Resolving negative cross section of quarkonium hadroproduction using soft gluon factorization

陈安平 江西师范大学

Based on: Chen, Ma, Meng, Phys.Rev.D 108 (2023) 1, 014003

重味物理前沿论坛研讨会, 2023.11.25-2023.11.26

I. Introduction

II. Soft gluon factorization

III. Phenomenological studies

IV. Summary

I. Introduction

II. Soft gluon factorization

III. Phenomenological studies

IV. Summary

Introduction

> Heavy quarkonium

- Bound state of $Q\overline{Q}$ pair under strong interaction the simplest system in QCD: two-body problem
- Non-relativistic system: $v^2 \ll 1$ Charmonium: $m \sim 1.5$ GeV, $v^2 \approx 0.3$ Bottomonium: $m \sim 4.5$ GeV, $v^2 \approx 0.1$
- Multiple well-separated scales :

quark mass: *m*, momentum: *mv*, energy: mv^2 $m \gg mv \gg mv^2 \approx \Lambda_{QCD}$

• Involving both pert. and nonpert. physics

> NRQCD factorization Bodwin, Braaten, Lepage, PRD, 1995

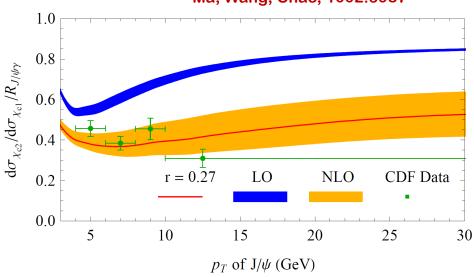
$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} = \sum_n d\hat{\sigma}_n (P_H) \langle \mathcal{O}_n^H \rangle$$

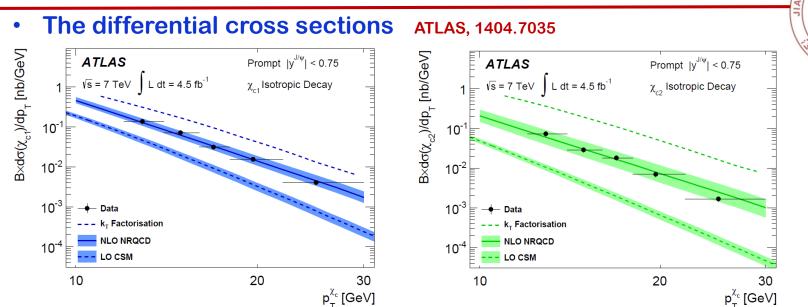
 $d\hat{\sigma}_n$: production of a heavy quark pair in state $n({}^{2S+1}L_J^{[c]})$. $\langle \mathcal{O}_n^H \rangle$: the hadronization of $\mathcal{Q}\overline{\mathcal{Q}}(n)$ to H; can be ordered in powers of v; universality.

> Achievement: χ_c production

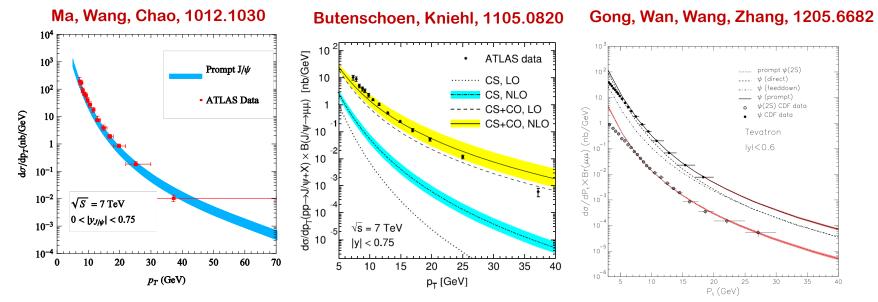
Ma, Wang, Chao, 1002.3987

• The ratio $R_{\chi_c} = \sigma_{\chi_{c2}}/\sigma_{\chi_{c1}}$ CEM predicts: $R_{\chi_c} = 5/3$ LO NRQCD: $R_{\chi_c} = 5/3$



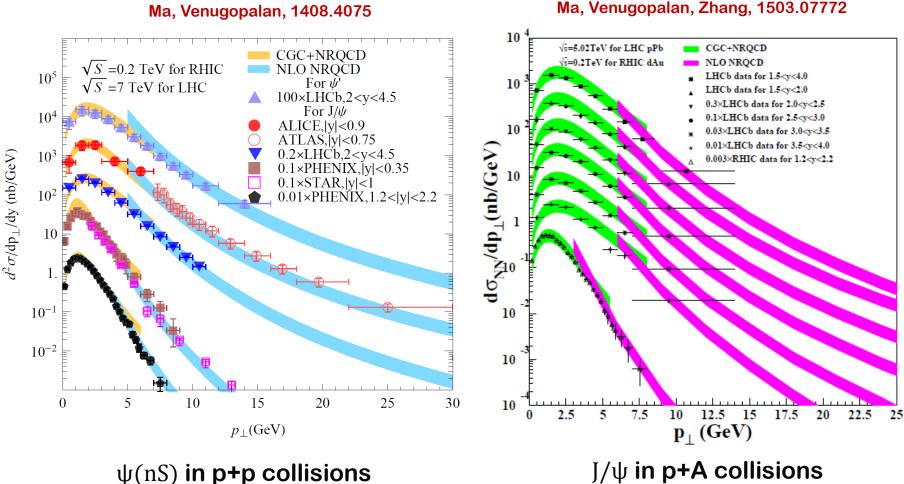


> Achievement: explain $\psi(nS)$ production



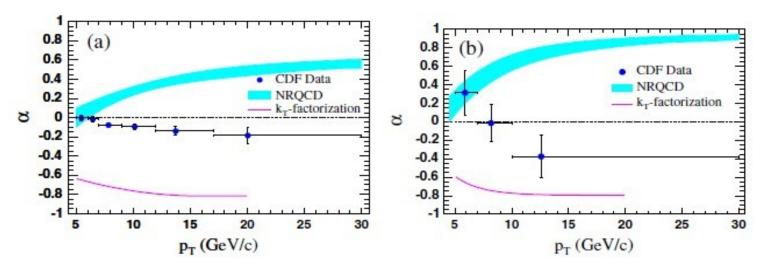
RMA

> Achievement: comprehensive description of $\psi(nS)$ production (CGC+NRQCD)



Difficulty : polarization puzzle

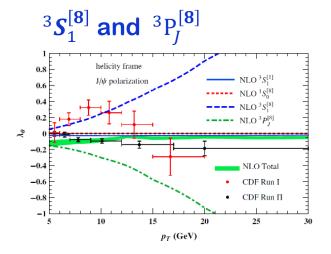
• Dominated by ${}^{3}S_{1}^{[8]}$, LO NRQCD predicts transversely polarized $\psi(nS)$ at high p_{T} , contradicts with Tevatron and LHC data



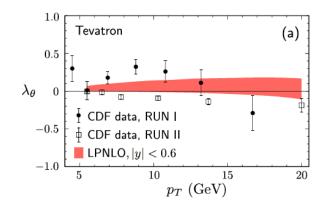
CDF, 0704.0638

FIG. 4 (color online). Prompt polarizations as functions of p_T : (a) J/ψ and (b) $\psi(2S)$. The band (line) is the prediction from NRQCD [4] (the k_T -factorization model [9]).

• J/ψ at NLO: transverse polarization largely canceled between

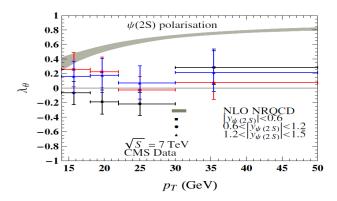


Chao, Ma, Shao, Wang, Zhang, 1201.2675

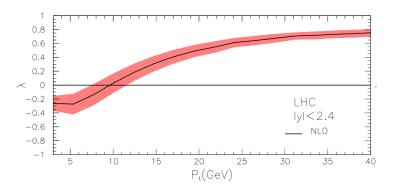


Bodwin, Chung, Kim, Lee, 1403.3612

• $\psi(2S)$: cancelation weak, hard to understand



Shao, Han, Ma, Meng, Zhang, Chao, 1411.3300



Gong, Wan, Wang, Zhang, 1205.6682

NORMAL UNILIERS

Difficulty : universality problem

D Fit J/ψ yield data at Tevatron with $p_T > 7$ GeV

- Due to p_T^{-4} and p_T^{-6} behaviors, constrain two combinations
- $M_0 = \langle O\left({}^{1}S_0^{[8]}\right) \rangle + 3.9 \langle O\left({}^{3}\boldsymbol{P}_0^{[8]}\right) \rangle / m_c^2 \approx (7.4 \pm 1.9) \times 10^{-2} \text{GeV}^3$
- $M_1 = \langle O\left({}^{3}S_1^{[8]}\right) \rangle 0.56 \langle O\left({}^{3}P_0^{[8]}\right) \rangle / m_c^2 \approx (0.05 \pm 0.02) \times 10^{-2} \text{ GeV}^3$

Ma, Wang, Chao, 1009.3655

Upper bound from Belle total cross section

 $M_0 < 0.02 {\rm GeV}^3$

Zhang, Ma, Wang, Chao, 0911.2166

Global fit Butenschoen, Kniehl, 1105.0820

- Including Belle, LEP, HERA, RHIC, Tevatron, LHC
- Total of 194 data points from 26 data sets
- Exclude $p_T < 3 \text{ GeV}$ pp data and $p_T < 1 \text{ GeV}$ ep data

 $\chi^2_{\rm d.o.f.} = 725/194 = 3.74$

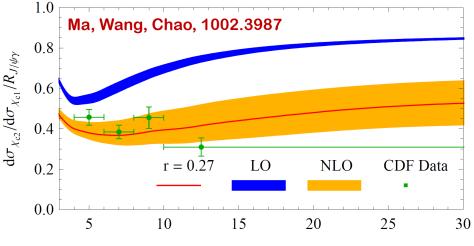
• No universality of NRQCD LDMEs!

11/31

Difficulty : negative cross sections

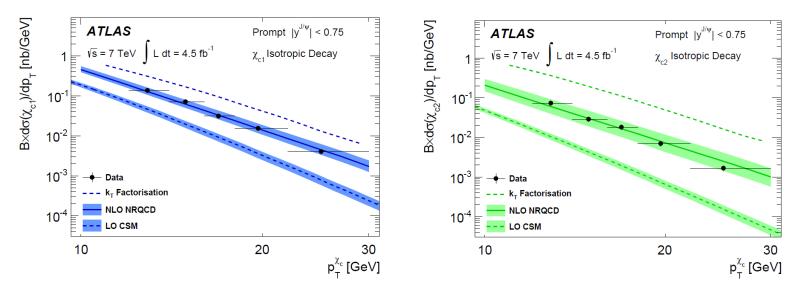
D Explain χ_{cJ} production

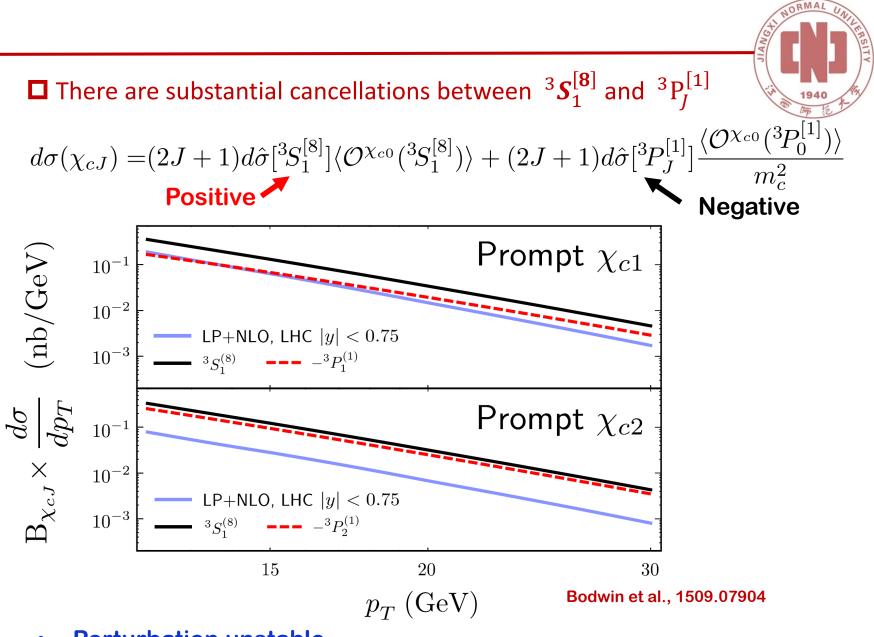
• The ratio $R_{\chi_c} = \sigma_{\chi_{c2}}/\sigma_{\chi_{c1}}$ CEM predicts: $R_{\chi_c} = 5/3$ LO NRQCD: $R_{\chi_c} = 5/3$



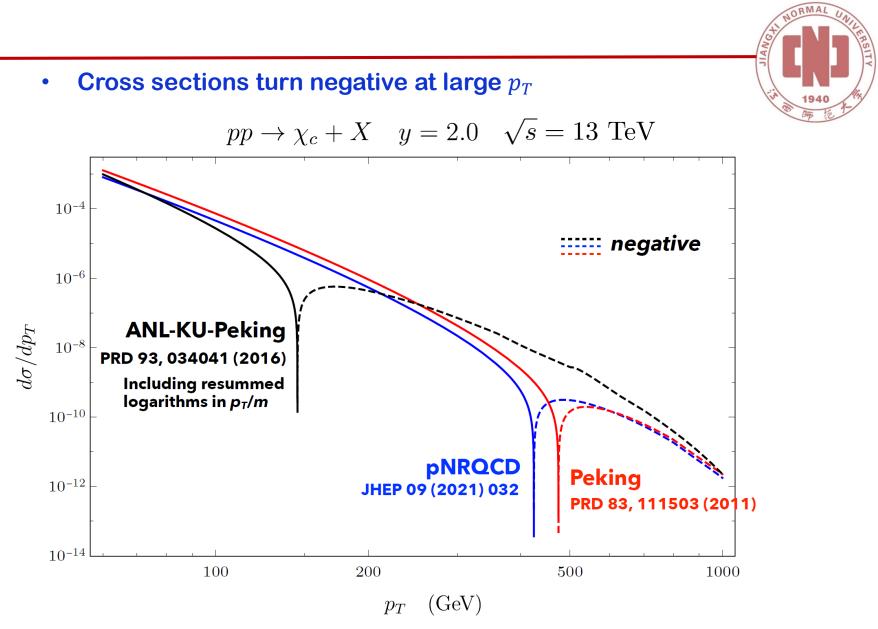
 p_T of J/ ψ (GeV)

The differential cross sections ATLAS, 1404.7035

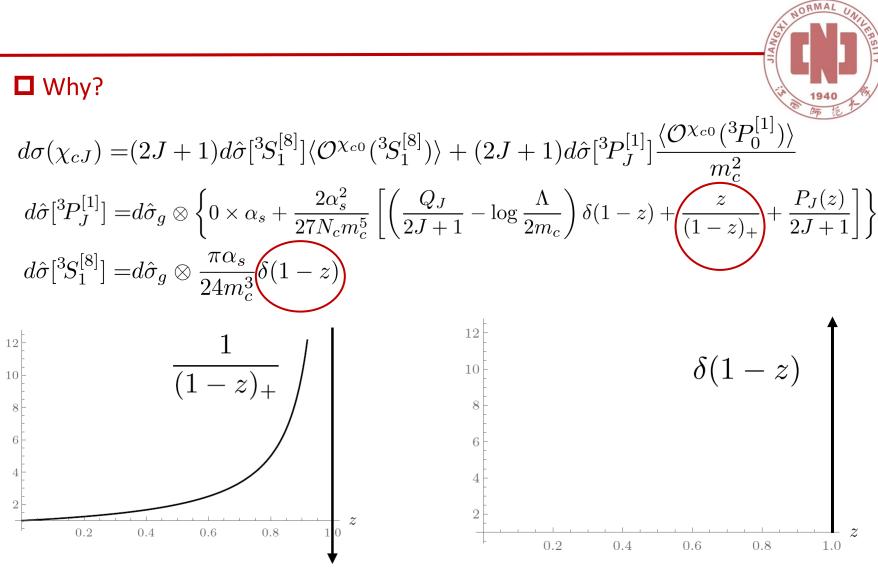




• Perturbation unstable

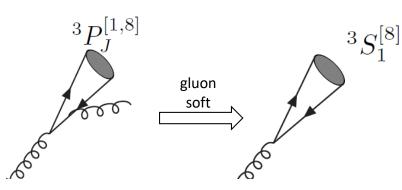


Hee Sok Chung, talk at The 15th International Workshop on Heavy Quarkonium



Hee Sok Chung, talk at The 15th International Workshop on Heavy Quarkonium

• Cross section at very large p_T will depend strongly on $z \rightarrow 1$ behavior of FFs



- Soft gluon in P-wave: factorized to S-wave matrix element
- Plus functions: remnants of the infrared subtraction in matching the ${}^{3}P_{r}^{[1]}$ SDCs
- Subtraction scheme: at <u>zero momentum</u>, which contributes the largest production rate. Over subtracted!
- Solution: soft gluon momentum should be kept during subtraction process, or resum kinematic effects to all powers in *v*.

□ Soft gluon factorization: resum a dominant series of power corrections (kinematic effects) and log corrections Ma, Chao, 1703.08402; Chen, Ma, 2005.08786.

I. Introduction

II. Soft gluon factorization

III. Phenomenological studies

IV. Summary

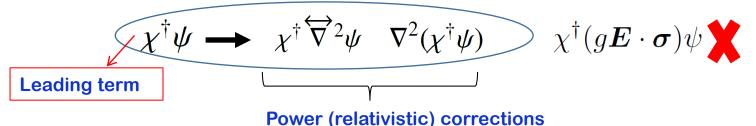
Soft gluon factorization

>From NRQCD to SGF

Ma, Chao, 1703.08402; Chen, Ma, 2005.08786.

To resum the series of relativistic corrections originated from kinematic effects in NRQCD

D Beginning from $\chi^{\dagger}\psi$, one can construct powers suppressed operators



Equation of motion

$$\left(iD_0-\frac{D^2}{2m}+\cdots\right)\psi=0$$

 \blacksquare Ignoring gluon field, replace D by ∇

□ Use EOM to remove relative derivatives

 $\langle H + X | \nabla_0^{n_1} \nabla^{2n_2} (\chi^{\dagger} \psi) | 0 \rangle$ (inclusive processes)

Using integration by parts

- **Remove operators unless** $n_1 = n_2 = 0$
- Matching coefficients are functions of: P_H^2 , $P_H \cdot P_X$, P_X^2

Factorization

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} \approx \sum_n \int \frac{d^4 P}{(2\pi)^4} \mathcal{H}_n(P) F_{n \to H}(P, P_H)$$

- $n = {}^{2S+1} L_J^{[c]}$
- **P: momentum of** $Q\bar{Q}$
- \mathcal{H}_n : perturbatively calculable hard parts
- $F_{n \rightarrow H}$: nonperturbative soft gluon distributions (SGDs)
- UV renormalization scale is suppressed

FFs in SGF

- $D_{f \to H}$: single parton FFs
- $\mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}$: double parton FFs
- $\hat{z} = z/x$

$$\begin{aligned}
D_{f \to H}(z, \mu_{0}) \\
&= \sum_{n,n'} \int \frac{\mathrm{d}x}{x} \hat{D}_{f \to Q\bar{Q}[nn']}(\hat{z}; M_{H}/x, m_{Q}, \mu_{0}, \mu_{\Lambda}) \\
&\times F_{[nn'] \to H}(x, M_{H}, m_{Q}, \mu_{\Lambda}), \end{aligned}$$

$$\begin{aligned}
\mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}(z, \zeta, \zeta', \mu_{0}) \\
&= \sum_{n,n'} \int \frac{\mathrm{d}x}{x} \hat{\mathcal{D}}_{[Q\bar{Q}(\kappa)] \to Q\bar{Q}[nn']}(\hat{z}, \zeta, \zeta'; M_{H}/x, m_{Q}, \mu_{0}, \mu_{\Lambda}) \\
&\times F_{[nn'] \to H}(x, M_{H}, m_{Q}, \mu_{\Lambda}), \end{aligned}$$
(2a)

Soft gluon distributions (SGDs)

- Operator definition
- Expectation values of bilocal operators in QCD vacuum

$$F_{[nn']\to\psi}(x, M_{\psi}, m_{c}, \mu_{f}) = P_{\psi}^{+} \int \frac{\mathrm{d}b^{-}}{2\pi} e^{-iP_{\psi}^{+}b^{-}/x} \langle 0|[\bar{\Psi}\mathcal{K}_{n}\Psi]^{\dagger}(0)[a_{\psi}^{\dagger}a_{\psi}][\bar{\Psi}\mathcal{K}_{n'}\Psi](b^{-})|0\rangle_{\mathrm{S}},$$

with

Spin project operators:

$$\Gamma_n = \sum_{L_z, S_z} \langle L, L_z; S, S_z | J, J_z \rangle \Gamma_{LL_z}^o \Gamma_{SS_z}^s$$

Color project operators:

$$\mathcal{C}^{[1]} = \frac{\mathbf{1}_c}{\sqrt{N_c}} \qquad \mathcal{C}^{[8]} = \sqrt{2}t^{\bar{a}} \Phi^{(A)}_{a\bar{a}}(rb)$$

Gauge link

Nayak, Qiu, Sterman, 0509021

$$\Phi_l(rb^-) = \mathcal{P} \exp\left[-ig_s \int_0^\infty \mathrm{d}\xi l \cdot A(rb^- + \xi l)\right] \,,$$

Evaluated in <u>Small</u> region

• Subscript "S": evaluate the matrix element in the region where offshellness of all particles is much smaller than heavy quark mass

Matching the hard parts

P-wave

P_c $p_{\bar{Q}}$ $p_{\bar{Q}}$	
(a) $F_{[{}^{3}S_{1,T}^{[1]}] \to Q\bar{Q}[{}^{3}P_{0}^{[1]}]}^{LO}(x, M_{H}, m_{Q}, \mu_{\Lambda})$ $= \frac{\alpha_{s}}{M_{H}^{2}\pi} \frac{N_{c}^{2} - 1}{N_{c}} \frac{8}{9} \left[\left(-\frac{1}{\epsilon_{\mathrm{IR}}} - \ln \frac{4\pi \mu_{c}^{2} e^{-\gamma_{E}}}{M_{H}^{2}} - \frac{1}{6} \right) \right]$ $\times \delta(1 - x) + 2x \frac{1}{(1 - x)_{+}} + \mathcal{O}(q^{2}),$	4 $(1-z)_+$ 2
$\left[(1-x)_{+} \right]^{-1} \left[(1-x)_{+} \right]^{-1} $	$\times \ln(1-z) \bigg] + \mathcal{O}(\boldsymbol{q}^2), \tag{A18a}$

□ Short distance hard parts at LO

$$\begin{aligned} \hat{D}_{g \to Q \bar{Q} [}^{LO,(0)}(z, M_{H}, \mu_{0}, \mu_{\Lambda}) &= \frac{\pi \alpha_{s}}{(N_{c}^{2} - 1)} \frac{8}{M_{H}^{3}} \delta(1 - z), \quad (9a) \\ \hat{D}_{g \to Q \bar{Q} [}^{LO,(0)}(z, M_{H}, \mu_{0}, \mu_{\Lambda}) \\ &= \frac{8 \alpha_{s}^{2}}{M_{H}^{3}} \frac{N_{c}^{2} - 4}{2N_{c}(N_{c}^{2} - 1)} \left[(1 - z) \ln[1 - z] - z^{2} + \frac{3}{2} z \right], \quad (9b) \\ \hat{D}_{g \to Q \bar{Q} [}^{LO,(0)}(z; M_{H}, \mu_{0}, \mu_{\Lambda}) \\ &= \frac{32 \alpha_{s}^{2}}{M_{H}^{5} N_{c}} \frac{2}{9} \left[\frac{1}{36} z(837 - 162z + 72z^{2} + 40z^{3} + 8z^{4}) \right] \\ &+ \frac{9}{2} (5 - 3z) \ln(1 - z) \right], \end{aligned}$$

• The P-wave short distance hard parts do not include terms proportional to plus distributions

I. Introduction

II. Soft gluon factorization

III. Phenomenological studies

IV. Summary

Phenomenological studies

Collinear factorization

 \blacksquare Heavy quarkonium production at large p_T

$$\mathrm{d}\sigma_{A+B\to H+X}(p) \approx \sum_{i,j} f_{i/A}(x_1,\mu_F) f_{j/B}(x_2,\mu_F) \left\{ \sum_f D_{f\to H}(z,\mu_F) \otimes \mathrm{d}\hat{\sigma}_{i+j\to f+X}(\hat{P}/z,\mu_F) \right\}$$

$$+\sum_{\kappa} \mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}(z,\zeta,\zeta',\mu_F) \otimes \mathrm{d}\hat{\sigma}_{i+j \to [Q\bar{Q}(\kappa)]+X}(\hat{P}(1\pm\zeta)/2z,\hat{P}(1\pm\zeta')/2z,\mu_F) \bigg\},$$

Factorization of FFs

- SGF
- NRQCD factorization

Nonperturbative model for SGDs

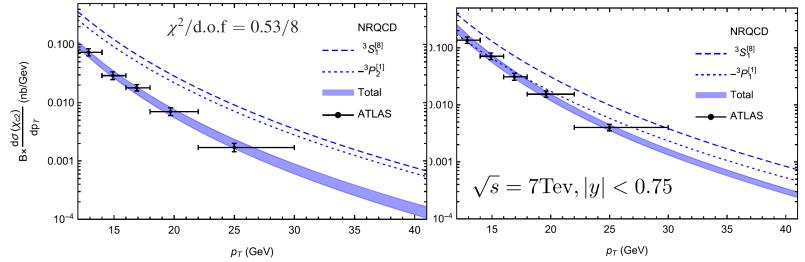
$$F^{\text{mod}}(x) = \frac{N^{H} \Gamma(M_{H}b/\bar{\Lambda})(1-x)^{b-1} x^{M_{H}b/\bar{\Lambda}-b-1}}{\Gamma(M_{H}b/\bar{\Lambda}-b)\Gamma(b)}$$

- N^H : the normalization, $N^H[n] \approx \langle \mathcal{O}^H(n) \rangle$
- $\overline{\Lambda}$: the average radiated momentum in the hadronization process
- *b*: related to the second moment of model function

THORMAL UNILLER NORMAL UNILLER SUPERIOR STATE

> Production of χ_{cJ}

- NRQCD factorization
- The fitted cross sections compared with ATLAS data



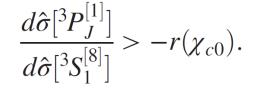
Define the ratio

$$r(\chi_{c0}) \equiv \frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}S_{1}^{[8]})\rangle}{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle/m_{c}^{2}},$$

The cross sections

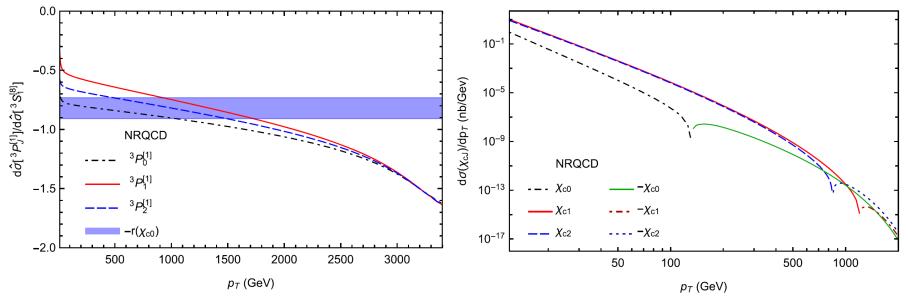
$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}[{}^{3}S_{1}^{[8]}] \frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle}{m_{c}^{2}} \left[r(\chi_{c0}) + \frac{d\hat{\sigma}[{}^{3}P_{J}^{[1]}]}{d\hat{\sigma}[{}^{3}S_{1}^{[8]}]}\right]$$

To achieve a positive cross section, it is necessary to have



• Left: comparison between the ratios and $-r(\chi_{c0})$

Right: the p_T distributions when the LDMEs take the central values



• The ratios fall below the lower bound of $-r(\chi_{c0})$ at very large p_T

SGF

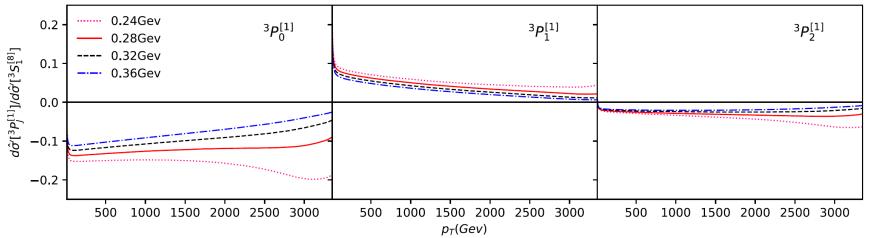
The cross sections

$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}'[{}^{3}S_{1}^{[8]}] \frac{N^{\chi_{c0}}[{}^{3}P_{0}^{[1]}]}{m_{c}^{2}} \left[r'(\chi_{c0}) + \frac{d\hat{\sigma}'[{}^{3}P_{J}^{[1]}]}{d\hat{\sigma}'[{}^{3}S_{1}^{[8]}]}\right]$$

with

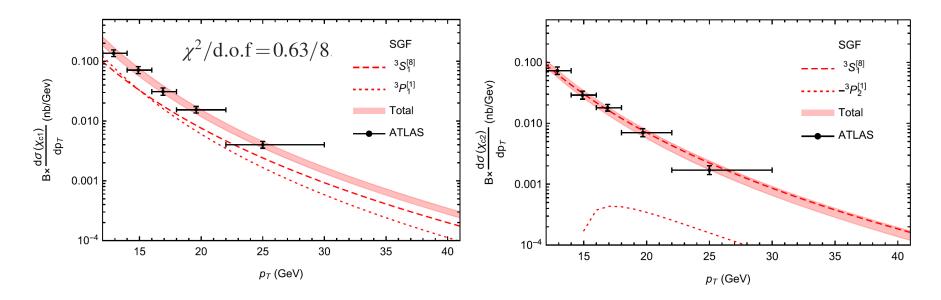
$$r'(\chi_{c0}) \equiv \frac{N^{\chi_{c0}}[{}^{3}S_{1}^{[8]}]}{N^{\chi_{c0}}[{}^{3}P_{0}^{[1]}]/m_{c}^{2}}.$$

- $d\hat{\sigma}'[{}^{3}P_{J}^{[1]}]/d\hat{\sigma}'[{}^{3}S_{1}^{[8]}]$ is sensitive to the parameters $\overline{\Lambda}$
- Fix $\overline{\Lambda} \begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix} = 0.4 \text{Gev and vary } \overline{\Lambda} \begin{bmatrix} {}^{3}P_{J}^{[1]} \end{bmatrix} = 0.36, 0.32, 0.28, 0.24 \text{Gev}$



THE ISAN STREET

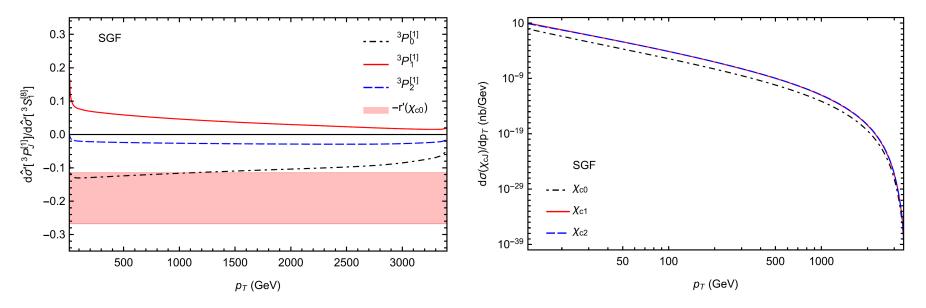
- A constraint relation is suggested: $\bar{\Lambda}[{}^{3}P_{J}^{[1]}] \ge 0.7\bar{\Lambda}[{}^{3}S_{1}^{[8]}]$
- We set $\overline{\Lambda} \begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix} = 0.4 \text{Gev and } \overline{\Lambda} \begin{bmatrix} {}^{3}P_{J}^{[1]} \end{bmatrix} = 0.3 \text{Gev}$
- The fitted cross sections compared with ATLAS data



The fit to experimental data is as good as that in NRQCD factorization

• Left: comparison between the ratios and $-r'(\chi_{c0})$

Right: the p_T distributions when the parameters take the central values



• There is a wide range of $r'(\chi_{c0})$ in which the ratios is larger than

 $-r'(\chi_{c0})$

The negative cross section problem is resolved in SGF

I. Introduction

II. Soft gluon factorization

III. Phenomenological studies

IV. Summary

Summary

• We studied the hadroproduction of χ_{cJ} using the SGF and NRQCD factorization;

- Our results show that the fit to experimental data in SGF is as good as that in NRQCD factorization;
- Our results show that the negative cross section problem in NRQCD can be resolved in SGF;
- It will be very useful to apply SGF to study the polarizations of ψ (ns) production at LHC in the future.

Thank you!

