PDF of Deuteron-like Di-baryon system from Lattice QCD

Chen Chen

Institute of Modern Physics, Chinese Academic of Sciences

in collaboration with

Yiqi Geng , Liuming Liu, Peng Sun, Yibo Yang, Fei Yao, Jianhui Zhang and Kuan Zhang

The 23rd International Conference on Few-Body Problems in Physics (FB23)

- Introduction & Motivation
- Lattice Simulation
- Numerical Result
- Summary

A schematic illustration of the nucleon internal structure at different energy scales

- Nucleon: relativistic bound state of partons (quarks and gluons);
- Parton distribution functions (PDFs) : possibility density of parton carrying momentum fraction x.

Parton model (Feynman, 1972)

Parton distribution function (PDF)

Lattice QCD (K.G.Wilson ,1974)

• One **configuration** is one possible path in the path integration containing the gauge link values at each time-space point

- Systematical non-perturbative QCD approach based on first-principle.
- Simulation in 4-dimensional Euclidian space using super computer.

- Light-cone quantities cannot be calculated directly using Lattice QCD approach
- Large momentum effective theory(LaMET)

 $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ Quasi-PDF $\frac{t = 0, z - ct \neq 0}{1 + y}$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$ $\tilde{q}(x) = \int \frac{dz}{4\pi} e^{-ixz \cdot p_z} \langle P | \bar{\psi}(z) \gamma^t U(z, 0) \psi(0) | P \rangle$

Phys.Rev.Lett. 110 (2013) 262002

 Progress using LaMET proton unpolarized PDF *Phys.Rev.D* 101 (2020) 3, 034020 proton transversity PDF *PhysRevLett.*131.261901

- Deuteron: simplest multi-baryon bound system.
- Binding Energy: 2.22452(20)MeV Hard to identify deuteron bound state through LQCD calculation!

Phys.Rev.D 107 (2023) 9, 094508

• Quantum Number:

 $I = 0, J^P = 1^+$ L = 0/2, S = 1

 Calculating the structure of deuteron-like dibaryon system may offer an alternative perspective to study the interaction between nucleons. • EMC effect $\frac{F_2^D(x)}{F_2^P(x)+F_2^N(x)} \neq 1$

Phys.Rev.Lett. 127 (2021) 24

Simulation Setup

PRD109(2024)5,054507

Name	Volume	Lattice Spacing	Beta	m_{π} (MeV)	$m_{{m \eta}_{ m S}}$ (MeV)	Nconf
C24P29	$24^{3} \times 72$	0.105 fm	6.20	293	659	759
C32P29	$32^3 \times 64$	0.105 <i>fm</i>	6.20	293	659	870
C24P90	$24^{3} \times 72$	0.105 fm	6.20	941	941	750

• 2+1 flavour ensembles with stout smeared clover fermion action

• Two point and three point correlators

$$C^{\text{2pt}}(P_z, t) = \langle N(t_{sep}, P_z) | N'^{\dagger}(0, P_z) \rangle$$

 $C^{3\mathrm{pt}}(P_z, z, t) = \left\langle N(t_{sep}, P_z) \left| \bar{\psi}(t; z) \gamma^{\mathrm{t}} U(t; z, 0) \psi(t; 0) \right| {N'}^{\dagger}(0, P_z) \right\rangle$

- Di-baryon operator: combination of proton and neutron operator , which have an overlap with Deuteron's quantum number I $(J^P) = 0$ (1^+) .
- Correlator of di-baryon system is made up of a hexaquark source and a dibaryon sink

Three-point correlator of Deuteron-type dibaryon system

• Dispersion relation of proton

 $C^{2\text{pt}}(P_z, t) = c_4 e^{-E_0(P_z)t} (1 + c_5 e^{-\Delta Et})$

 $E_0(P_z)^2 = m^2 + c_2 P_z^2 + c_3 a^2 P_z^4$

Ensemble	c_2	c_3	$\chi^2/d.o.f.$
C32P29	1.067(29)	-0.022(50)	1.43
C24P29	1.085(28)	-0.015(19)	0.33
C24P90	0.953(14)	-0.0054(99)	0.81

• Mass difference between dibaryon system and free nucleons

 $C^{2\text{pt}}(P_z = 0, t) = c_4 e^{-\frac{E_0(t)}{2}} (1 + c_5 e^{-\Delta E t})$

• Joint fitting to obtain ground state bare matrix elements $\tilde{h}^B(z)$

$$C^{2pt}(P_{z},t) = c_{4}e^{-E_{0}t}(1 + c_{5}e^{-\Delta Et})$$
bare matrix
element
$$R_{\Gamma}^{3pt}(P_{z},t,t_{sep}) = \frac{C_{\Gamma}^{3pt}(P_{z},t,t_{sep})}{C^{2pt}(P_{z},t_{sep})}$$

$$\approx \frac{\hbar^{B}(z,P_{z}) + c_{1}e^{-\Delta E(t_{sep}-t)} + c_{2}e^{-\Delta Et} + c_{3}e^{-\Delta Et_{sep}}}{1 + c_{5}e^{-\Delta Et_{sep}}}$$

$$\pi^{1} + c_{5}e^{-\Delta Et_{sep}}$$

11

The self renormalization factor is extracted by fitting the bare matrix elements of pion:

At short range: $\frac{\tilde{h}^{\pi}(z,P_z=0,1/a)}{Z_R(z,1/a)} = Z_{\overline{MS}}(z,\mu)$, where $Z_{\overline{MS}}(z,\mu)$ is perturbative one-loop $\overline{\text{MS}}$ result

Nucl.Phys.B 964 (2021) 115311 Nucl.Phys.B 969 (2021) 115443

Renormalized matrix elements (hybrid scheme, $\mu = \sqrt{10}$ GeV)

Name	Volume	m_{π} (MeV)
C32P29	$32^3 \times 64$	293

• The results of dibaryon system is compared with that of free nucleons.

Renormalized matrix elements (hybrid scheme, $\mu=\sqrt{10}{
m GeV}$)

Name	Volume	m_{π} (MeV)
C24P29	$24^{3} \times 72$	293

• The results of dibaryon system is compared with that of free nucleons.

Renormalized matrix elements (hybrid scheme,
$$\mu=\sqrt{10}{
m GeV}$$
)

Name	Volume	m_{π} (MeV)
C24P90	$24^{3} \times 72$	941

• The results of dibaryon system is compared with that of free nucleons.

Large lambda extrapolation:

• Fourier transformation requires results in the whole coordinate space

At large $\lambda = zP_z$, • $\tilde{h}(\lambda) = \left[\frac{c_1}{(i\lambda)^{d_1}} + e^{-i\lambda}\frac{c_2}{(-i\lambda)^{d_2}}\right] e^{-\frac{\lambda}{\lambda_0}}$ 17.5 2.95GeV 15.0 C32P29 dibaryon(u) 12.5 3.5 2.0 Lattice Data Lattice Data 10.0 3.0 1.5 Extrapolation Extrapolation $q^{D(u)}$ fit range fit range 2.5 1.0 7.5 $H_{\pi^{-0.5}}^{[(0.5)]}$ Re[$\dot{h}_{R}(\lambda, P_{z})$] 2.0 5.0 C32P29 1.5 dibaryon 2.95GeV 2.5 1.0 C32P29 dibaryon 0.5 2.95GeV -1.00.0 0.0 -1.5-0.25 0.00 0.25 -1.00-0.75 -0.50 0.50 0.75 1.00 -0.5Х -2.0-40 -20 20 40 60 -600 -40 -20 20 40 60 -600 λ λ

Renormalized matrix elements

$$\tilde{q}(x) = \int \frac{d\lambda}{4\pi} e^{-ix\lambda} \tilde{h}(\lambda)$$

quasi-PDF

16

• Matching to infinite light-cone PDF:

quasi-PDF & light-cone PDF

Numerical Result

- E_{lam} from lambda extrapolation : difference between different fitting range of extrapolation
- E_{μ} from renormalization scale μ : difference between $\sqrt{10}$ GeV and 2GeV.
- E_{z_s} from the choice of z_s : difference between $z_s = 0.21 fm$ and 0.105 fm
- *E_{mom}* from momentum extrapolation : difference between infinite momentum and largest momentum case.

Numerical Result

Light-cone PDF of dibaryon and the sum of proton and neutron :

Ratio of dibaryon to the sum of proton and neutron:

2.0

➢We calculated unpolarized PDF of deuteron type dibaryon system and compared with free nucleon using LaMET :

- Calculation at single lattice spacing a=0.105fm, two different pion mass 293MeV&940MeV;
- State-of-art renormalization, matching and extrapolation;
- Statistic errors are under control .

