

The 23rd International Conference on Few-Body Problems in Physics (FB23)

1

Study of exotic hadrons in a multiquark model

Yan-Rui Liu (School of Physics, Shandong Universiy, Jinan, China)

Sep. 26, 2024, Beijing, China

Y.R. Liu, X. Liu, S.L. Zhu, Phys. Rev. D 93, 074023 (2016) J. Wu, Y.R. Liu, K.Chen, X.Liu, S.L. Zhu, Phys. Rev. D 94, 094031 (2016) S.Q. Luo, K. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Eur. Phys. J. C 77, 709 (2017) J. Wu, Y.R. Liu, K. Chen, X. Liu, S.L. Zhu, Phys. Rev. D 95, 034002 (2017) J. Wu, Y.R. Liu, K.Chen, X.Liu, S.L. Zhu, Phys. Rev. D 97, 094015 (2018) J. Wu, X. Liu, Y.R. Liu, S.L. Zhu, Phys. Rev. D 99, 014037 (2019) J.B. Cheng, Y.R. Liu, Phys. Rev. D 100, 054002 (2019) J.B. Cheng, S.Y. Li, Y.R. Liu, Y.N. Liu, Z.G. Si, T. Yao, Phys. Phys. D 101, 114017 (2020) J.B. Cheng, S.Y. Li, Y.R. Liu, Z.G. Si, T. Yao, Chin. Phys. C 45, 043102 (2021) S.Y. Li, Y.R. Liu, Z.L. Man, Z.G. Si, J. Wu, Phys. Rev. D 108, 056015 (2023) S.Y. Li, Y.R. Liu, Z.L. Man, Z.G. Si, J. Wu, Chin. Phys. C 48, 063109 (2024) S.Y. Li, Y.R. Liu, Z.L. Man, Z.G. Si, J. Wu, arXiv: 2401.00115 [hep-ph]

1. Introduction

2. Formalism

3. X(3960), X_0 (4140); T_{cc} ; X(6600); $T_{cs,c\overline{s}}$ (2900)

4. Summary

Some of the observed exotic states

Introduction

H.X. Chen, W. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Rep. Prog. Phys. 86, 026201 (2023)

(n = u, d)	State	Mass(MeV)	$\Gamma (MeV)$	Observed channel	S
	$\chi_{c1}(4140)$ [CDF:2009jgo] 4	$1143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0} \pm 3.7$	$B^+ \to J/\psi \phi K^+$	
	X(4350)[Belle:2009rkh]	$4350^{+4.6}_{-5.1}\pm0.7$	$13^{+18}_{-9} \pm 4$	$\gamma\gamma ightarrow J/\psi\phi$	
	$\chi_{c1}(4274)$ [CDF:2011pep]	$4274^{+8.4}_{-6.7} \pm 1.9$	$32.3^{+21.9}_{-15.3} \pm 7.6$	$B^+ \to J/\psi \phi K^+$	$c(\overline{d})$
	$\chi_{c0}(4500)$ [LHCb:2016axx]	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	$B^+ \to J/\psi \phi K^+$	
	$\chi_{c0}(4700)$ [LHCb:2016axx]	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$	$B^+ \to J/\psi \phi K^+$	
	X(4630)[LHCb:2021uow]	$4626 \pm 16^{+18}_{-110}$	$174 \pm 27^{+134}_{-73}$	$B^+ \to J/\psi \phi K^+$	T_{cc}
	X(4685)[LHCb:2021uow]	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15^{+37}_{-41}$	$B^+ \to J/\psi \phi K^+$	-
CSCS	X(3960) [LHCb:2022aki]	$3956 \pm 5 \pm 10$	$43 \pm 13 \pm 8$	$B^+ \rightarrow D_s^+ D_s^- K^+$	-
	$X_0(4140)$ [LHCb:2022aki]	$4133 \pm 6 \pm 6$	$67 \pm 17 \pm 7$	$B^+ \to D_s^+ D_s^- K^+$	
		M (M-	17)	$D(M_{-}X)$	Ohaana hahaana h
	State	Mass (Me	ev)	I (MeV)	Observed channels
	X(6900)[LHCb:2020bwg	$6905 \pm 11 \pm 7$	7 MeV $80 \pm$	$19 \pm 33 \text{ MeV}$	${ m di}$ - J/ψ
$CC\overline{CC}$	X(6600)[CMS:2023owd]	$6552 \pm 10 \pm 1$	2 MeV 124	$^{+32}_{-26} \pm 33 \text{ MeV}$	${ m di} J/\psi$
	X(7200)[CMS:2023owd]	$7287^{+20}_{-18} \pm 5$	$5 MeV \qquad 95^+_{-}$	$^{-59}_{-40} \pm 19 { m MeV}$	$\mathrm{di}\text{-}J/\psi$
	X(6400)[ATLAS:2023bft	$] 6.41 \pm 0.08^{+0.}_{-0.}$	$^{08}_{03} { m GeV} 0.59 \pm$	$\pm 0.35^{+0.12}_{-0.2} \text{GeV}$	${ m di} ext{-}J/\psi$
	X(6600)[ATLAS:2023bft	$6.63 \pm 0.05^{+0.}_{-0}$	$^{08}_{01}$ GeV 0.35 \pm	$\pm 0.11^{+0.11}_{-0.04} { m GeV}$	${ m di}$ - J/ψ
	X(7200)[ATLAS:2023bft	$7.22 \pm 0.03^{+0}_{-0}$	$^{.01}_{.04} { m GeV} ~ 0.095$	$\pm 0.6^{+0.06}_{-0.05} \text{ GeV}$	$J/\psi + \psi(2S)$
	State		Mass(Me	V) Γ (MeV)	Observed channels
$c_{S\overline{nn}} T_{cs0}$	(2900) ⁰ [LHCb:2020pxc.	LHCb:2020bls	$2866 \pm 7 \pm$	$= 2 57 \pm 12 \pm$	$4 B^+ \to D^+ D^- K^+$
	$(2900)^{0}$ [LHCb:2020pxc	LHCb:2020bls	$\frac{1}{2904} + 5 +$	-1 110 $+$ 11 $+$	$4 B^+ \to D^+ D^- K^+$
$cn\overline{sn}$ T^a	$(2000)^{0}$ [LHCb·2022sfr]	LHCb·2022lzn	2892 ± 21	$+2$ 110 \pm 11 \pm	$B^0 \rightarrow \bar{D}^0 D^+ \pi^-$
$T^a_{c\bar{s}0}$	$(2900)^{++}$ [LHCb:2022sfr	,LHCb:2022lzp	2002 ± 21 2921 ± 23	$\begin{array}{c} \pm 2 \\ \pm 2 \\ \pm 2 \\ \end{array} \begin{array}{c} 110 \pm 29 \\ \pm 35 \\ \end{array}$	$B^+ \to D^- D^+_s \pi^+$

Hidden-charm pentaquark-like baryons (n = u, d):

	State	Mass~(MeV)	$\Gamma ~({ m MeV})$	observable channels
	$P_c(4380)^+$ [LHCb:2015yax]	$4380\pm8\pm29$	$215\pm18\pm86$	$\Lambda_b^0 \to J/\psi p K^-$
<u>cc</u> uud	$P_c(4312)^+$ [LHCb:2019kea]	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	$\Lambda_b^0 \to J/\psi p K^-$
	$P_c(4440)^+$ [LHCb:2019kea]	$4440 \pm 1.3^{+4.1}_{-4.7}$	$20.6\pm4.9^{+8.7}_{-10.2}$	$\Lambda_b^0 \to J/\psi p K^-$
	$P_c(4457)^+$ [LHCb:2019kea]	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	$\Lambda_b^0 \to J/\psi p K^-$
<u>cc</u> uds	$P_{cs}(4459)^{0}$ [LHCb:2020jpq]	$4458.8 \pm 2.9^{+4.7}_{-1.1}$	$17.3 \pm 6.5^{+8.0}_{-5.7}$	$\Xi_b^- \to J/\psi \Lambda K^-$
	$P_c(4337)^+$ [LHCb:2021chn]	$4337^{+7}_{-4}{}^{+2}_{-2}$	$29^{+26}_{-12}{}^{+14}_{-14}$	$B_s^0 \to J/\psi p \bar{p}$
	$P_{cs}(4338)^0$ [LHCb:2022jad]	$4338.2 \pm 0.7 \pm 0.4$	$7.0\pm1.2\pm1.3$	$B^- ightarrow J/\psi \Lambda ar p$

Can we understand above exotic mesons and baryons in the compact multiquark picture?

S-wave states here

Formalism: color-magnetic interaction (CMI) model [symmetry analysis]

- Although problems:
 - Dynamics (no);

Spatial information (no);

$$H = \sum_{i} m_{i} + H_{eff},$$
$$_{eff} = -\sum_{i} C_{ij} \lambda_{i} \cdot \lambda_{j} \sigma_{i}$$

i < j

$$M = \sum_{i} m_i + E_{\rm CMI}$$

 $\cdot \sigma_i$.

Effective quark masses (system to system);

Effective coupling constants (conventional → multiquark?);

H

Estimated masses (uncertainty).

- Simple for estimation of rough positions of multiquark states
- CMI model for mass splittings can catch basic features of spectra
- In the model:
 - (1) Construct flavor-color-spin wave function bases;
 - (2) Mixing between different color-spin structures
 - \rightarrow Base independent results

In original CMI:

$$M = \sum_{i} m_i + E_{\rm CMI}$$

In threshold scheme:

$$M = [M_{ref} - (E_{\rm CMI})_{ref}] + E_{\rm CMI}$$

where ref=hadron-hadron state and M_{ref} is its (measured) threshold.

In the scheme we will use:

$$M = M_{X(4140)} - (E_{CMI})_{X(4140)} + \sum_{ij} n_{ij} \Delta_{ij} + E_{CMI}$$

where we assume X(4140) as the ground $1^{++} cs \overline{cs}$ compact tetraquark and Δ_{ij} denotes mass gap between two different quarks.

Hadron	CMI	Hadron	CMI	Parameter(MeV)
N	-8C	Δ	8C	$C_{nn} = 18.4$
Σ	$\frac{8}{3}C_{nn} - \frac{32}{3}C_{ns}$	Σ^*	$\frac{8}{3}C_{nn} + \frac{16}{3}C_{ns}$	$C_{ns} = 12.4$
Ξ^0	$\frac{8}{3}(C_{ss}-4C_{ns})$	Ξ^{*0}	$\frac{8}{3}(C_{ss}+C_{ns})$	
Ω	$8C_{ss}$			$C_{ss} = 6.5$
Λ	$-8C_{nn}$			
D	$-16C_{c\bar{n}}$	D^*	$\frac{16}{3}C_{c\bar{n}}$	$C_{c\bar{n}} = 6.7$
D_s	$-16C_{c\bar{s}}$	D_s^*	$\frac{16}{3}C_{c\bar{s}}$	$C_{c\bar{s}} = 6.7$
B	$-16C_{b\bar{n}}$	B^*	$\frac{16}{3}C_{b\bar{n}}$	$C_{b\bar{n}} = 2.1$
Bs	$-16C_{b\bar{s}}$	B^*	$\frac{16}{3}C_{b\bar{s}}$	$C_{b\bar{s}} = 2.3$
η_c	$-16C_{c\bar{c}}$	J/ψ	$\frac{16}{3}C_{c\bar{c}}$	$C_{c\bar{c}} = 5.3$
η_b	$-16C_{b\bar{b}}$	Υ	$\frac{16}{3}C_{b\bar{b}}$	$C_{b\bar{b}} = 2.9$
Σ_c	$\frac{8}{3}C_{nn} - \frac{32}{3}C_{cn}$	Σ_c^*	$\frac{8}{3}C_{nn} + \frac{16}{3}C_{cn}$	$C_{cn} = 4.0$
Ξ_c'	$\frac{8}{3}C_{ns} - \frac{16}{3}C_{cn} - \frac{16}{3}C_{cs}$	Ξ_c^*	$\frac{8}{3}C_{ns} + \frac{8}{3}C_{cn} + \frac{8}{3}C_{cs}$	$C_{cs} = 4.8$
Σ_b	$\frac{8}{3}C_{nn} - \frac{32}{3}C_{bn}$	Σ_b^*	$\frac{8}{3}C_{nn} + \frac{16}{3}C_{bn}$	$C_{bn} = 1.3$
Ξ_b'	$\frac{8}{3}C_{ns} - \frac{16}{3}C_{bn} - \frac{16}{3}C_{bs}$	Ξ_b^*	$\frac{8}{3}C_{ns} + \frac{8}{3}C_{bn} + \frac{8}{3}C_{bs}$	$C_{bs} = 1.2$

Comparison for hadron masses between experimental data and theoretical estimation. All the values are in units of MeV. TABLE III.

Hadron	Theory	Experiment	Deviation	Hadron	Theory	Experiment	Deviation
D	1975.9	1864.8	111.1	D^*	2121.0	2007.0	114.0
D_s	2154.5	1968.3	186.2	D_s^*	2299.5	2112.1	187.4
η_c	3361.0	2983.6	377.4	J/ψ	3474.1	3096.9	377.2
Σ_c	2452.9	2454.0	1.1	Σ_c^*	2516.9	2518.4	-1.5
Ω_c	2796.2	2695.2	101.0	Ω_c^*	2845.3	2765.9	79.4
Ξ_c	2525.9	2471.0	54.9	Ξ_c'	2612.3	2577.9	34.4
Ξ_c^*	2680.6	2645.9	34.7				

Bad theoretical results! mainly due to quark masses 10

• Alternative schemes to study multiquark spectrum:

(1) Reference scale \rightarrow hadron-hadron threshold

$$\mathsf{M} = [M_{ref=(meson-meson)} - (E_{CMI})_{ref}] + E_{CMI},$$

(same quark content for *ref* and multiquark)

more reasonable tetraquark masses than original CMI. But, from studies for

$$cs\overline{cs}, QQ\overline{QQ}, qq\overline{QQ}, Qq\overline{Q}\overline{q}, QQ\overline{Q}\overline{q} \longrightarrow M_{low}$$

[1605.01134, 1608.07900, 1609.06117, 1707.01180, 1810.06886, 2001.05287, 2008.00737]

(2) Reference scale \rightarrow mass of X(4140) $\rightarrow M_{reasonable}$ Assumption: X(4140) observed in $J/\psi\phi$ as the ground 1⁺⁺ $cs\overline{cs}$ tetraquark

$$M = M_{X(4140)} - (E_{CMI})_{X(4140)} + \sum_{ij} n_{ij} \Delta_{ij} + E_{CMI}$$

where $\Delta_{ij} = m_i - m_j$ denotes the effective quark mass gap between quark i and quark j.

C_{ij}	n	s	c	b	$C_{i\bar{j}}$	\bar{n}	$ar{s}$	\bar{c}	\overline{b}
n	18.3	12.1	4.0	1.3	n	29.8	18.7	6.6	2.1
\mathbf{S}		6.5	4.3	1.3	\mathbf{S}		9.8	6.7	2.3
\mathbf{c}			3.5	2.0	с			5.3	3.3
b				1.9	b				2.9

Consistent with Buccella et al., EPJC 49, 743 (2007).

$$\frac{C_{cc}}{C_{c\bar{c}}} = \frac{C_{bb}}{C_{b\bar{b}}} = \frac{C_{bc}}{C_{b\bar{c}}} = \frac{C_{nn}}{C_{n\bar{n}}} \approx \frac{2}{3}$$

Godfrey-Isgur model: $m_{B_c^*} - m_{B_c} = 70 \text{ MeV}$

Wu et al., PRD 99, 014037 (2019); Cheng et al., PRD 101, 114017 (2020)

 $\Delta_{bc} = 3340.2 \text{MeV},$ $\Delta_{cn} = 1280.7 \text{MeV},$ $\Delta_{sn} = 90.6 \text{MeV},$ $\Delta_{cs} = 1180.6 \text{MeV},$ $\Delta_{bs} = 4520.2 \text{MeV}.$

Approximate relations:

$$\Delta_{cn} \approx \Delta_{cs} + \Delta_{sn},$$
$$\Delta_{bs} \approx \Delta_{bc} + \Delta_{cs}.$$

(n = u, d)

Why is X(4140) selected?

- 1. It is a $J/\psi\phi$ resonance confirmed by different experiments. $J^{PC} = 1^{++}$ determined; suppressed mixing with $c\overline{c}$ states;
- 2. $J^{PC} = 1^{++}$ partner states X(4274) and X(4140) can be consistently interpreted as compact $cs\overline{cs}$ tetraquark states; [Stancu, J.Phys.G 37, 075017 (2010); Wu et. al., PRD 94, 094031 (2016)]

3. X(4140) as the reference state can provide more reasonable explanations for other observed $cs\overline{cs}$ states.

[Li et. al., Chin.Phys.C 48, 063109 (2024)]

In original CMI (v1):
$$M = \sum_i m_i + E_{ ext{CMI}}$$

additional attraction needed

In threshold scheme (v2):

 $M = [M_{ref} - (E_{\rm CMI})_{ref}] + E_{\rm CMI}$ superfluous attraction included

where ref=hadron-hadron state and mesured M_{ref} is its threshold.

In the scheme we will use (v3):

$$M = M_{X(4140)} - (E_{CMI})_{X(4140)} + \sum_{ij} n_{ij} \Delta_{ij} + E_{CMI}$$

Usually,

$$M_{v2} < M_{v3} < M_{v1}$$

(size: hadron-hadron state > compact tetraquark > conventional hadron)

- Combine information from spectrum and decay to analyze multiquark properties
- A simple decay scheme:
 - 1. decay Hamiltonian is a constant: $H_{decay} = C$

system-dependent $\ensuremath{\mathcal{C}}$

2. measured width \approx sum of two-body rearrangement decay widths: $\Gamma_{exp} \approx \Gamma_{sum}$

$$\mathcal{M} = \langle initial | H_{decay} | final \rangle = \mathcal{C} \sum_{ij} x_i y_j$$

$$\Psi_{initial} = \sum_{i} x_i (q_1 q_2 \bar{q}_3 \bar{q}_4),$$

We analyzed masses and widths of the Pc states in:

PRD100, 054002(2019); PRD 108, 056015 (2023)

State	Mass(MeV)	Γ (MeV)	Observed channels
$P_{\psi}^{N}(4380)^{+}[22]$	$4380\pm8\pm29$	$215\pm18\pm86$	$\Lambda_b^0 \to J/\psi p K^-$
$P_{\psi}^{N}(4312)^{+}[23]$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	$\Lambda_b^0 \to J/\psi p K^-$
$P_{\psi}^{N}(4440)^{+}[23]$	$4440 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.2}$	$\Lambda_b^0 \to J/\psi p K^-$
$P_{\psi}^{N}(4457)^{+}[23]$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$	$\Lambda_b^0 \to J/\psi p K^-$
$P_{\psi s}^{\Lambda} 4459)^{0}[54]$	$4458.8 \pm 2.9^{+4.7}_{-1.1}$	$17.3 \pm 6.5^{+8.0}_{-5.7}$	$\Xi_b^- \to J/\psi \Lambda K^-$
$P_{\psi}^{N}(4337)^{+}[53]$	$4337^{+7}_{-4}{}^{+2}_{-2}$	$29^{+26}_{-12}{}^{+14}_{-14}$	$B_s^0 \to J/\psi p \bar{p}$
$P^{\Lambda}_{\psi s}(4338)^0 \ [55]$	$4338.2 \pm 0.7 \pm 0.4$	$7.0\pm1.2\pm1.3$	$B^- \to J/\psi \Lambda \bar{p}$

$$\Psi_{final} = \sum_{i} y_i (q_1 q_2 \bar{q}_3 \bar{q}_4).$$

$$\Gamma = |\mathcal{M}|^2 \frac{|\mathbf{P}|}{8\pi M_{initial}^2}$$

Example of formalism: Pc states (n = u, d)

 $(nnn)_{8_c}(c\bar{c})_{8_c} - (nnn)_{1_c}(c\bar{c})_{1_c}$

 $P_c(4457)^+$, $P_c(4440)^+$, $P_c(4337)^+$ can be regarded as the J=3/2, J=1/2, and J=1/2 pentaquark states, respectively.

For
$$P_c(4457)^+$$
 $\Gamma(\Sigma_c^*\bar{D}):\Gamma(\Lambda_c\bar{D}):\Gamma(NJ/\psi) = 2.3:4.0:1.0$

 For $P_c(4440)^+$
 $\Gamma(\Lambda_c\bar{D}^*):\Gamma(\Sigma_c\bar{D}):\Gamma(\Lambda_c\bar{D}):\Gamma(NJ/\psi):\Gamma(N\eta_c) = 45.5:3.0:3.0:7.5:1.0$

 For $P_c(4312)^+$
 $\Gamma(NJ/\psi):\Gamma(\Lambda_c\bar{D}^*) = 1.1$

 For $P_c(4337)^+$
 $\Gamma(\Lambda_c\bar{D}):\Gamma(NJ/\psi) = 1.3$

Example of formalism: Pcs states (n = u, d)

If we assign the $P_{cs}(4459)^0$, $P_{cs}(4338)^0$ to be J=3/2 pentaquark states $\tilde{P}_{cs}(4478)$, $\tilde{P}_{cs}(4338)$, respectively, $\Gamma(\tilde{P}_{cs}(4478)) : \Gamma(\tilde{P}_{cs}(4338)) \sim 0.12$ which is contradicted with the experimantal value.

 $P_{cs}(4459)^0$ Other possible assignments:

$$\begin{split} &\Gamma(\tilde{P}_{cs}(4478)^{0}):\Gamma(\tilde{P}_{cs}(4371)^{0}) \ = \ 0.15, \\ &\Gamma(\tilde{P}_{cs}(4478)^{0}):\Gamma(\tilde{P}_{cs}(4328)^{0}) \ = \ 0.56, \\ &\overline{\Gamma(\tilde{P}_{cs}(4478)^{0}):\Gamma(\tilde{P}_{cs}(4318)^{0}) \ = \ 2.57, } \\ &\Gamma(\tilde{P}_{cs}(4478)^{0}):\Gamma(\tilde{P}_{cs}(4304)^{0}) \ = \ 0.17, \\ &\Gamma(\tilde{P}_{cs}(4497)^{0}):\Gamma(\tilde{P}_{cs}(4371)^{0}) \ = \ 0.72, \\ &\Gamma(\tilde{P}_{cs}(4497)^{0}):\Gamma(\tilde{P}_{cs}(4338)^{0}) \ = \ 0.61, \\ &\overline{\Gamma(\tilde{P}_{cs}(4497)^{0}):\Gamma(\tilde{P}_{cs}(4328)^{0}) \ = \ 2.78, } \\ &\Gamma(\tilde{P}_{cs}(4497)^{0}):\Gamma(\tilde{P}_{cs}(4318)^{0}) \ = \ 12.71, \\ &\Gamma(\tilde{P}_{cs}(4497)^{0}):\Gamma(\tilde{P}_{cs}(4304)^{0}) \ = \ 0.83. \end{split}$$

Theoretical widths are much smaller

Predictions

than the measured results.

$$J^P = \frac{1}{2}^-$$

Both $P_{cs}(4459)^0$ and $P_{cs}(4338)^0$ can be regarded as $\frac{1}{2}^-$ pentaquark states.

For $P_{cs}(4459)^0$, $\Gamma(\Lambda_c \overline{D}_s^*) : \Gamma(\Xi_c \overline{D}^*) \Gamma(\Lambda J / \Psi) = 2.3 : 1.1 : 1.0$

For $P_{cs}(4338)$, $\Gamma(\Lambda J / \Psi)$: $\Gamma(\Lambda_c \overline{D}_s) = 3.0$

The J=5/2 state, the lighest J=3/2 state, and the lighest J=1/2 state are narrow.

Exp: $\Gamma(P_{cs}(4459)^0) : \Gamma(P_{cs}(4338)^0) = 2.5^{+1.6}_{-1.4}$

(1) $cs\overline{cs}$ states

Li et al., Chin.Phys.C 48, 063109 (2024)

	4070	$M_{X(4140)} = 4146.5 \text{ MeV}$ $C = 7282.15 \text{ MeV}$
	? 4373	χ_{c1} (4140) WIDTH
	4300 4314 4295	VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
	4249 4225 $(D_s^{*+}D_s^{*-})$	19 $\frac{+}{-}$ $\frac{7}{5}$ OUR AVERAGE
		162 $\pm 21 \begin{array}{c} +24 \\ -49 \end{array}$ 24k ¹ AAIJ 21E LHCB $B^+ \rightarrow J/\psi \phi K^+$
	$(J/\psi\phi)$	$15.3^{+10.4}_{-6.1} \pm 2.5$ 19 ² AALTONEN 17 CDF $B^+ \to J/\psi \phi K^+$
	-264079 - 4090 (1/µµp')	$16.3 \pm 5.6 \pm 11.4$ 616 ³ ABAZOV 15M D0 $p\overline{p} \rightarrow J/\psi \phi$ + anything
) S	(3/ψ/)	$20 \pm 13 - 8 \qquad 52 \text{``ABAZOV} 14\text{A D0} B^+ \rightarrow J/\psi \phi K^+$
Me	$(\eta_c \phi)(D_s^{*+}D)$	$D_{s} = \begin{bmatrix} 28 & +13 \\ -11 & \pm 19 \end{bmatrix} = \begin{bmatrix} 0.3k & 5 \end{bmatrix} CHATRCHYAN 14M CMS B^{+} \rightarrow J/\psi \phi K^{+}$
ss(====================================	$\binom{9}{s}$ • • • We do not use the following data for averages, fits, limits, etc. • • •
/a:		$83 \pm 21 - 14 \qquad 4289 \qquad 5.7 \text{ AAIJ} \qquad 17C \text{ LHCB } B' \rightarrow J/\psi \phi K'$
~		$11.7 \pm 6.5 \pm 3.7$ 14 3.9 AALTONEN 09AH CDF $B^+ \rightarrow J/\psi \phi K^+$
		State $Mass_{PDG}(MeV) \Gamma_{PDG}(MeV) - \Gamma_{sum}$
	$1 \text{ HCb} \cdot 2407 14201$	$\chi_{c1}(4140)$ 4146.5 ± 3.0 19 ⁺⁷ ₋₅ 83.0 MeV
	$- \frac{1}{2} L\Pi CD \frac{2407.14301}{1} (J/\psi\eta)$	$X(4350)$ $4350^{+4.6} \pm 0.7$ $13^{+18} \pm 4$ 74.0 MeV
	Parameter [MeV] Current analysis	$\frac{11}{(4274)} = \frac{1000 - 5.1}{4286 + 8} = 51 + 7 = 76.0 \text{ MeV}$
	$M_{\chi_{c1}(4274)}$ $4298 \pm 6 \pm 9$ $(\eta_c \eta)$	$\frac{\chi_{c1}(4214)}{\chi_{c2}(4214)} = \frac{4200_{-9}}{1000} = \frac{51 \pm 7}{1000} = \frac{1000}{1000} = 100$
	$\Gamma_{\chi_{c1}(4274)} \qquad 92^{+22}_{-18} \pm 57$	$X(3960)$ [LHCb:2022aki] $3956 \pm 5 \pm 10$ $43 \pm 13 \pm 8$ 31.8 MeV
		$X_0(4140)$ [LHCb:2022aki] $4133 \pm 6 \pm 6$ $67 \pm 17 \pm 7$ 60.2 MeV
	0 ⁺⁺ 1 ⁺⁻ 1 ⁺⁺ 2 ⁺⁺	

$$\Gamma(\eta_c \eta') : \Gamma(\eta_c \eta) : \Gamma(D_s^+ D_s^-) \simeq 1 : 1.6 : 3.2,$$

$$\Gamma(\eta_c \eta) : \Gamma(D_s^+ D_s^-) \simeq 7.8.$$

Li et al., Chin.Phys.C 48, 063109 (2024)

(2) $QQ\overline{qq}$ states

LHCb, Nature Phys. 18, 751 (2022):

$$m_{D^{*+}} + m_{D^0} = 3875.1 \text{ MeV}$$

 $\delta m \equiv m_{T_{cc}^+} - (m_{D^{*+}} + m_{D^0})$
 $\delta m_{BW} = 273 \pm 61 \pm 5^{+11}_{-14} \text{ keV}$
 $\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV}$

LHCb, Nature Commun. 13,3351 (2022):

$$\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}$$

 $\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV}$

Minimal quark content: $cc\overline{u}\overline{d}$

(2) Lowest $I(J^P) = 0(1^+) c c \overline{nn}$ tetraquark state: $T_{cc} = c c \overline{u} \overline{d} \Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV}$

 rk_{max}

C = 7282.15 MeV from X(4140)

1000		$ccar{n}ar{n}$	
$I(J^P)$	Mass	Channels	Г
1(2 ⁺)	[4143.2]	$\begin{bmatrix} D^* D^* \\ (33.3, 20.8) \end{bmatrix}$	[20.8]
1(1 ⁺)	$\left[\begin{array}{c} 4072.8 \end{array} ight]$	$\begin{bmatrix} D & D \\ D & D \\ [(16.7, 53.0) \\ D^* D^* & DD \end{bmatrix}$	[53.0]
1(0 ⁺)	$\left[\begin{array}{c}4225.9\\3948.8\end{array}\right]$	$\begin{bmatrix} (55.7, 43.2) \\ (2.6, -) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\left[\begin{array}{c}43.5\\35.9\end{array}\right]$
0(1+)	$\left[\begin{array}{c}4074.0\\3878.2\end{array}\right]$	$\begin{bmatrix} (48.4, 20.9) \\ (1.6, -) \end{bmatrix} \begin{bmatrix} (6.2, 19.8) \\ (18.8, 7.2) \end{bmatrix}$	40.7

Width sensitive to mass for near-threshold states.

If M \rightarrow 3876 MeV, Γ =3.0 MeV: If M \rightarrow 3880 MeV, Γ =9.7 MeV.

With measured mass $M_{TCC} = M_{D^{*+}} + M_D - 273$ keV quasi-two-body decay width [Capstick, Roberts, PRD 4 4570 (1994)]:

 $\frac{\Gamma_{D^{*+}\to D^0\pi^+}}{(M_{T_{cc}^+} - E_{D^{*+}}(k) - E_{D^0}(k))^2 + \frac{1}{4}\Gamma_{D^{*+}}} \frac{k^2 |\mathcal{M}|^2}{(2\pi)^2 M_{T_{cc}^+} E_{D^{*+}}(k) E_{D^0}(k)}$

,
49,
$$k_{max} = \frac{\sqrt{M_{T_{cc}^+}^2 - (2M_{D^0} + M_{\pi})^2} \sqrt{M_{T_{cc}^+}^2 - M_{\pi}^2}}{2M_{T_{cc}^+}}$$

 $-\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV}$

(2) Lowest $I(J^P) = O(1^+) c c \overline{nn}$ tetraquark state: $T_{cc} = c c \overline{u} \overline{d}$

PHYSICAL REVIEW D 104, 114009 (2021)

Color and baryon number fluctuation of preconfinement system in production process and T_{cc} structure

Yi Jin,¹ Shi-Yuan Li,² Yan-Rui Liu,² Qin Qin,³ Zong-Guo Si,² and Fu-Sheng Yu^{4,5,6} **IV. CONCLUSION**

The consistency between the theoretical analysis on the T_{cc} production by Qin, Shen and Yu [37] and the data [8,9] strongly favors that the newly discovered resonance T_{cc} is produced as a real four-quark state. We in this paper clarify

lation. The cross section $pp \rightarrow T_{DD^*} + X$ is around $3 \times 10^2 pb$, which is one order lower than that of the production rate of the four-quark state [37].

Chinese Physics C Vol. 45, No. 10 (2021) 103106 **Discovery potentials of double-charm tetraquarks*** Qin Qin(秦溱)^{1†} Yin-Fa Shen(沈胤发)¹ Fu-Sheng Yu(于福升)^{2,3,4‡}

From mass, width, and production properties, it is possible to assign the LHCb T_{cc} as the lowest $I(J^P) = O(1^+) cc\overline{u}\overline{d}$ tetraquark state.

Belle: PRD 105, 032002 (2022): No $X_{cc\overline{ss}}$ is observed

Almost all theoretical studies support this bound $bb\overline{u}\overline{d}$.

und not deten	innea, respe	ettvety.								— IR Changetal		
Reference	$(cc\bar{n}\bar{n})$	(<i>ccns</i>)	$(cc\bar{s}\bar{s})$	$(bb\bar{n}\bar{n})$	$(bb\bar{n}\bar{s})$	$(bb\bar{s}\bar{s})$	$(bc\bar{n}\bar{n})$	$(bc\bar{n}\bar{s})$	$(bc\bar{s}\bar{s})$			
This work	US	US	US	S	S	US	ND	US	US	- CPC 45, 043102		
[8]	S	S		S	S		S	US		(2021)		
[11]	S	S	US	S	S	US	S	S	US			
[16]	S			S								
[18]	S			S			S					
[19]	US			S			S			$T_{cc} < 3965 \text{ MeV}$		
[20]	US			S	S		US	US				
[24]	S			S			S			$T_{bb} < 10627 \text{ MeV}$		
[28]	S	US	US	S	S	US	S	US	US			
[29]	S			S			S			$T_{bc} < 7199 \text{ MeV}$		
[30]	US	US	US	S	US	US	US	US	US			
[31]	US	US	US	S	US	US	US	US	US			
[32]			US			US			US			
[33]	US	US	US	S	S	S						
[34]								S	S			
[39]	US			S								
[44, 45]	US	US		S	S		S	US				
[47]							S					
[48]				S	S		US	US				
[63]	US			S			ND					
[69]							ND	US				
[83]	US	US	US	S	S	US	US	US	US			
[84]	US	US	US	S	S	US	US	US	US	25		

Table 10. Stability of the double-heavy tetraquarks in various studies. The meanings of "S," "US," and "ND" are "stable," "unstable," and "not determined," respectively.

J.B. Cheng et al, CPC 45, 043102 (2021): 7167 MeV & 7223 MeV; Karliner, Rosner, PRL 119, 202001 (2017): 11 MeV below BD; Alexandrou et al, PRL 132, 151902 (2024): shallow bound $bc\overline{u}\overline{d}$ with J=0 and 1.

(2) *Q Q q q q* states: rearrangement decay

50.04			$ccar{n}ar{n}$				$bb\bar{n}\bar{n}$	í.	
$I(J^P)$	Mass		Channels	Г	$I(J^P)$	Mass	Channe	els	Г
	5	D^*D^*			la		B*B*		
$1(2^{+})$	[4143.2]	$\begin{bmatrix} (33.3, 20.8) \end{bmatrix}$ D^*D		20.8	$1(2^{+})$	[10795.3]	$\left[\begin{array}{c} (33.3, 5.3)\\ \bar{B}^*\bar{B} \end{array}\right]$		[5.3]
1(1 ⁺)	$\left[\begin{array}{c}4072.8\end{array}\right]$	[(16.7, 53.0)]	DD	[53.0]	1(1 ⁺)	$\left[\begin{array}{c}10772.9\end{array}\right]$	$\begin{bmatrix} (16.7, 11.5) \end{bmatrix}_{\bar{P}^* \bar{P}^*}$		$\left[\begin{array}{c}11.5\end{array}\right]$
1(0 ⁺)	$\left[\begin{array}{c}4225.9\\3948.8\end{array}\right]$	$ \begin{bmatrix} D & D \\ (55.7, 43.2) \\ (2.6, -) \\ D^* D^* \end{bmatrix} $	(0.3, 0.3) (41.4, 35.9)	$\left[\begin{array}{c}43.5\\35.9\end{array}\right]$	1(0+)	$\left[\begin{array}{c}10834.4\\10738.4\end{array}\right]$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.3) 7.2)	$\left[\begin{array}{c}10.5\\7.4\end{array}\right]$
0(1+)	$\left[\begin{array}{c}4074.0\\3878.2\end{array}\right]$	$ \begin{array}{c} D \\ \hline (48.4, 20.9) \\ (1.6, -) \end{array} $	$ \begin{array}{c} $	$\left[\begin{array}{c}40.7\\7.2\end{array}\right]$	0(1+)	$\left[\begin{array}{c}10717.8\\10584.5\end{array}\right]$	$ \begin{array}{c c} $	7.0) —)	$\left[\begin{array}{c}11.6\\0\end{array}\right]$
		D* D*	$cc\bar{n}\bar{s}$				bbns		
2+	$\left[\begin{array}{c} 4217.5 \end{array} ight]$	$\begin{bmatrix} D & D_s \\ (33.3, 35.5) \end{bmatrix}$	D* D .	[35.5] DD*	2+	$\left[\begin{array}{c}10869.9\end{array}\right]$	$\begin{bmatrix} B & B_{S} \\ [(33.3, 10.0) \\ \bar{B}^{*}\bar{B}^{*} & \bar{B}^{*}\bar{B} \end{bmatrix}$		$\left[\begin{array}{c}10.0\end{array}\right]$
1+	$\left[\begin{array}{c} 4182.2\\ 4146.6\\ 4009.2 \end{array}\right]$	$\begin{bmatrix} (49.6, 42.7) \\ (0.0, 0.0) \\ (0.4, -) \\ D^* D_a^* \end{bmatrix}$	$\begin{array}{c c} \hline & & & & \\ \hline & & & $	$\begin{bmatrix} 4.5, 7.0 \\ 3.6, 23.7 \\ 0.5, 13.1 \end{bmatrix} \begin{bmatrix} 56.1 \\ 47.8 \\ 27.0 \end{bmatrix}$	1+	$\left[\begin{array}{c} 10846.5\\ 10819.1\\ 10722.2 \end{array}\right]$	$ \begin{bmatrix} 0.1, 0.0 \\ (44.2, 10.4) \\ (5.7, -) \\ \bar{B}^* \bar{B}^*_{a} \end{bmatrix} \begin{bmatrix} 0.1, 0.1, 0 \\ (11.3, 3) \\ (11.3, 3) \\ (15.3, 2) \\ \bar{B}\bar{B} \end{bmatrix} $	$ \begin{bmatrix} s \\ s \\ s \\ s \\ s \\ s \\ \hline s \\ s \\$	$\left[\begin{array}{c}10.9\\16.3\\4.3\end{array}\right]$
0+	$\left[\begin{array}{c}4295.1\\4018.8\end{array}\right]$	$\begin{bmatrix} (55.3, 76.7) \\ (3.0, -) \end{bmatrix}$	(0.2, 0.4) (41.5, 65.0)	$\begin{bmatrix} 77.1 \\ 65.0 \end{bmatrix}$	0+	$\left[\begin{array}{c}10903.8\\10807.8\end{array}\right]$	$ \begin{bmatrix} (56.7, 18.9) \\ (1.7, 0.4) \end{bmatrix} \begin{bmatrix} (0.7, 0) \\ (41.0, 1) \end{bmatrix} $	0.3) 3.8)	$\left[\begin{array}{c}19.2\\14.2\end{array}\right]$
		D* D*	$cc\bar{s}\bar{s}$				$bb\bar{s}\bar{s}$	9	
2+	$\left[\begin{array}{c} 4293.5 \end{array} ight]$	$\begin{bmatrix} D_s D_s \\ (33.3, 14.6) \end{bmatrix}$ $D^* D_s$		[14.6]	2+	[10946.1]	$\begin{bmatrix} B_s B_s \\ (33.3, 4.7) \end{bmatrix} \\ \bar{B}^* \bar{B}_s$		$\left[\begin{array}{c} 4.7 \end{array} \right]$
1+	$\left[\begin{array}{c}4222.0\end{array}\right]$	$\begin{bmatrix} (16.7, 42.7) \end{bmatrix}$	DoDo	[42.7]	1+	$\left[\begin{array}{c}10921.6\end{array}\right]$	$\begin{bmatrix} -s - \bar{s} \\ \bar{s} - \bar{s} \\ $	L.	$\left[\begin{array}{c}10.3\end{array}\right]$
0+	$\left[\begin{array}{c}4366.6\\4090.7\end{array}\right]$	$ \begin{bmatrix} 2 & 2 & 2 \\ (55.0, 33.6) \\ (3.3, -) \end{bmatrix} $	$\begin{array}{c} 0.1, 0.1 \\ (41.5, 29.1) \end{array}$	$\left[\begin{array}{c} 33.8\\29.1\end{array}\right]$	0+	$\left[\begin{array}{c}10975.7\\10878.7\end{array}\right]$	$ \begin{array}{c c} $	[0.1)] [6.5)]	$\left[\begin{array}{c} 8.8\\6.8\end{array}\right]$
					J^P	Mass	$bc\bar{s}\bar{s}$ Chann	nels	Г
					0+ I	7617 0 1	$B_{s}D_{s}$		[10

Ratios between partial widths as predictions for tetraquark states that have two or three rearrangement decay channels.

TABLE I: Masses (M) and widths (Γ) of the fully-heavy tetraquark states in units of MeV. Their observation channels are presented in the last column. Both CMS and ATLAS Collaborations used two models in determining the resonance parameters.

Collaboration	State	(N_{i})	Observation Channel			
LHCb [1]	X(6900)	$(6905\pm11\pm7)$	7, $80 \pm 19 \pm 33$)	$J/\psi J/\psi$		
		Interference model	No-interference model			
CMS[3]	X(6600)	$(6638^{+43+16}_{-38-31}, 440^{+230+110}_{-200-240})$	$(6552 \pm 10 \pm 12, 124^{+32}_{-26} \pm 33)$	$J/\psi J/\psi$		
[]	X(6900)	$(6847^{+44+48}_{-28-20}, 191^{+66+52}_{-49-17})$	$(6927 \pm 9 \pm 4, 122^{+24}_{-21} \pm 18)$			
	X(7200)	$(7134^{+48+41}_{-25-15}, 97^{+40+29}_{-29-26})$	$(7287^{+20}_{-18} \pm 5, 95^{+59}_{-40} \pm 19)$			
		Model A	Model B			
	X(6400)	$(6410 \pm 80^{+80}_{-30}, 590 \pm 350^{+120}_{-200})$	$(6650 \pm 20^{+30} \ 440 \pm 50^{+60})$	$J/\psi J/\psi$		
ATLAS[4]	X(6600)	$(6630 \pm 50^{+80}_{-10}, 350 \pm 110^{+110}_{-40})$	$(0000 \pm 20_{-20}, 440 \pm 00_{-50})$			
	X(6900)	$(6860 \pm 30^{+10}_{-20}, 110 \pm 50^{+20}_{-10})$	$(6910 \pm 10 \pm 10, 150 \pm 30 \pm 10)$			
		Model α	Model β	I/a/a/(2S)		
	X(7200)	$(7200 \pm 30^{+10}_{-40}, 90 \pm 60^{+60}_{-50})$	$(6960 \pm 50 \pm 30, 510 \pm 170^{+110}_{-100})$	υ /ψψ(2 υ)		

				2 0	State				Mass (MeV) Γ (MeV)			V)	Observed channels	
((3) <i>cc<u>cc</u> :</i>	states		X(0	6900)[L]	HCb:	2020bwg	690	$5\pm11\pm7$	7 MeV	$80 \pm 19 \pm 3$	33 MeV	di-J	$/\psi$
				-X(6600)[C	CMS:2	2023owd]	6552	$2 \pm 10 \pm 12$	2 MeV	$124^{+32}_{-26} \pm 3$	3 MeV	$\mathrm{di}J$	$/\psi$
				X	$(200)[C]{3400}[A']{3400}$	TLAS	20230wd] S•2023bft	6.41	$\frac{87}{18} \pm 5$ $\pm 0.08^{\pm 0.0}$	MeV	$95_{40}^{+} \pm 1$ $159 \pm 0.35^{+}$	9MeV	di-J	$/\psi$
8		3		-X(0)	5600)[A]	TLAS	5:2023bft 5:2023bft	6.63	$\pm 0.05^{+0.0}_{-0.0}$	$^{03}_{01}$ GeV ($0.35 \pm 0.35_{-}$	$^{0.2}_{0.11}$ GeV	di-J	ψ/ψ
				X(7	7200)[A'	TLAS	5:2023bft	7.22	$2 \pm 0.03^{+0.2}_{-0.2}$	$^{01}_{04}$ GeV ($0.095 \pm 0.6^+_{}$	$^{0.04}_{0.05}$ GeV	$J/\psi +$	$\psi(2S)$
	669	4			System	J^P	(C) N	lass			Channels			Γ
			6638			in the set			J/ψ .	J/ψ	$J/\psi\eta_c$	η_c	$_{c}\eta_{c}$	
	218 MeV 6581				2^{+}	-+ 6	537.5	(33.3,	80.2)				80.2	
			162 Mo	/	cccc	1+	- 6	581.0	_	_	(16.7, 172.1)	_	_	172.1
	6476	6	V 102 Mev	/		0+	+ 6	594.3	(54.9, 1	138.2)		(0.1	, 0.3)	138.5
()			Inp	out C	MS X	<u>(66</u>))) →[6	76.4	(3.5,	6.9)		(41.6,	110.7)	117.7
E I	ATLAS:		System .	$J^{P(C)}$	Mass				Channels			Г		
2	X(6600)	-X(6400)~2	220 MeV		-			J	$J/\psi J/\psi$	$J/\psi\eta_{c}$	η_{c}	η_c		
av						2^{++}	6637.5	(33	.3, 213.5)					213.5
2			<i></i>	(0 0) ti	$cc\bar{c}\bar{c}$	1+-	6581.0		· · · · ·	(16.7, 45)	_{8.0)} Input A	ATLAS	X(6600)	458.0
			(J/ψJ/ψ)	(0,2)		0++	6694.1	(54	.9,367.7)		(0.1)	, 0.9)		368.6
		tetraquark	s AT	LAS	X(64)	ŬO)+	→ 6476.4	(3	(.5, 18.5)		(41.6,	294.8)		313.2
	are unstah		(η _c J/ψ	')1 ⁺⁻	System	$J^{P(C)}$	Mass	1			Channels			Г
									$I/\psi J/\psi$	$J/\psi\eta_{c}$	η_{c}	η_c		1980
			(η _c η _c)(0,2			2^{++}	6637.5	(33	3.3, 352.3)		Input	ATLAS	X(6600)	$\rightarrow 352.3$
					$cc\bar{c}\bar{c}$	1^{+-}	6581.0	_	22	(16.7, 75)	5.8)	(<u>_</u>)	(,	755.8
5		1	Ē]	0^{++}	6694.1	(54	4.9,606.8)		(0.1	, 1.4)		608.2
	0++	1+-	2 ⁺⁺ AT	LAS	X(64	<u>(00</u>	→ 6476.4	(3	3.5, 30.5)		(41.6,	486.4)	29	516.9

 $cn\overline{sn}$: I=0 & I=1 degenerate

(4) Q <i>q</i> q <i>q</i> states	State	Mass(MeV)	$\Gamma ({ m MeV})$	Observed channels
	$T_{cs0}(2900)^{0}$ [LHCb:2020pxc,LHCb:2020bls]	$2866\pm7\pm2$	$57 \pm 12 \pm 4$	$B^+ \to D^+ D^- K^+$
P=- →	$T_{cs1}(2900)^{0}$ [LHCb:2020pxc,LHCb:2020bls]	$2904 \pm 5 \pm 1$	$110 \pm 11 \pm 4$	$B^+ \to \bar{D}^+ \bar{D}^- \bar{K}^+$
	$T^{a}_{c\bar{s}0}(2900)^{0}$ [LHCb:2022sfr,LHCb:2022lzp]	$2892\pm21\pm2$	119 ± 29	$B^0 ightarrow \bar{D}^0 D_s^+ \pi^-$
C=13.577 GeV ←	$T^{a}_{c\bar{s}0}(2900)^{++}$ [LHCb:2022sfr,LHCb:2022lzp]	$2921\pm23\pm2$	137 ± 35	$B^+ \to D^- D_s^+ \pi^+$

Summary

$$M = M_{X(4140)} - (E_{CMI})_{X(4140)} + \sum_{ij} n_{ij} \Delta_{ij} + E_{CMI}$$

With one mass formulae and a simple decay scheme:

 \Rightarrow X(3960) is a good candidate of the lowest 0^{++} $cs\overline{cs}$ tetraquark state.

- The lowest $0(1^+)$ $cc\overline{u}\overline{d}$ tetraquark state can be used to understand the LHCb T_{cc} state. [mass, width, production]

• $T^{a}_{c\overline{s}0}(2900)$ as the second highest I=1 $cn\overline{sn}$ tetraquark state; $T_{cs0}(2900)$ as the higher I=0 $cs\overline{u}d$ tetraquark state.

The 23rd International Conference on Few-Body Problems in Physics (FB23)

Thank you for your attention!