CPV & Rare decay of B meson at Belle II

鄢文标(中国科学技术大学)

"重味物理前沿论坛研讨会",2023.11.25,武汉

SuperKEKB & Belle II

- Asymmetric e⁺e⁻ collider @ Tsukuba, Japan
 Achieved luminosity: 4.7×10³⁴ cm⁻² s⁻¹
 - ✓ Target: 6.5×10^{35} cm⁻² s⁻¹
- Target data sample: 50 ab⁻¹
- Belle II collects 428 fb⁻¹ data sets
 - ✓ ~ BaBar; ~ half of Belle

CKM matrix and unitarity triangle

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cong \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- CKM matrix: quarks mixing matrix
- Wolfenstein parametrization: A, ρ , $\eta \& \lambda = |V_{us}| \checkmark \eta$: source of CP violation in SM
- CKM unitarity \Rightarrow six unitarity triangle $\checkmark V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
- CKM unitarity test by angle & sides of CKM triangle
 - ✓ Angles: CP violation measurement in B decays
 - ✓ Sides: Branching fractions or mixing frequencies
- Precise measurements of Unitarity Triangle provides an interesting test for CKM mechanics, and a searching for New Physics.

$$\phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
$$\phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Time dependent CP violation

B⁰ and B
⁰ decay to a common CP eigenstate f_{CP}
For CP eigenstate, time dependent decay rate

A_{CP}: mixing induced CPV, A_{CP} = 0 @ SM
S_{CP}: direct CPV, S_{CP} = -η_{CP}sin(2φ₁) @ SM
q = -1 for B⁰; q = +1 for B
⁰
T_{B⁰} & Δm_d: B⁰ lifetime; B⁰-B
⁰ oscillation frequency

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{R^0}} \{1 + q \cdot [\mathcal{A}_{AP}\cos(\Delta m_d \Delta t) + \mathcal{S}_{AP}\sin(\Delta m_d \Delta t)]\}$$

$$\mathcal{A} = \frac{\Gamma(B^0 \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\bar{B}^0 \to f_{CP}) + \Gamma(B^0 \to f_{CP})}$$

CP asymmetry

- Δt measurement $\leftarrow \Delta z$ measurement
 - ✓ Good vertex resolution 15 μ m
 - ✓ Coherent $B^0\overline{B}^0$ pairs
 - ✓ High B tagging efficiency
 - ✓ Enhanced resolution by small beam size

CKM triangle angle $\phi_1/\beta @ B^0$ /ψK^vs

- Golden channel for $sin(2\phi_1)$ measurement
 - ✓ Relatively high branching fraction
 - ✓ Low background, ~ 99% purity
 - ✓ Tree-level contribution dominates
 - ✓ Small penguin pollution, $S_{CP} = sin(2\phi_1)$ approximation better than 2%
- Fit background-subtracted Δt distribution for \mathcal{A}_{CP} and \mathcal{S}_{CP}
 - $S_{CP} = 0.720 \pm 0.062(stat) \pm 0.016(syst)$ $\mathcal{A}_{CP} = 0.094 \pm 0.044(stat)^{+0.042}_{-0.017}(syst)$
- New flavor tagger GFlaT: ~ 8%reduction in statistical uncertainty

 $S_{CP} = 0.724 \pm 0.035(stat) \pm 0.014(syst)$ $\mathcal{A}_{CP} = 0.035 \pm 0.026(stat) \pm 0.012(syst)$

SappX ^l fv:2302.12898	$N_{\rm evts}$	$p_{\rm sig}(\%)$	$\varepsilon_{\rm sig}(\%)$	S_{CP}	A_{CP}
$B^0 \to J/\psi K_S^0$	2755	98.6	40.6	0.720 ± 0.062	0.094 ± 0.044
$B^0 \to J/\psi (\to \mu^+ \mu^-) K_s^0$	1615	99.2	47.6	0.776 ± 0.078	0.042 ± 0.057
$B^0 \to J\!/\!\psi (\to e^+ e^-) K^0_{\scriptscriptstyle S}$	1140	98.0	33.6	0.676 ± 0.093	0.185 ± 0.068

10.0

7.5

$\mathbf{CPV} @ \mathbf{b} \longrightarrow \mathbf{sq}\overline{\mathbf{q}} (\mathbf{q} = \mathbf{d}, \mathbf{s})$

- Gluonic penguin modes: sensitive to interfering non-SM physics
- **CP-even state 3K**⁰_S:
 - $\checkmark @ SM: S_{CP} \approx -\sin(2\phi_1) \& \mathcal{A}_{CP} = 0$
 - ✓ Deviation of S_{CP} : 0.02 with uncertainty smaller than 0.01
- The deviation indicate either large sub-leading amplitudes or non-SM physics

$CPV @ B^0 \rightarrow K^0_S K^0_S K^0_S$

- B vertex challenge: no prompt tracks from B
 - ✓ Trajectories and profile of interaction point
- Two BDT classifiers:
 - ✓ Reduce fake K_S^0 contribution
 - ✓ Reduce continuum $q\overline{q}$ backgrouds
- The results are consistent with that of Belle & BaBar

$$S = -1.86 \stackrel{+0.91}{_{-0.46}} (\text{stat}) \pm 0.09 (\text{syst})$$
$$\mathcal{A} = -0.22 \stackrel{+0.30}{_{-0.27}} (\text{stat}) \pm 0.04 (\text{syst})$$

$\mathbf{CPV} @ \mathbf{B^0} \leftrightarrow \mathbf{\varphi}\mathbf{K_S^0}$

- Clean experimental signature
 - ✓ Similar Δt resolution as $B^0 \rightarrow J/\psi K_S^0$
- A BDT classifier for continuum $q\overline{q}$ backgrouds
- Dilution from non-resonant decays with opposite CP
 - ✓ Non-resonant $B^0 \rightarrow K^+K^-K^0_S$ disentangled in $\cos\theta_H$
- $162 \pm 17 \ B^0 \rightarrow \varphi K_S^0$ events

	$N(B\overline{B})$	S _{CP}	$\mathcal{A}_{\mathrm{CP}}$
Belle II	387 M	$0.54 \pm 0.26 ^{+0.06}_{-0.08}$	$0.31 \pm 0.20 \pm 0.05$
Belle	657 M	$0.90^{+0.09}_{-0.19}$	$0.04\pm 0.20\pm 0.10\pm 0.02$
BaBar	470 M	$0.66\pm 0.17\pm 0.07$	$0.05\pm 0.18\pm 0.05$
HFLAV		$0.74\substack{+0.11\\-0.13}$	0.01 ± 0.14

• Similar \mathcal{A}_{CP} uncertainty with smaller data set

CPV @ $B^0 \rightarrow K_s^0 \pi^0$

• Isospin symmetry, SM null test with O(1%) theory uncertainty \checkmark I_{K π}: 10% experimental uncertainty dominant B⁰ \rightarrow K⁰_S π^0

- $\mathbf{b} \rightarrow \mathbf{sd}\overline{\mathbf{d}}$ with color & CKM-suppressed $\mathbf{b} \rightarrow \mathbf{su}\overline{\mathbf{u}}$ ✓ Introduce an extra weak phase, shift s_{CP} from sin(2 ϕ_1)
- Challenge: Decay vertex reconstruction
 - \checkmark K⁰_S reconstruction & vertexing
 - \checkmark High purity & efficient π^0 selection
- $B^0 \rightarrow K^0_{S} \pi^0$ accessible at e⁺e⁻ B factories
- Consistent results with less (60%-80%) luminosity

	$N(B\overline{B})$	$\mathcal{S}_{ ext{CP}}$	$\mathcal{A}_{\mathrm{CP}}$
Belle II	387 M	$0.75^{+0.20}_{-0.23}\pm 0.04$	$0.04^{+0.14}_{-0.15}\pm0.05$
Belle	657 M	$0.67\pm 0.31\pm 0.08$	$0.14\pm0.13\pm0.06$
BaBar	467 M	$0.55\pm 0.20\pm 0.03$	$0.13\pm 0.13\pm 0.03$
HFLAV		0.57 ± 0.17	0.01 ± 0.10

 K_{S}^{0}

 B^0

Beam spot

 K^0

$CPV @ B^0 \rightarrow \eta' K_S^0$

- **b** \rightarrow **s** penguin process
- Relatively high BF w.r.t. other gluonic penguins
- High background form continuum $q\overline{q}$
- η' modes: $\eta(2\gamma)p^+\pi^-$ & $\gamma \rho(\pi^+\pi^-)$ $\checkmark \eta' \rightarrow \eta \pi^+\pi^-$ mode: 358 ± 20 event $\checkmark \eta' \rightarrow \gamma \rho$ mode: 471 ± 29 event
- Consistent results with Belle & BaBar

	$N(B\overline{B})$	$\mathcal{S}_{ ext{CP}}$	$\mathcal{A}_{ ext{CP}}$
Belle II	387 M	$0.67 \pm 0.10 \pm 0.04$	$0.19\pm 0.08\pm 0.03$
Belle	657 M	$0.68\pm 0.07\pm 0.03$	$0.03\pm 0.05\pm 0.03$
BaBar	467 M	$0.57 \pm 0.08 \pm 0.02$	$0.08 \pm 0.06 \pm 0.02$
HFLAV		0.63 ± 0.06	0.05 ± 0.04

Radiative penguins @ $B^0 \rightarrow K_S^0 \pi^0 \gamma$

- SM: $b \rightarrow s \gamma$ forbidden @ tree level, loop contribution
- Polarization of photon constrains flavor
 - ✓ @ SM: S_{CP} helicity suppressed, $S_{CP} = 0.035 \pm 0.017$
- New physics could contribute into *S*_{CP} significantly
- Challenge: no prompt tracks, reconstruct decay vertex
 - \checkmark from K⁰_S using beam spot constraint
- $B^0 \to K^0_S \pi^0 \gamma$ accessible at e⁺e⁻ B factories
- Two $M(K\pi)$ region:
 - ✓ K*(892) [0.8, 1.0]GeV, and rest of [0.6, 1.8]GeV
- Most precise results to date

	$N(B\overline{B})$	Mode	$\mathcal{S}_{ ext{CP}}$	$\mathcal{A}_{\mathrm{CP}}$
Belle II	387 M	$K^*(892)^0\gamma$	$0.00^{+0.27}_{-0.26}\pm0.03$	$0.10\pm 0.13\pm 0.03$
HFLAV		$K^*(892)^0\gamma$	-0.16 ± 0.22	-0.04 ± 0.14
Belle II	387 M	$K_S^0 \pi^0 \gamma$	$0.04^{+0.45}_{-0.44}\pm0.10$	$-0.06 \pm 0.25 \pm 0.08$
Belle	657 M	$K_S^0 \pi^0 \gamma$	0.50 ± 0.68	0.20 ± 0.39

CKM angle $\phi_2/\alpha @ b \longrightarrow du\overline{u}$

- CKM angle ϕ_2/α with most poor precision \checkmark HFLAV: $\phi_2 = (85.2^{+4.8}_{-4.3})^{\circ}$
- Tree & penguin amplitudes have similar magnitudes
- Penguin pollution complicates extraction
 - $\checkmark \phi_2^{\text{eff}} = \phi_2 + 2\Delta\phi_2$
 - ✓ Introduce hadronic uncertainty
- Isospin relation to disentangle tree and penguin contributions

 \bar{B}^0

✓ Using Br and CP asymmetry *A*

Mode	Tree	Penguin
$\pi^+\pi^-$	 ✓ 	
$\pi^+\pi^0$	\checkmark	×
$\pi^0\pi^0$	suppressed	~

 \bar{R}^0

t, c, u

$B \rightarrow \pi\pi$ results

- $B^0 \rightarrow \pi^0 \pi^0$ mode
 - \checkmark constrain penguin component
- A BDT classifier to suppress non-signal photon
- A BDT classifier for continuum $q\overline{q}$ backgrouds
- Br & CP asymmetry by fitting
 - $\checkmark\,$ achieve Belle Br precision, using only 1/3 of dataset

 $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$ $\mathcal{A}(B^0 \to \pi^0 \pi^0) = 0.14 \pm 0.46 \pm 0.07$

• $B^0 \rightarrow \pi^+\pi^- \& B^+ \rightarrow \pi^+\pi^0 \text{ modes}^{\text{BOD}}$ Belle II (Preliminary) Belle II (Preliminary) $\rightarrow \pi^+\pi^- + c.c.$ $\int L dt = 362 \text{ fb}^{-1}$ $\rightarrow K^+\pi^- + c.c.$ $\int L dt = 362 \text{ fb}^{-1}$ 200 ✓ Updated with 362 fb⁻¹ data $\frac{3}{2}$ 600 10 MeV Background 150 • World best Br of $B^0 \to \pi^+\pi^-$ 400 -Cand. Cand. $\mathcal{B}(B^0 \to \pi^+\pi^-) = (5.83 \pm 0.22 \pm 0.17) \times 10^{-6}$ 200 50 $\mathcal{B}(B^+ \to \pi^+ \pi^0) = (5.10 \pm 0.29 \pm 0.27) \times 10^{-6}$ IIn 2.5 −2.5 Pull $\mathcal{A}(B^+ \to \pi^+ \pi^0) = -0.081 \pm 0.054 \pm 0.008$ -0.1-0.3-0.20.10 0.15 0.20 -0.10-0.050.00 0.05 ΔE [GeV]

0.3

 $B^+ \rightarrow \pi^+ \pi^0 + c. c.$

 $B\overline{B}$ background

0.1

0.0

 $\Delta E [GeV]$

 $T \rightarrow K^+ \pi^0 + c. c.$

Continuum background

0.2

A new constraint to ϕ_2/α from $\pi\pi$ analysis ?

CKM angle ϕ_3/γ

• ϕ_3/γ : using interference b $\rightarrow c\overline{u}s \& b \rightarrow u\overline{c}s$ $\frac{A_{sup}(B^- \to \bar{D}K^-)}{A_{fav}(B^- \to DK^-)} = r_B \ e^{i(\delta_B - \phi_3)}$ B B D^0 ū Π colour allowed • Only tree contributions, theoretically clean colour suppressed $B^-
ightarrow D^0 K^- pprox V_{cb} V_{us}^* \qquad B^-
ightarrow ar{D^0} K^- pprox V_{ub} V_{cs}^*$ • Direct measurement $\phi_3 = (66.2^{+3.4}_{-3.2})^{\circ}$ $A_1 r_B e^{i(\delta_B - \phi_3)}$ A₁ \checkmark indirect measurement $\phi_3 = (63.4 \pm 0.9)^{\circ}$ $\overline{D^0}K^-$ • Amplitude ratio $\mathbf{r}_{\mathbf{R}}$ and strong phase $\delta_{\mathbf{R}}$ are $r_{R} e^{i(\delta_{B}-\phi_{3})}$ mode dependent 0.25 $[f]_D K^-$ **JHEP 02 (20** ✓ Sensitivity depend on modes 0.2 • Approaches: different D final states ລຸ້ຼ 🗠 0.15 D^0K^- ✓ Self-conjugate final states $D \rightarrow K_S^0 h^+ h^-$ Belle + Belle II: $\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}$ 0.1 $\rightarrow K_{c}^{0}h^{+}h^{-}$ ✓ Cabibbo suppressed decays $D \to K^0_{\varsigma} K^{\pm} \pi^{\mp}$ 0.05^L 50 100 150 ✓ CP eigenstates $D \rightarrow K^+K^-$, $K_S^0\pi^0$ φ₃ [°]

CKM angle $\phi_3/\gamma @ D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$

•
$$\mathbf{B}^{\pm} \rightarrow \mathbf{Dh}^{\pm}$$
 ($\mathbf{h} = \mathbf{K}, \pi$) with $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}}^{\mathbf{0}} \mathbf{K}^{\pm} \pi^{\mp}$

- \checkmark Decay type **m** = **SS**: **B** & K @ D, same sign
- \checkmark Decay type **m** = **OS**: B & K @ D, opposite sign
- Four CP asymmetries and three Br ratios
 - ✓ Model-independent information on ϕ_3/γ
- First Belle & Belle II result from this channel
- Consistent with LHCb, but not competitive

$$\mathcal{A}_{m}^{Dh} \equiv \frac{N_{m}^{Dh^{-}} - N_{m}^{Dh^{+}}}{N_{m}^{Dh^{-}} + N_{m}^{Dh^{+}}}$$
$$\mathcal{R}_{m}^{DK/D\pi} \equiv \frac{N_{m}^{DK^{-}} + N_{m}^{DK^{+}}}{N_{m}^{D\pi^{-}} + N_{m}^{D\pi^{+}}}$$
$$\mathcal{R}_{SS/OS}^{D\pi} \equiv \frac{N_{SS}^{D\pi^{-}} + N_{SS}^{D\pi^{+}}}{N_{OS}^{D\pi^{-}} + N_{OS}^{D\pi^{+}}}$$

$$\begin{split} \mathcal{A}_{\rm SS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} - \delta_D)\sin\phi_3}{1 + (r_B^{DK})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}, \\ \mathcal{A}_{\rm OS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} + \delta_D)\sin\phi_3}{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ \mathcal{A}_{\rm SS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} - \delta_D)\sin\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ \mathcal{A}_{\rm OS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} + \delta_D)\sin\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}. \\ \mathcal{R}_{\rm SS}^{DK/D\pi} &= R\frac{1 + (r_B^{DK})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm OS}^{DK/D\pi} &= R\frac{(r_B^{CK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ \mathcal{R}_{\rm SS/OS}^{D\pi} &= \frac{1 + (r_$$

$$\begin{split} A_{\rm SS}^{DK} &= -0.089 \pm 0.091 \pm 0.011, \\ A_{\rm OS}^{DK} &= 0.109 \pm 0.133 \pm 0.013, \\ A_{\rm SS}^{D\pi} &= 0.018 \pm 0.026 \pm 0.009, \\ A_{\rm OS}^{D\pi} &= -0.028 \pm 0.031 \pm 0.009, \\ R_{\rm SS}^{DK/D\pi} &= 0.122 \pm 0.012 \pm 0.004, \\ R_{\rm OS}^{DK/D\pi} &= 0.093 \pm 0.013 \pm 0.003, \\ R_{\rm SS/OS}^{D\pi} &= 1.428 \pm 0.057 \pm 0.002, \end{split}$$

CKM angle $\phi_3/\gamma @ D \rightarrow K^+K^- \& K_S^0\pi^0$

- $B^{\pm} \rightarrow DK^{\pm}$ decay
 - $\checkmark D \rightarrow K^{+}K^{-} (CP \text{ even}) \& D \rightarrow K^{0}_{S}\pi^{0} (CP \text{ odd})$
- Neglect small effects of $D^0 \overline{D}^0$ mixing and CP violation in D^0 decay

$$\begin{aligned} \mathcal{R}_{CP\pm} &= \frac{\mathcal{B}r(B^- \to D_{CP\pm}K^-) + \mathcal{B}r(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}r(B^- \to D_{\mathrm{flav}}K^-) + \mathcal{B}r(B^+ \to D_{\mathrm{flav}}K^+)} \\ &= 1 + r_B^2 + 2r_B \cos \delta_B \cos \phi_3 \\ \mathcal{A}_{CP\pm} &\equiv \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} \\ &= \pm 2r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP\pm} \end{aligned}$$

- $\mathcal{A}_{CP+} \neq \mathcal{A}_{CP-}$: 3.5 σ evidence
- Consistent results, but no competitive

• Combined ϕ_3 @ Belle & Belle II $_{-0.2}$

 $\phi_3 = (66.2^{+3.4}_{-3.6})^{\circ}$

 $\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$ $\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$ $\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$

$$\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%,$$

Belle + Belle II preliminary $\int \mathcal{L}dt = (711 + 189) \text{ fb}^{-1}$

syst. uncert.

HFLAV 2021

1.0

1.1

1.2

1.3

1.4 R_{CP+}

0.9

0.1

-0.3

0.8

0.0 [∓]

95.4%

150

100

Rare $B^+ \rightarrow K^+ \nu \overline{\nu}$ @ SM

- $B^+ \to K^+ \upsilon \overline{\nu}$: flavor-changing neutral current
 - ✓ suppressed by GIM mechanism
 - ✓ @ SM: Br(B⁺ → K⁺ $\upsilon \overline{\nu}$) = (5.58±0.37)×10⁻⁶
- extensions beyond SM: substantially rate increase
- Very challenging experimentally
 - ✓ Low Br, high background contributions
 - ✓ 3-body kinematics, no good kinematic variable to fit
- Unique for e⁺e⁻ colliders
- Hadronic B-tagging vs. inclusive B-tagging
 - ✓ Reconstruct signal B final state

$B^+ \rightarrow K^+ \nu \overline{\nu} @ SM$

Summary and outlook

- Belle II collects 428 fb⁻¹ data, comparable to BaBar data, about half of Belle data
- Robust program to measure CKM angle $\phi_1/\phi_2/\phi_3$ @ B decays
 - ✓ Unique/competitive @ performance of neutral particles
 - ✓ CPV @ rare(penguin) decay, profiting from clean event topology

• Belle II prospects

- ✓ More data: restart data taking this winter
- ✓ Better control: software (GFlaT) & hardware (new pixel vertex detector modules)

Observable	2022	Belle-II	Belle-II	Belle-II
	Belle(II),	5 ab^{-1}	50 ab^{-1}	250 ab^{-1}
arXiv:2203.11349	BaBar			
$\sin 2\beta/\phi_1$	0.03	0.012	0.005	0.002
γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°	0.8°
α/ϕ_2 (WA)	4°	2°	0.6°	0.3°
$ V_{ub} $ (Exclusive)	4.5%	2%	1%	< 1%
$S_{CP}(B \to \eta' K_{\rm S}^0)$	0.08	0.03	0.015	0.007
$A_{CP}(B \to \pi^0 K_{\rm S}^0)$	0.15	0.07	0.025	0.018
$S_{CP}(B \to K^{*0}\gamma)$	0.32	0.11	0.035	0.015

B-factory variables

- \bullet Beam-constrained mass M_{bc} & energy discrepancy ΔE separating signal from backgrounds, with knowledge of beam energy
- Dominant background from $e^+e^- \rightarrow q\overline{q}(q = u, d, c, s)$
 - ✓ Jet-like vs. spherically symmetric event topology
 - \checkmark A BDT-classifier to reduce continuum $q\overline{q}$ background

GNN flavor tagger (GFLat)

- New flavor tagger based on graph neural network
- Use interrelation between particles
- Gain 18% relative tagging efficiency compared to Category-based flavor tagger (CB FT)

B-tagging: Full event interpretation (FEI)

- Hadronic vs. semi-leptonic tagging
- FEI algorithm for B-tagging
 - ✓ Hierarchical reconstruction of 10^4 B decay chains
 - ✓ Machine learning: ~ 200 BDTs trained with MC
- FEI output
 - ✓ List of tag candidates
 - \checkmark A probability to have correct reconstruction

able 1 Summary of the maximum tag-side efficiency of the Full
Event Interpretation and for the previously used exclusive tagging
lgorithms Comp. Soft. Big Sci 3 6 (2019)

	$B^{\pm}(\%)$	$B^{0}\left(\% ight)$
Hadronic		
FEI with FR channels	0.53	0.33
FEI	0.76	0.46
FR	0.28	0.18
SER	0.4	0.2
Semileptonic		
FEI	1.80	2.04
FR	0.31	0.34
SER	0.3	0.6

CKM angle ϕ_2/α (*a*) $B \rightarrow \rho\rho$

- Smaller Br of $B^0 \to \pi^0 \pi^0$
 - ✓ Smaller penguin pollution
 - $\checkmark \text{ Smaller } \Delta \phi_2 \rightarrow \text{ improved } \phi_2 \text{ precision}$
- **Polarization of P** \rightarrow **VV decay** $\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_{\rho^+} d \cos \theta_{\rho^-}} = \frac{9}{4} \left(f_L \cos^2 \theta_{\rho^+} \cos^2 \theta_{\rho^-} + (1 f_L) \frac{1}{4} \sin^2 \theta_{\rho^+} \sin^2 \theta_{\rho^-} \right)$
 - ✓ Longitudinal: Cp-even; Transversal: CP-even + CP-odd
 - \checkmark Only longitudinal polarization f_L for ϕ_2 measurement
- Angular analysis to disentangle longitudinal & Transversal polarization
- Complicated $\rho\rho$ analysis has better sensitivity to ϕ_2

$B \rightarrow \rho \rho$ results

- Broad width doesn't provide good signal-background separation
- Non-negligible contribution from peaking backgrounds
- Extract Br, f_L and CP asymmetry

extension to full sample promising

