delta\Sigma_d = -0.080 \pm 0.002$.
- Gluon spin: $\Delta G = 0.131 \pm 0.003$, PHENIX: $\Delta G^{[0.02, 0.3]} = 0.2 \pm 0.1$.
- Sea quarks: solely generated from the QCD evolution.

¹LFH: PRL 124 (2020), 082003; PHENIX: PRL 103 (2009) 012003.

- Experimentally, the expected increase of $\Delta u/u$ is observed.
- For d quark: remains negative in the experimentally covered region.
- Global analyses favor negative values of $\Delta d/d$ at large-x.

 $|qqq\rangle + |qqqq\rangle$ 00000000000

BLFQ Predictions for Spin Decomposition

Fock expansion:

$$\mid \mathrm{Proton} \rangle = a \mid uud \rangle + b \mid uudg \rangle + \dots$$

Quark and gluon helicities :

$$\Delta \Sigma_q = \int \mathrm{d}x \,\Delta q(x)$$
$$\Delta \Sigma_g = \int \mathrm{d}x \,\Delta G(x)$$

Total AM^2 :

$$J_i = \frac{1}{2} \int \mathrm{d}x \, x \left[H_i(x,0,0) + E_i(x,0,0) \right]$$

Kinetic OAM^2 :

$$L_q = \frac{1}{2} \int dx \left[x \left\{ H_q(x,0,0) + E_q(x,0,0) \right\} - \widetilde{H}_q(x,0,0) \right] \right]$$

 ¹S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, Phys.Rev.D 108, 094002 (2023).
 ²X. Ji, Phys.Rev.Lett. 78, 610 (1997).

BLFQ 000 $|qqq\rangle + |qqqg\rangle$ 00000000000 $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle$ 000000

Conclusions 00000

IMP

Gluon GPDs in Longitudinal Position Space

$$f(x,\sigma,t) = \int_0^{\xi_f} \frac{d\xi}{2\pi} e^{i\xi \mathbf{P}^+ \mathbf{b}^-/2} G(x,\xi,t) = \int_0^{\xi_f} \frac{d\xi}{2\pi} e^{i\xi\sigma} G(x,\xi,t),$$

• Boost-invariant longitudinal position space, $\sigma = \frac{1}{2}b^-P^+$.

- Pattern similar to that observed in single-slit optical experiments.
- Influenced by the functional behavior of the GPDs; differ from quark GPDs.
- Similar pattern in DVCS amplitude, Parton density, Wigner distributions....

¹Zhang, Liu, Xu, CM, et. al., coming soon.

²Liu, Xu, CM, et. al., PLB 855 (2024); Brodsky, et. al., PLB 641 (2006); CM, EPJC 77 (2017);

Introduction 000

BLFQ 000 $|qqq\rangle + |qqqg\rangle$ 000000 \bullet 0000 $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions 00000

x-Dependent Squared Radius

¹B. Lin, S. Nair, S.Xu, CM, X. Zhao, J. P. Vary, PLB 847, 138305 (2023).

²R. Dupre, M. Guidal and M. Vanderhaeghen, PRD 95, 011501 (2017).

• Parametrization of matrix element in terms of GFFs

$$\begin{split} \langle P' | T_i^{\mu\nu}(0) | P \rangle &= \bar{U'} \bigg[-B_i(q^2) \frac{\bar{P}^{\mu} \bar{P}^{\nu}}{M} + (A_i(q^2) + B_i(q^2)) \frac{1}{2} (\gamma^{\mu} \bar{P}^{\nu} + \gamma^{\nu} \bar{P}^{\mu}) \\ &+ C_i(q^2) \frac{q^{\mu} q^{\nu} - q^2 g^{\mu\nu}}{M} + \bar{C}_i(q^2) M g^{\mu\nu} \bigg] U \end{split}$$

• Momentum sum rule : $\sum_{i} A^{i}(0) = 1$

- Gravitomagnetic moment sum rule : $\sum_i B^i(0) = 0$
- Spin sum rule: $J^{i} = \frac{1}{2} \left[A^{i}(0) + B^{i}(0) \right]$
- $4C(q^2) = D(q^2)$ provides shear forces and the pressure distributions

¹Burkert et. al.: Rev. Mod. Phys. 95, 041002 (2023); Ji, Phys. Rev. Lett. 78, 610 (1997)

BLFQ 000 $\begin{array}{c} |qqq\rangle + |qqqg\rangle \\ 000000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}$ 000000 Conclusions 00000

IMI

${\cal A}(Q^2)$ and ${\cal B}(Q^2)$

• $A(Q^2)$ and $B(Q^2)$: T^{++} component

• Spin sum rule:
$$J^{i} = \frac{1}{2} \left(A^{i}(0) + B^{i}(0) \right)$$

$$\sum_i A^i(0) = 1$$
 and $\sum_i B^i(0) = 0$

• $D(Q^2) = 4C(Q^2)$: T^{ij} components

¹S. Nair, CM, et. al. coming soon...

BLFQ 000 $|qqq\rangle + |qqqg\rangle$ 0000000000 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}$ 000000 Conclusions 00000

Quark TMDs

Positivity bounds

$$\begin{split} f_1^g(x, \mathbf{k}_{\perp}^2) &> 0, \quad f_1^g(x, \mathbf{k}_{\perp}^2) \ge |g_{1L}^g(x, \mathbf{k}_{\perp}^2)|, \\ f_1^g(x, \mathbf{k}_{\perp}^2) \ge \frac{|\mathbf{k}_{\perp}|}{M} |g_{1T}^g(x, \mathbf{k}_{\perp}^2)|, \\ f_1^g(x, \mathbf{k}_{\perp}^2) \ge \frac{|\mathbf{k}_{\perp}|^2}{2M^2} |h_1^{\perp g}(x, \mathbf{k}_{\perp}^2)| \end{split}$$

¹Hongyao Yu, et. al. coming soon...

²A. Accardi *et al.*, Eur.Phys.J.A 52 (2016) 9, 268.

18 / 27

Introduction

BLFQ 000 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions 00000

Gaussian Ansatz Compatibility?

• To check compatibility of BLFQ results with the Gaussian ansatz :

$$f_1^i(x,k_\perp^2) \approx a \frac{\exp\left(-\frac{|k_\perp|^2}{r}\right)}{\pi r}$$

- where $a = \langle |k_{\perp}|^0 \rangle_{f_1^i}$ and $r = \langle |k_{\perp}|^2 \rangle_{f_1^i}$
- If the Gaussian ansatz holds :

$$\frac{\langle |k_{\perp}|^2 \rangle_{f_1^i} \times \langle |k_{\perp}|^0 \rangle_{f_1^i}}{(\langle |k_{\perp}|^1 \rangle_{f_1^i})^2} \times \frac{\pi}{4} = 1$$

BLFQ results do not support Gaussian ansatz

 \boldsymbol{x}

²Hongyao Yu, et. al. Phys.Lett.B 855, 138831 (2024)

¹Hongyao Yu, et. al. in preparation

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ $\bullet 000000$ Conclusions 00000

IMP

Effective Hamiltonian with Dynamical Gluon and Sea Quarks Fock expansion:

 $|\operatorname{Proton}\rangle = a \mid uud\rangle + b \mid uudg\rangle + c_1 \mid uudu\bar{u}\rangle + c_2 \mid uudd\bar{d}\rangle + c_3 \mid uuds\bar{s}\rangle + \dots$

Light-front QCD Hamiltonian :

$$H_{\rm LF} = \sum_{a} \frac{\vec{p}_{\perp a}^2 + m_a^2}{x_a} + H_{\rm confinement} + H_{\rm vertex} + H_{\rm inst}$$

$$H_{\text{vertex}} + H_{\text{inst}} = g_s \bar{\psi} \gamma_\mu T^a A^\mu_a \psi + \frac{1}{2} g^2_s \bar{\psi} \gamma^+ T^a \psi \frac{1}{(i\partial^+)^2} \bar{\psi} \gamma^+ T^a \psi$$
$$+ \frac{1}{2} g^2_s \bar{\psi} \gamma^\mu A_\mu \frac{\gamma^+}{(i\partial^+)} A_\nu \gamma^\nu \psi$$

¹Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1998).

²Siqi Xu, Yiping Liu, CM, et. al., 2408.11298 [hep-ph]

BLFQ 000

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions 00000

Fock Sector Decomposition

$$P_{proton}\rangle \rightarrow |qqq\rangle + |qqqg\rangle + |qqqu\bar{u}\rangle + |qqqd\bar{d}\rangle + |qqqs\bar{s}\rangle$$

Truncation parameter: $N_{\text{max}} = 7$ and $K_{\text{max}} = 16$

m_u	m _d	m _f	g	b	b _{inst}
0.99 GeV	0.94 GeV	5.9 GeV	3.0	0.6 GeV	2.7 GeV

In five quark Fock sector, we use current quark mass

¹Siqi Xu, Yiping Liu, CM, et. al., 2408.11298 [hep-ph]

BLFQ 000 $\begin{array}{l} |qqq\rangle + |qqqg\rangle \\ 00000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions 00000

Proton EM Form Factors

- EM current: $J^{\mu} = \bar{\psi} \gamma^{\mu} \psi$
- $\langle p'; \uparrow | J^+(0) | p; \uparrow (\downarrow) \rangle \sim F_{1(2)}(q^2)$

• Two FFs:
$$F_{1(2)}(q^2 = -Q^2)$$

¹Siqi Xu, Yiping Liu, CM, et. al., 2408.11298 [hep-ph]

Sach's form factors

$$G_E(q^2) = F_1(q^2) - \frac{q^2}{4M^2}F_2(q^2),$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2).$$

Diagonalizing $H_{\rm LFOCD} \Rightarrow {\rm LFWFs} \Rightarrow {\rm Initial PDFs} \Rightarrow {\rm Scale \ evolution}$

• Model scale $\mu_0^2 = 0.22 \pm 0.02 \text{ GeV}^2$, $\langle x \rangle_{u+d} = 0.37 \pm 0.01$

 10 GeV^2 .

• Longitudinal excitations challenging, in absence of confining potential.

¹Siqi Xu, Yiping Liu, CM, et. al., 2408.11298 [hep-ph]

 $\delta d = -0.204(11).$

¹Siqi Xu, Yiping Liu, CM, et. al., 2408.11298 [hep-ph]

- ³Y.-B. Yang, et. al. (Lattice) Phys. Rev. Lett. 118, 102001 (2017)
- ⁴C. Cocuzza, et. al. (JAM), Phys. Rev. Lett. 132, 091901 (2024)
- ⁵R. Gupta, et. al. (Lattice), Phys. Rev. D 98, 091501 (2018)

IMP

²E. R. Nocera, et. al. (NNPDF), Nuclear Physics B 887, 276 (2014)

- u and d GPDs from -1 < x < 1; exhibit similar distributions
- At $\xi = 0.1$, DGLAP region dominates
- Discontinuity at $x = \pm \xi$
- Gluon and sea quarks GPDs in DGLAP region

¹Y. Liu, S. Xu, CM, et. al., coming soon...

duction		

BLFQ 000 $\begin{array}{c} |qqq\rangle + |qqqg\rangle \\ 00000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}$ 000000 Conclusions •0000

Conclusions

- Basis Light-front Quantization : A non-perturbative approach based on light-front QCD Hamiltonian
- LF Hamiltonian \Rightarrow Wavefunctions \Rightarrow Observables.
- $|qqq\rangle + |qqqg\rangle (P^- = P^-_{\rm QCD} + P^-_{\rm C}) \Rightarrow$ Provides good description of data/global fits for various observables.
- $|qqq\rangle + |qqqq\bar{q}\rangle + |qqqq\bar{q}\rangle$, $(P^- = P_{\rm QCD}^-) \Rightarrow$ Provides qualitative description of data/global fits for mass, spin, EMFFs, PDFs, axial and tensor charges

Outlook

- Expand Fock sectors
- Include three-gluon and four-gluon interactions in the Hamiltonian.

Enormous amount of possibilities with future EICs \ldots \ldots Thank You

 The Institute of Modern Physics, Chinese Academy of Sciences, Huizhou Campus, China.

Movember 25-29, 2024

Physics Topics and Tools

- » Physics of EIC and EicC
- » Hadron spectroscopy and reactions
- » Hadron/nuclear structure
- » Spin physics
- » Relativistic many-body physics
- » QCD phase structure
- » Light-front field theory
- » AdS/CFT and holography
- » Nonperturbative QFT methods
- » Effective field theories
- » Lattice field theories
- » Quantum computing
- » Present and future facilities

International Advisory Committee

Stanley J. Brodsky (SLAC) Ho-Meosyng Chol (Kyungpok National U.) Stanlslaw D. Glazek (Warsaw U.) Chueng-Ryong Ji (NCSU) Dayashankar Kulshresintha (Deihi U.) Garald A. Miller (INT & U. Washington) Wally Meinitchouk (TJNAF) Barbara Pasquini (Pavia U.) Wayne Nicholas Polyzou (U. of Iowa) Nico G. Stefania (Ruhr U.)

SCNT

- » Wojciech Broniowski (JKU & Cracow, INP)
 » Tobias Frederico (ITA)
 » John R. Hiller (Idaho U.)
- » Vladimir Karmanov (Lebedev Inst.) » Cédric Lorcé (Ecole Polytechnique)
- » Cedric Lorce (Ecole Polytechniqu » Anuradha Misra (Mumbai U.)
- » Anuradna Misra (Mumbai U.) » Teresa Peña (IST & Lisboa U.)
- » Giovanni Salmè (INFN Roma)
- » James P. Vary (Iowa State U.)

Local Organizing Committee » Xingbo Zhao (IMP,chair) » Jiangshan Lan (IMP,co-chair) » Chandan Mondal (IMP)

- » Satvir Kaur (IMP)
- » Siqi Xu (IMP)
- » Yair Mulian (IMP) » Yuxiang Zhao (IMP)

Registration and abstract submission opens : 1st April, 2024 Abstract submission deadline : 1st November, 2024 Registration closes : 1st November, 2024

lightcone2024@impcas.ac.cn

mttps://indico.impcas.ac.cn/event/55

BLFQ 000 $\begin{array}{l} |qqq\rangle + |qqqg\rangle \\ 00000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}$ 000000 Conclusions

Spin Asymmetry in SIDIS

IMP

¹Honhyao, et. al. in preparation

Int	roc	lu	cti	on
00	0			

BLFQ 000 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}$ 000000

twist-3 xPDFs

Conclusions

IMP

xPDFs: Twist-2 vs Twist-3

 $\begin{array}{c} 1.0 \\ 0.5 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ x \\ \end{array}$

 $\int \frac{\mathrm{d}^2 k_\perp}{(2\pi)^2} f(x,k_\perp) = f(x)$

Twist-3 PDFs: more concentrating in small x

similar magnitude to twist-2 PDFs

genuine twist-3 xPDFs

 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle$ 000000 Conclusions

IMP

Light-Front QCD with Light-Cone Gauge $(A^+ = 0)$

$$\begin{split} \hat{P}_{\mathrm{LFQCD}} &= \frac{1}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma^{+} \frac{(i\partial^{\perp})^{2} + m^{2}}{i\partial^{+}} \psi + A^{ia}(i\partial^{\perp})^{2}A^{ia} \\ &+ g_{s} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma_{\mu}A^{\mu a}T^{a}\psi \\ &+ \frac{g_{s}^{2}}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma_{\mu}A^{\mu a}T^{a} \frac{\gamma^{+}}{i\partial^{+}} \left(\gamma_{\nu}A^{\nu b}T^{b}\psi\right) \\ &+ \frac{g_{s}^{2}}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma^{+}T^{a}\psi \frac{1}{(i\partial^{+})^{2}} \left(\overline{\psi}\gamma^{+}T^{a}\psi\right) \\ &- g_{s}^{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ \overline{\psi}\gamma^{+}T^{c}\psi \frac{1}{(i\partial^{+})^{2}} \left(i\partial^{+}A^{\mu a}A^{b}_{\mu}\right) \\ &- g_{s}^{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ i\partial^{\mu}A^{\nu a}A^{b}_{\mu}A^{c}_{\nu} \\ &= \underbrace{g_{s}^{2}}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ if^{ade} \ i\partial^{+}A^{\mu b}A^{c}_{\mu} \frac{1}{(i\partial^{+})^{2}} \left(i\partial^{+}A^{\nu d}A^{e}_{\nu}\right) \\ &- \frac{g_{s}^{2}}{4} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ if^{ade} A^{\mu b}A^{\nu c}A^{d}_{\mu}A^{e}_{\nu}. \end{split}$$

¹S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299-486 (1998).