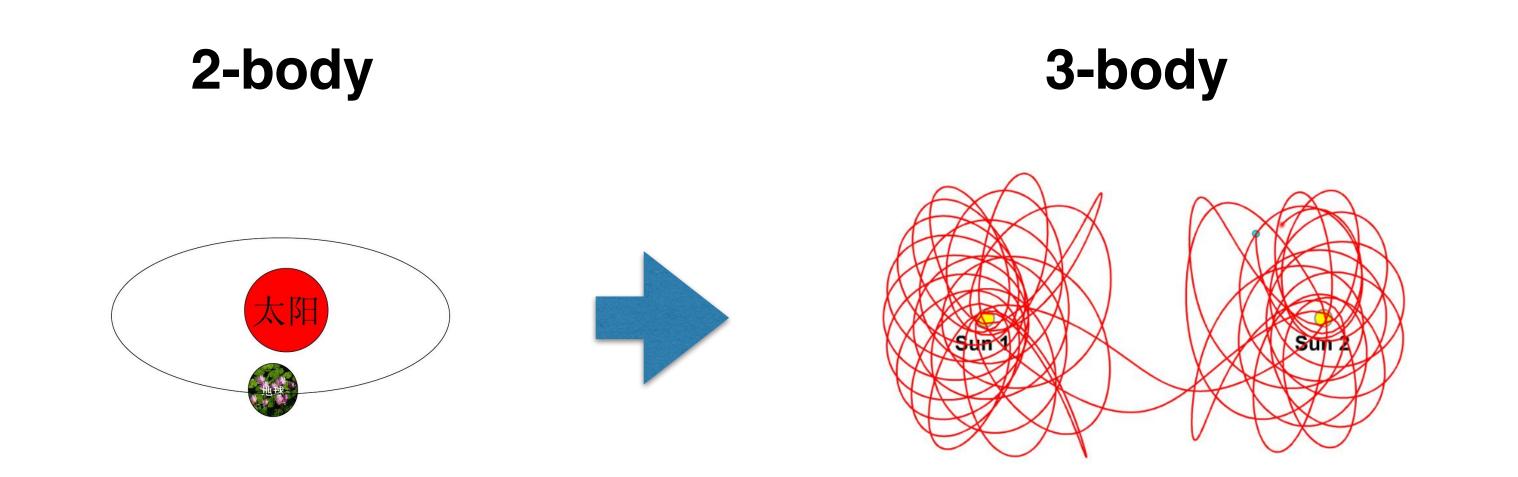
CP violation in heavy baryon decays

Fu-Sheng Yu
Lanzhou University

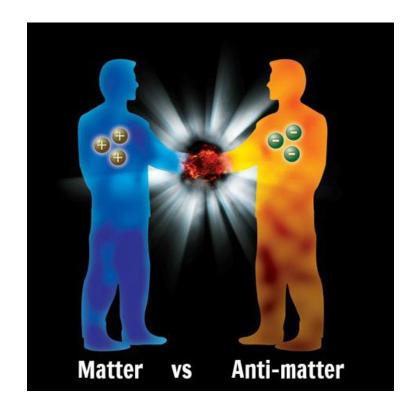
重味物理前沿论坛研讨会,2023.11.26@华中师范大学


Outline

- Why baryon physics
- Bottom-baryon decays
- Charm-baryon decays
- Summary

Heavy flavor physics

- •Heavy flavor physics has achieved a great progress in the heavy meson systems during the past two decades.
- It established the KM mechanism for the CP violation in B meson decays.
- ·However, the studies on heavy-flavor baryons are limited.


It is a non-trivial extension


More is different

CP violation in baryons

- Sakharov conditions for Baryogenesis:
 - 1) baryon number violation
 - 2) C and CP violation
 - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP
- CPV well established in K, B and D mesons,
 but CPV never established in any baryon
- The visible matter in the Universe is mainly made of baryons

CP violation in baryons

- •In 2017, LHCb reported 3σ evidence of CPV in $\Lambda_b \to p\pi\pi\pi$ [Nature Physics, 2017]
- •In 2019 and 2022, BESIII reported the measurement of CPV in $\Lambda^0 \to p\pi^-$ [Nature Physics, 2019; PRL 2022]
- •In 2022, BESIII reported the measurement of CPV in $\Xi^- \to \Lambda^0 \pi^-$ [Nature 2022]
- ·So far, no CPV in the baryon sector has been observed yet.

Opportunities

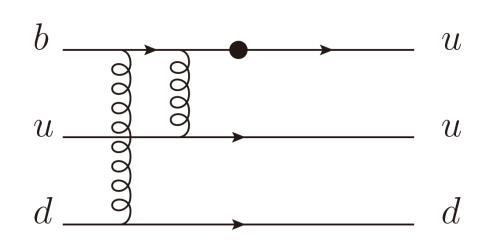
• LHCb is a baryon factory !! Large Production:
$$\frac{f_{\Lambda_b}}{f_{u.d}} \sim 0.5$$
 \longrightarrow $\frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$

• Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

•CPV in some B-meson decays are as large as 10%:

$$A_{CP}(\overline{B}^0 \to K^+\pi^-) = -(8.34 \pm 0.32)\%, \ A_{CP}(\overline{B}_s^0 \to K^+\pi^-) = +(21.3 \pm 1.7)\%$$


·It can be expected that CPV in b-baryons might be observed soon !!

Bottom-baryon decays

Challenges

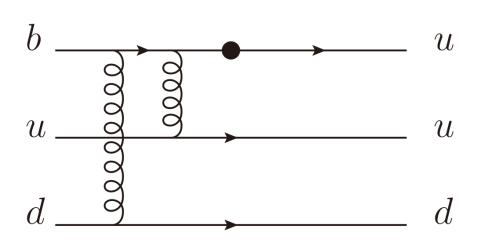
1. QCD dynamics for non-leptonic decays

•One more energetic quark, one more hard gluon. Counting rule of power expansion is violated by $\alpha_{\rm s}$.

2. Non-perturbative inputs

• Theoretical uncertainties are dominated by the non-perturbative input parameters, such as the light-cone distribution amplitudes (LCDA).

3. Observables

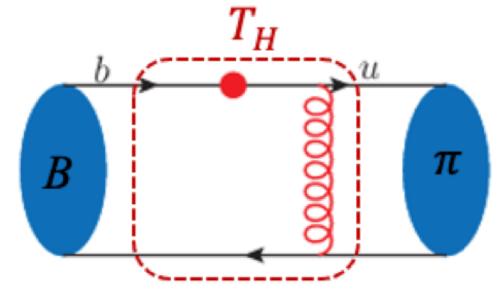

•T-odd triple products $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$, 3σ signal in $\Lambda_b \to p\pi\pi\pi$ [LHCb2017]. Defined by kinematics, but unclear relation to the decay amplitudes. No way for theoretical explanations and predictions.

Theoretical opportunities

- Baryons are very different from mesons!!
- •Factorization: Heavy-to-light form factor is factorizable at leading power in SCET. No end-point singularity! [Wei Wang, 1112.0237] Taking $\Lambda_b \to \Lambda$ as an example,

$$\xi_{\Lambda} = f_{\Lambda_b} \Phi_{\Lambda_b}(x_i) \otimes J(x_i, y_i) \otimes f_{\Lambda} \Phi_{\Lambda}(y_i)$$

- ·However, the leading-power result is one order of magnitude smaller than the total one
 - •Leading power: $\xi_{\Lambda}(0) = -0.012$ [W.Wang, 2011]
 - •Total form factor: $\xi_{\Lambda}(0)=0.18$ [Y.L.Shen, Y.M.Wang, 2016]
- Two hard gluons suppressed by α_s^2 at the leading power. Compared to the soft contributions in the power corrections.


PQCD approach

• PQCD successfully predicted CPV in B meson decays [Keum, H.n.Li, Sanda, 2000; C.D.Lu, Ukai, M.Z.Yang, 2000].

			2000	2004
直接CP破坏(%)	GFA	QCDF	PQCD	exp.
$B \to \pi^+\pi^-$	-5 ± 3	-6 ± 12	$+30 \pm 20$	+32 ± 4
$B \to K^+\pi^-$	$+10 \pm 3$	+5 ± 9	-17 ± 5	-8.3 ± 0.4

- under collinear factorization:
 - Endpoint singularity: propagator $\sim 1/x_1x_2Q^2 \to \infty$ when $x_{1,2} \to 0,1$

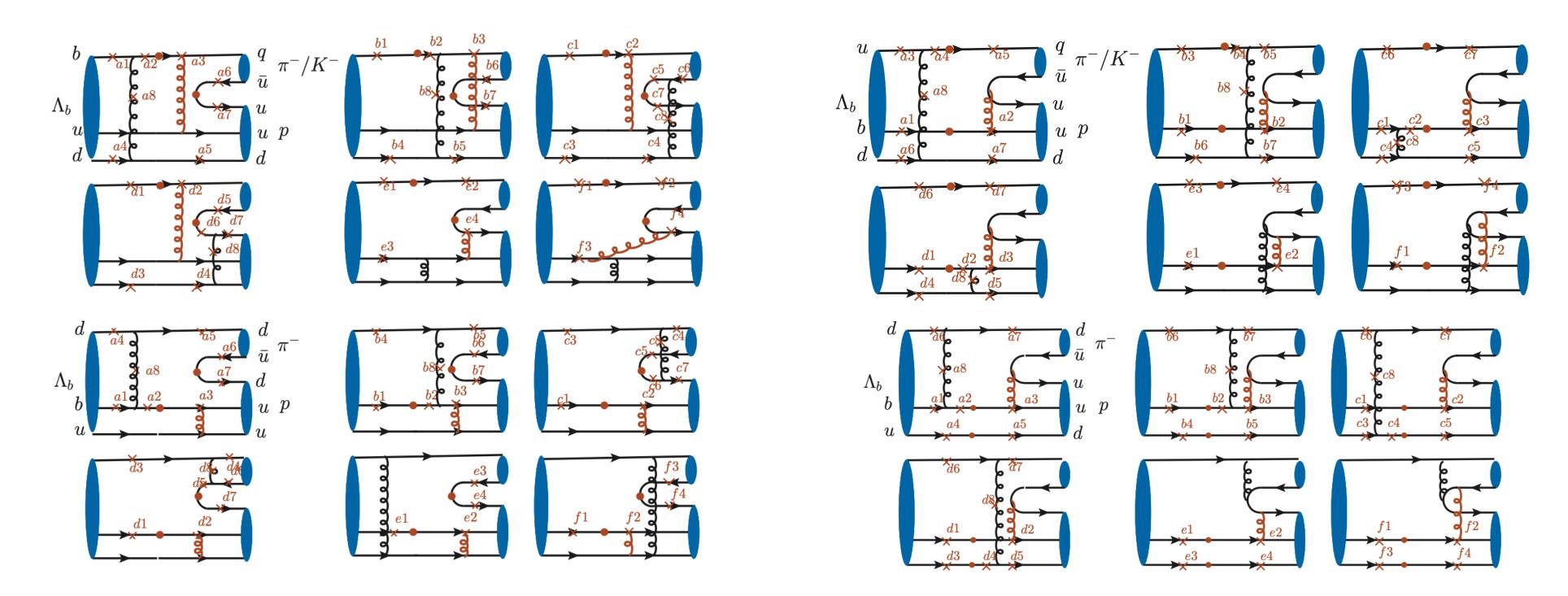
$$M(Q^2) = \int_0^1 dx_1 dx_2 \, \phi_B(x_2, \mu^2) * T_H\left(x_1, x_2, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) * \phi_\pi(x_1, \mu^2)$$

- ullet PQCD approach (based on k_T factorization): retain transverse momentum of parton k_T ,
 - propagator $\sim 1/(x_1x_2Q^2 + k_T^2)$

$$M(Q^2) = \int_0^1 dx_1 dx_2 \int d\mathbf{k}_{1T} d\mathbf{k}_{2T} \phi_B(x_2, \mathbf{k}_{2T}, \mu^2) * T_H\left(x_1, x_2, \mathbf{k}_{2T}, \mathbf{k}_{1T}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) * \phi_\pi(x_1, \mathbf{k}_{1T}, \mu^2)$$

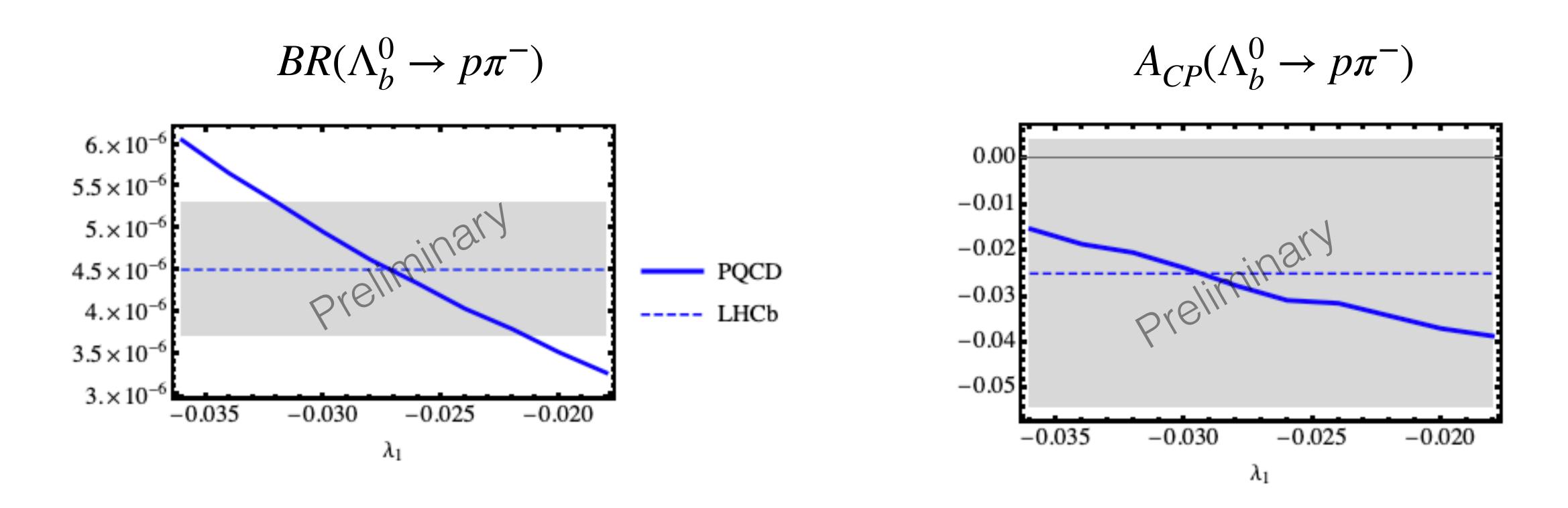
$\Lambda_b \to p$ form factors in PQCD

- •In 2009, the form factors are two orders of magnitude smaller than LatticeQCD/experiments, considering only the leading twist of LCDAs of baryons. [C.D.Lu, Y.M.Wang, et al, 2009]
- •In 2022, when consider contributions of high-twist LCDAs, they are consistent with LatticeQCD. [J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2022]


	Lattice/exp	PQCD(2009)	PQCD(2022)
$f_1^{\Lambda_b \to p}(0)$	0.22 ± 0.08	0.002 ± 0.001	0.27 ± 0.12

	twist-3	twist-4	twist-5	twist-6	total
exponential					
$\overline{\text{twist-2}}$	0.0007	-0.00007	-0.0005	-0.000003	0.0001
$ ext{twist-3}^{+-}$	-0.0001	0.002	0.0004	-0.00004	0.002
$twist-3^{-+}$	-0.0002	0.0060	0.000004	0.00007	0.006
twist-4	0.01	0.00009	0.25	0.000007	0.26
total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$

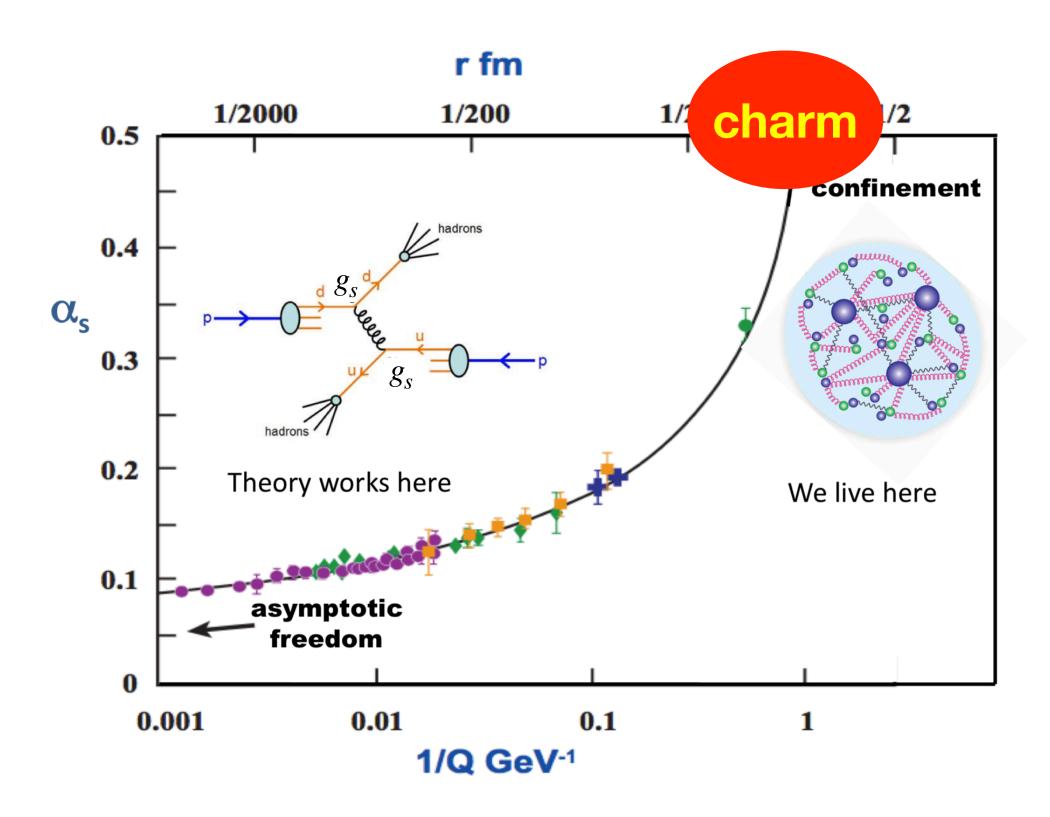
Non-leptonic decays


- ·It can be expected that PQCD can predict CPV of b-baryons

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, in preparation

There are 200 Feynman diagrams for $\Lambda_b \to p\pi$, and 120 diagrams for $\Lambda_b \to pK$

Branching fractions and CPV

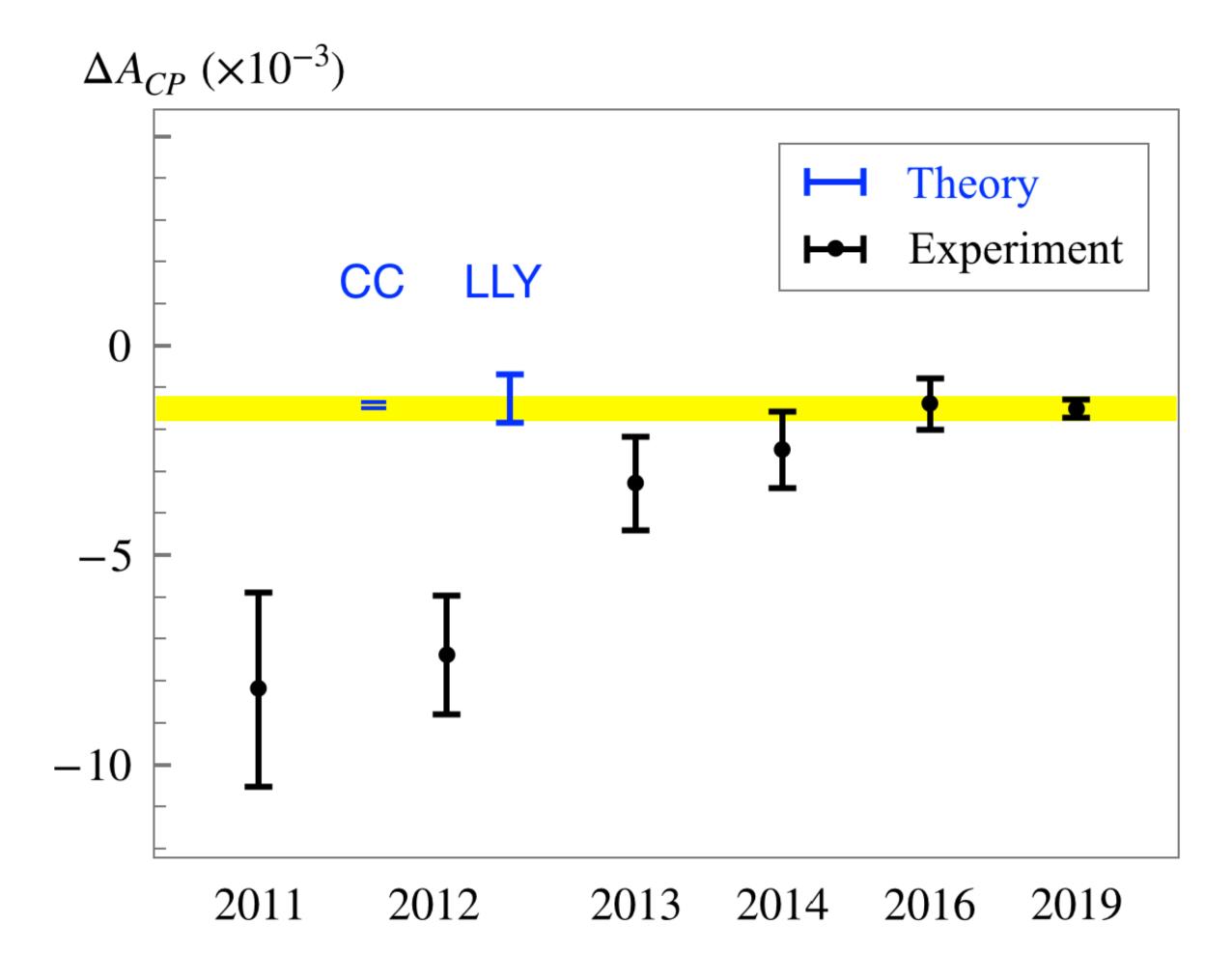


• λ_1 is one parameter in the proton LCDA. Within the allowed region of λ_1 , both the branching fraction and CPV of $\Lambda_b \to p\pi$ can be understood.

Charm-baryon decays

Implications of charm CPV

$$|\mathcal{P}/\mathcal{T}|_{\mathrm{charm}} \sim \mathcal{O}(1)$$
 v.s. $|\mathcal{P}/\mathcal{T}|_{\mathrm{bottom}} \sim \mathcal{O}(0.1)$



- ✓ Charm is different from bottom
- ✓ Large non-perturbative contributions in charmed hadron decays

$$\frac{C_{3-6}}{C_{1,2}} \sim \mathcal{O}(0.1) \ll \frac{\mathcal{P}}{\mathcal{T}} \sim \mathcal{O}(1)$$

from S.Olsen

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-)$$

Saur, FSY, Sci.Bull.2020

Th: the only predictions of O(10⁻³)

CC: topological approach + QCDF

Cheng, Chiang, 2012

LLY: factorization-assisted topology (FAT)

Li, Lu, **FSY**, 2012

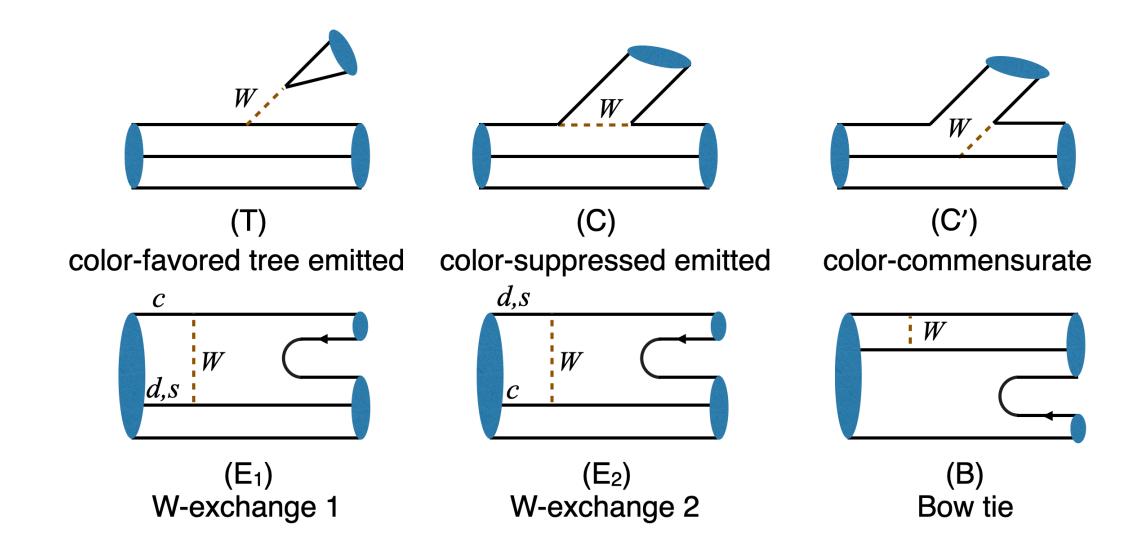
Exp: LHCb, PRL122, 211803 (2019)

The observation of ΔA_{CP} is SM or NP?

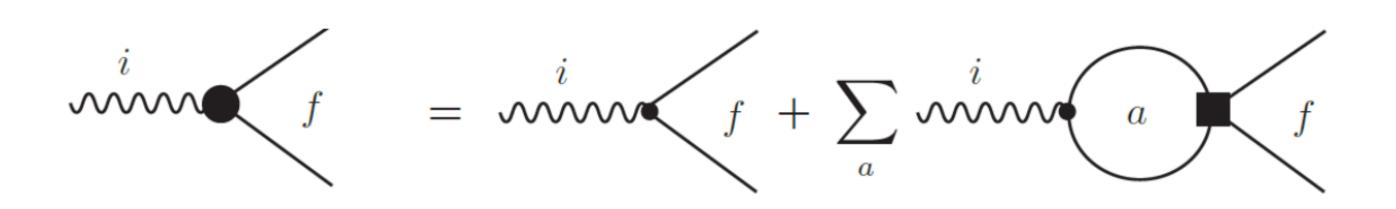
Chala, Lenz, Rusov, Scholtz, '19

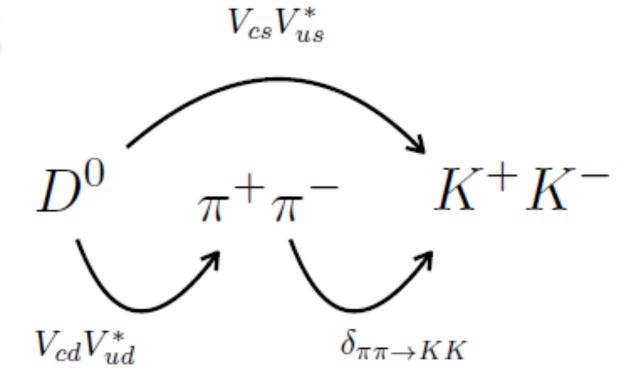
To be check by charm baryons!

Charmed baryon decays

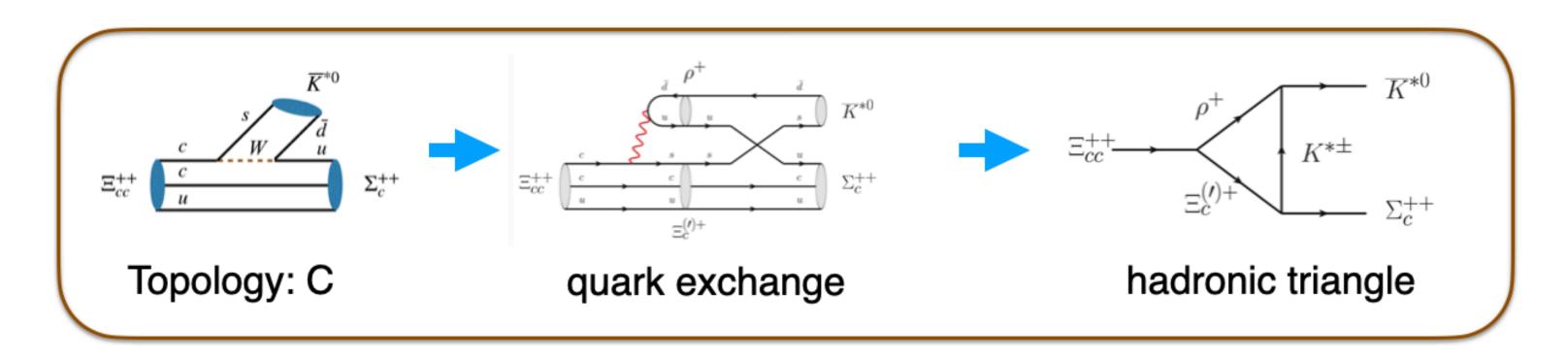

- · Charmed baryon decays are the next opportunity and challenge of charm physics
- · No CPV has been yet observed in charmed baryon decays.

process	CPV observables	
$\Lambda_c^+ \to \Lambda \pi^+$	$A_{CP}^{\alpha} = -0.07 \pm 0.19 \pm 0.24$	FOCUS,PLB (2006)
$\Lambda_c^+ \to \Lambda K^+$	$A_{CP}^{dir} = 0.021 \pm 0.026 \pm 0.001$	
$\Lambda_c \to \Lambda \Lambda$	$A_{CP}^{\alpha} = -0.023 \pm 0.086 \pm 0.071$	Pollo Soi Pull (2022)
$\Lambda_c^+ \to \Sigma^0 K^+$	$A_{CP}^{dir} = 0.025 \pm 0.054 \pm 0.004$	Belle, Sci.Bull. (2023)
$\Lambda_c \rightarrow Z \cdot K$	$A_{CP}^{\alpha} = 0.08 \pm 0.35 \pm 0.14$	
$\Xi_c^0\to\Xi^-\pi^+$	$A_{CP}^{\alpha} = 0.024 \pm 0.052 \pm 0.014$	Belle, PRL (2021)
$\Lambda_c^+ \to p K^+ K^-$	$Adir(\Lambda + \Sigma_{\mu} \nu + \nu - \Sigma_{\mu}) = Adir(\Lambda + \Sigma_{\mu} \pi + \pi - \Sigma_{\mu}) = (0.20 \pm 0.01 $	0 61)0/ / UCh JUED (2010)
$\Lambda_c^+ \to p \pi^+ \pi^-$	$A_{CP}^{dir}(\Lambda_c^+ \to pK^+K^-) - A_{CP}^{dir}(\Lambda_c^+ \to p\pi^+\pi^-) = (0.30 \pm 0.91 \pm 0.00)$	- 0.61)% LHCb, JHEP (2018)
$\Xi_c^+ \to p K^- \pi^+$	NO CP violation	LHCb, EPJC (2020)

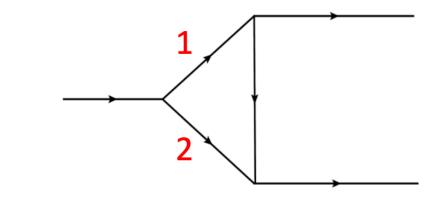

most precise to date

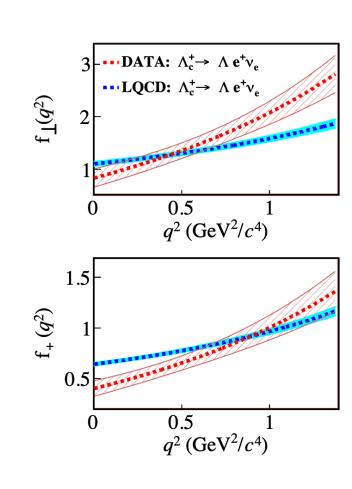

Charmed baryon decays

- Charmed baryon decays are the next opportunity and challenge of charm physics
- No any real CPV predictions
- Dynamics are more complicated
 - Many more topological diagrams
 + more partial waves
 - SU(3) irreducible representations cannot provide information on penguins
 - Final-state interactions (FSI) are necessary

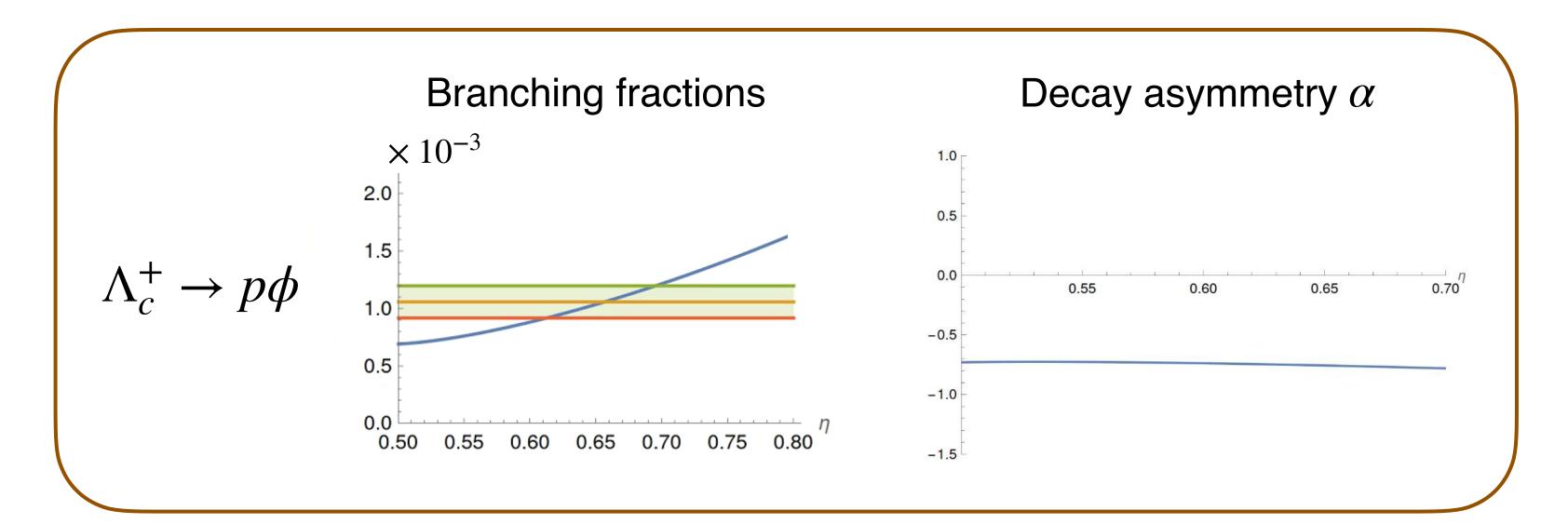


Final-state interactions

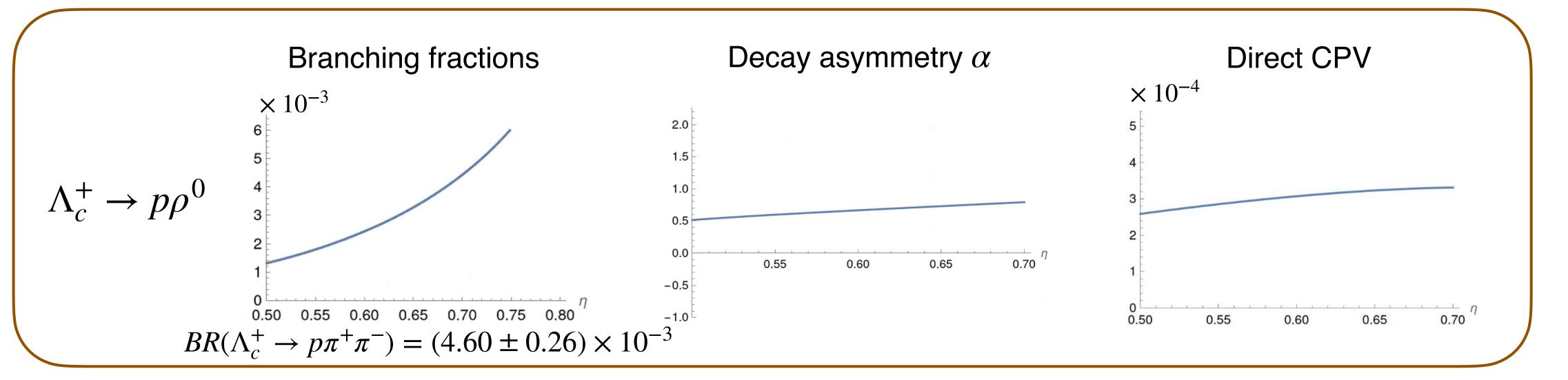

- Rescattering mechanism for charm CPV, Data-driven extraction of the $\pi\pi \to KK$ scatterings [Bediaga, Frederico, Magalhaes, PRL2023; Pich, Solomonidi, Silva, PRD2023].
- Rescattering mechanism have been successfully used to predict the discovery channel of $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ [FSY, Jiang, Li, Lu, Wang, Zhao, '17]


Only one parameter explain all the 8 experimental data!

> Branching ratio: $\eta = 0.6 \pm 0.1$


$$\Gamma(\mathcal{B}_c \to \mathcal{B}_8 V) = \frac{p_c}{8\pi m_i^2} \frac{1}{2} \sum_{\lambda \lambda' \sigma} |\mathcal{A}(\mathcal{B}_c \to \mathcal{B}_8 V)|^2$$

decay mode	topology	experiment(%)	Short-distance	prediction(%)
$\Lambda_c^+ \to \Lambda^0 \rho^+$	T,C',E_2,B	4.06 ± 0.52	4.91%	8 ± 0.8
$\Lambda_c^+ o p\phi$	С	0.106 ± 0.014	1.92×10^{-6}	0.09 ± 0.03
$\Lambda_c^+ \to \Sigma^+ \phi$	E_1	0.39 ± 0.06	-	0.49 ± 0.22
$\Lambda_c^+ o p\omega$	C,C',E_1,E_2,B	0.09 ± 0.04	2.83×10^{-6}	0.08 ± 0.04
$\Lambda_c^+ \to \Sigma^+ \rho^0$	C', E_2, B	< 1.7	-	2.0 ± 1.0
$\Lambda_c^+ \to \Sigma^0 \rho^+$	C', E_2, B	Isospin	-	Isospin
$\Lambda_c^+ \to \Sigma^+ \omega$	C', E_2, B	1.7 ± 0.21	_	1.8 ± 0.7
$\Lambda_c^+ \to p \bar{K}^{*0}$	C , E_1	1.96 ± 0.27	3.47×10^{-5}	2.9 ± 1.2
$\Lambda_c^+ \to \Sigma^+ K^{*0}$	C^{\prime} , E_{1}	0.35 ± 0.1	-	0.28 ± 0.13



Dependence on η

• The decay asymmetries and CPV are insensitive to η , whose dependences are mostly cancelled by the ratios

$$\alpha = \frac{\left| H_{1,\frac{1}{2}} \right|^2 - \left| H_{-1,-\frac{1}{2}} \right|^2}{\left| H_{1,\frac{1}{2}} \right|^2 + \left| H_{-1,-\frac{1}{2}} \right|^2} \qquad A_{CP} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}}$$

Summary

- Baryon physics is an opportunity of heavy flavor physics at the current stage.
- LHCb Run3 begins collecting more data.
- We are ready to predict CPV of heavy-flavor baryon decays.

Thank you very much!

Backups

Theoretical challenges

- QCD studies on baryons are limited
- •Generalized factorization [Hsiao, Geng, 2015; Liu, Geng, 2021]: lost of non-factorizable contributions, such as W-exchange diagrams.
- •QCDF [Zhu, Ke, Wei, 2016, 2018]: based on diquark picture, No W-exchange diagrams.
- •PQCD [Lu, Wang, Zou, Ali, Kramer, 2009]: only considering the leading twists of LCDAs.
- Currently, no complete QCD-inspired method for non-leptonic b-baryon decays

	EXP	GF	PQCD	QCDF
$Br(\Lambda_b \to p\pi)[\times 10^{-6}]$	4.3 ± 0.8	4.2+-0.7	4.66 +2.22-1.81	4.11~4.57
$Br(\Lambda_b \to pK)[\times 10^{-6}]$	5.1 ± 0.9	4.8+-0.7	1.82 +0.97-1.07	1.70~3.15
$A_{CP}(\Lambda_b \to p\pi)[\%]$	-2.5 ± 2.9	-3.9+-0.2	-32 ⁺⁴⁹ -1	-3.74~-3.08
$A_{CP}(\Lambda_b \to pK)[\%]$	-2.5 ± 2.2	5.8+-0.2	-3 +25 ₋₄	8.1~11.4

Observables

$$\mathscr{M} = i\bar{u}_p(f_1 + f_2\gamma_5)u_{\Lambda_b}$$

$$f_1 = |f_1^T| e^{i\phi_1^T} e^{i\delta_1^T} + |f_1^P| e^{i\phi_1^P} e^{i\delta_1^P}$$

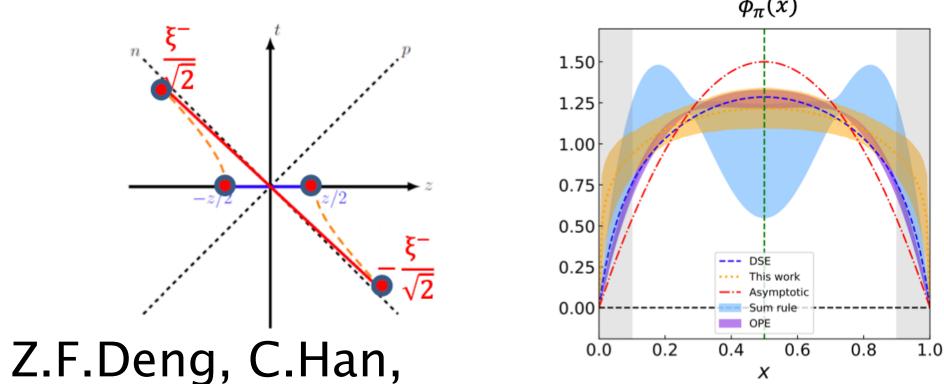
$$f_2 = |f_2^T| e^{i\phi_2^T} e^{i\delta_2^T} + |f_2^P| e^{i\phi_2^P} e^{i\delta_2^P}$$

$$A_{CP}^{dir}(\Lambda_b \to pM) \equiv \frac{\mathcal{B}r(\Lambda_b \to pM) - \mathcal{B}r(\bar{\Lambda}_b \to \bar{p}\bar{M})}{\mathcal{B}r(\Lambda_b \to pM) + \mathcal{B}r(\bar{\Lambda}_b \to \bar{p}\bar{M})}$$

$$A_{CP}^{dir} = \frac{-2A |f_1^T|^2 r_1 sin\Delta\phi_1 sin\Delta\delta_1 - 2B |f_2^T|^2 r_2 sin\Delta\phi_2 sin\Delta\delta_2}{A |f_1^T|^2 (1 + r_1^2 + 2r_1 cos\Delta\phi_1 cos\Delta\delta_1) + B |f_2^T|^2 (1 + r_2^2 + 2r_2 cos\Delta\phi_2 cos\Delta\delta_2)}$$

$$A = \frac{(M_{\Lambda_b} + M_p)^2 - M_M^2}{M_{\Lambda_b}^2} \qquad B = \frac{(M_{\Lambda_b} - M_p)^2 - M_M^2}{M_{\Lambda_b}^2}$$

$$A_{CP}^{dir}(f_1) = \frac{-2r_1 sin\Delta\phi_1 sin\Delta\delta_1}{(1+r_1^2+2r_1 cos\Delta\phi_1 cos\Delta\delta_1)} \qquad A_{CP}^{dir}(f_2) = \frac{-2r_2 sin\Delta\phi_2 sin\Delta\delta_2}{(1+r_2^2+2r_2 cos\Delta\phi_2 cos\Delta\delta_2)}$$


Prospects: LCDA

- Theoretical uncertainties are dominated by the baryon LCDAs.
- Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs.
- Experiments: $eN \to eN$ and $ee \to p\bar{p}, \Lambda\bar{\Lambda}$ by PQCD or light-cone sum rules
- Non-perturbative methods:

W.Wang, J.Zeng,

J.L.Zhang, 2304.09004

LaMET and Lattice QCD

Hua, et al, 2021

Inverse Problem

 $(a_2^{\pi}, a_4^{\pi}, a_6^{\pi}, a_8^{\pi}, a_{10}^{\pi}, a_{12}^{\pi}, \cdots, a_{32}^{\pi}, a_{34}^{\pi})|_{\mu=2 \,\text{GeV}}$ $= (0.1775^{+0.0036}_{-0.0040}, 0.0957^{+0.0011}_{-0.0012}, 0.0762^{+0.0006}_{-0.0003}, 0.0688^{+0.0016}_{-0.0012}, 0.0643^{+0.0021}_{-0.0017}, 0.0603^{+0.0024}_{-0.0019}, \cdots, 0.0089^{+0.0004}_{-0.0006}, 0.0028^{+0.0001}_{-0.0003}),$

Light-Cone Distribution Amplitudes: Λ_b

$$(Y_{\Lambda_b})_{\alpha\beta\gamma}(x_i,\mu) = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2,x_3)\gamma_5 C^T]_{\gamma\beta} + f_{\Lambda_b}^{(2)}(\mu) [M_2(x_2,x_3)\gamma_5 C^T]_{\gamma\beta} \Big\} [\Lambda_b(p)]_{\alpha}$$

$$\begin{split} M_1(x_2, x_3) &= \frac{\rlap{/}{n}\rlap{/}{n}}{4} \psi_3^{+-}(x_2, x_3) + \frac{\rlap{/}{n}\rlap{/}{n}}{4} \psi_3^{-+}(x_2, x_3), \\ M_2(x_2, x_3) &= \frac{\rlap{/}{n}}{\sqrt{2}} \psi_2(x_2, x_3) + \frac{\rlap{/}{n}}{\sqrt{2}} \psi_4(x_2, x_3), \end{split}$$

$$(Y_{\Lambda_b})_{lphaeta\gamma}(x_i,\mu) = rac{f'_{\Lambda_b}}{8\sqrt{2}N_c}[(\not p+m_{\Lambda_b})\gamma_5C]_{eta\gamma}[\Lambda_b(p)]_lpha\psi(x_i,\mu),$$

$$\psi(x_i) = Nx_1x_2x_3 \ exp\left(-\frac{m_{\Lambda_b}^2}{2\beta^2x_1} - \frac{m_l^2}{2\beta^2x_2} - \frac{m_l^2}{2\beta^2x_3}\right),$$

Light-Cone Distribution Amplitudes: Λ_b

Model-I: Gegenbauer-1

$$\begin{split} \psi_2(x_2,x_3) = & m_{\Lambda_b}^4 x_2 x_3 \left[\frac{1}{\epsilon_0^4} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_0} + a_2 C_2^{3/2} (\frac{x_2 - x_3}{x_2 + x_3}) \frac{1}{\epsilon_1^4} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_1} \right] \\ \psi_3^{+-}(x_2,x_3) = & \frac{2m_{\Lambda_b}^3 x_2}{\epsilon_3^3} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_3}, \\ \psi_3^{-+}(x_2,x_3) = & \frac{2m_{\Lambda_b}^3 x_3}{\epsilon_3^3} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_3}, \\ \psi_4(x_2,x_3) = & \frac{5}{\mathcal{N}} m_{\Lambda_b}^2 \int_{m_{\Lambda_b}(x_2 + x_3)/2}^{s_0} ds e^{-s/\tau} (s - m_{\Lambda_b}(x_2 + x_3)/2)^3, \end{split}$$

etponential tion of total and the second of the second of

Ball, Braun, Gardi, 0804.2424, PLB 2008

with the Gegenbauer moment $a_2 = 0.333^{0.250}_{-0.333}$, the Gegenbauer polynomial $C_2^{3/2}(x) = 3(5x^2-1)/2$, the parameters $\epsilon_0 = 200^{+130}_{-60}$ MeV, $\epsilon_1 = 650^{+650}_{-300}$ MeV and $\epsilon_3 = 230 \pm 60$

 $\epsilon_2^{(2)} = 0.551_{-0.356}^{+\infty} \text{ GeV}, \ \epsilon_2^{(3)} = 0.055_{-0.02}^{+0.01} \text{ GeV}, \ \epsilon_2^{(4)} = 0.262_{-0.132}^{+0.116} \text{ GeV} \ \text{and} \ \eta_3^{(3)} =$

Model-II: Gegenbauer-2

$$\psi_{2}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{4} x_{2} x_{3} \frac{a_{2}^{(2)}}{\epsilon_{2}^{(2)4}} C_{2}^{3/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}/(x_{2} + x_{3})/\epsilon_{2}^{(2)}},$$

$$\psi_{3}^{+-}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{3} \left(x_{2} + x_{3}\right) \left[\frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(3)}} + \frac{b_{3}^{(3)}}{\eta_{3}^{(3)}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\eta_{3}^{(3)}}\right]$$

$$\psi_{3}^{-+}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{3} \left(x_{2} + x_{3}\right) \left[\frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(3)}} - \frac{b_{3}^{(3)}}{\eta_{3}^{(3)}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\eta_{3}^{(3)}}\right]$$

$$\psi_{4}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{2} \frac{a_{2}^{(4)}}{\epsilon_{2}^{(4)}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(4)}}, \qquad a_{3}^{(2)} = 0.391 \pm 0.279, \ a_{2}^{(3)} = -0.161_{-0.207}^{+0.108}, \ a_{2}^{(4)} = -0.541_{-0.09}^{+0.173}, \ b_{3}^{(3)} = -0.24_{-0.147}^{+0.24},$$

 $0.633 \pm 0.099 \text{ GeV}.$

Ali, Hambrock, Parkhomenko, W.Wang, 2012

Light-Cone Distribution Amplitudes: Λ_b

Model-III: Exponential

$$\psi_{2}(x_{2}, x_{3}) = \frac{x_{2}x_{3}}{\omega_{0}^{4}} m_{\Lambda_{b}}^{4} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

$$\psi_{3}^{+-}(x_{2}, x_{3}) = \frac{2x_{2}}{\omega_{0}^{3}} m_{\Lambda_{b}}^{3} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

$$\psi_{3}^{-+}(x_{2}, x_{3}) = \frac{2x_{3}}{\omega_{0}^{3}} m_{\Lambda_{b}}^{3} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

$$\psi_{4}(x_{2}, x_{3}) = \frac{1}{\omega_{0}^{2}} m_{\Lambda_{b}}^{2} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

 $\omega_0 = 0.4 \; \mathrm{GeV}$

Model-IV: Free Parton

$$\psi_{2}(x_{2}, x_{3}) = \frac{15x_{2}x_{3}m_{\Lambda_{b}}^{4}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})}{4\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})$$

$$\psi_{3}^{+-}(x_{2}, x_{3}) = \frac{15x_{2}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}),$$

$$\psi_{3}^{-+}(x_{2}, x_{3}) = \frac{15x_{3}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}),$$

$$\psi_{4}(x_{2}, x_{3}) = \frac{5m_{\Lambda_{b}}^{2}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{3}}{8\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}),$$

 $\bar{\Lambda} \equiv (m_{\Lambda_b} - m_b)/2 \approx 0.8 \text{ GeV}$

Light-Cone Distribution Amplitudes: proton

$$\langle 0 | \varepsilon^{ijk} u_{\alpha}^{i'}(a_1 z) \left[a_1 z, a_0 z \right]_{i',i} u_{\beta}^{j'}(a_2 z) \left[a_2 z, a_0 z \right]_{j',j} d_{\gamma}^{k'}(a_3 z) \left[a_3 z, a_0 z \right]_{k',k} | P(P, \lambda) \rangle$$

Braun, Fries, Mahnke, Stein, hep-ph/0007279, NPB 2000

Light-Cone Distribution Amplitudes: proton

• Twist-3 LCDAs

$$V_1(x_i) = 120x_1x_2x_3[\phi_3^0 + \phi_3^+(1 - 3x_3)],$$

$$A_1(x_i) = 120x_1x_2x_3(x_2 - x_1)\phi_3^-,$$

$$T_1(x_i) = 120x_1x_2x_3[\phi_3^0 + \frac{1}{2}(\phi_3^- - \phi_3^+)(1 - 3x_3)].$$

• Twist-4 LCDAs

$$\begin{split} V_2(x_i) = & 24x_1x_2[\phi_4^0 + \phi_4^+(1-5x_3)], \\ V_3(x_i) = & 12x_3[\psi_4^0(1-x_3) + \psi_4^-(x_1^2 + x_2^2 - x_3(1-x_3)) + \psi_4^+(1-x_3-10x_1x_2)], \\ A_2(x_i) = & 24x_1x_2(x_2-x_1)\phi_4^-, \\ A_3(x_i) = & 12x_3(x_2-x_1)[(psi_4^0 + \psi_4^+) + \psi_4^-(1-2x_3)], \\ T_2(x_i) = & 24x_1x_2[\xi_4^0 + \xi_4^+(1-5x_3)], \\ T_3(x_i) = & 6x_3[(\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ & + (\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ T_7(x_i) = & 6x_3[(-\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (-\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ & + (-\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ S_1(x_i) = & 6x_3(x_2-x_1)[(\xi_4^0 + \phi_4^0 + \psi_4^0 + \xi_4^+ + \phi_4^+ + \psi_4^+) + (\xi_4^- + \phi_4^- - \psi_4^-)(1-2x_3)], \\ P_1(x_i) = & 6x_3(x_2-x_1)[(\xi_4^0 - \phi_4^0 - \psi_4^0 + \xi_4^+ - \phi_4^+ - \psi_4^+) + (\xi_4^- - \phi_4^- + \psi_4^-)(1-2x_3)]. \end{split}$$

• Twist-5 LCDAs

$$\begin{split} V_4(x_i) = & 3[\psi_5^0(1-x_3) + \psi_5^-(2x_1x_2 - x_3(1-x_3)) + \psi_5^+(1-x_3 - 2(x_1^2 + x_2^2))], \\ V_5(x_i) = & 6x_3[\phi_5^0 + \phi_5^+(1-2x_3)], \\ A_4(x_i) = & 3(x_2-x_1)[-\psi_5^0 + \psi_5^-x_3 + \psi_5^+(1-2x_3)], \\ A_5(x_i) = & 6x_3(x_2-x_1)\phi_5^-, \\ T_4(x_i) = & \frac{3}{2}[(\xi_5^0 + \psi_5^0 + \phi_5^0)(1-x_3) + (\xi_5^- + \phi_5^- - \psi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ & + (\xi_5^+ + \phi_5^+ + \psi_5^+)(1-x_3 - 2(x_1^2 + x_2^2))], \\ T_5(x_i) = & 6x_3[\xi_5^0 + \xi_5^+(1-2x_3)], \\ T_8(x_i) = & \frac{3}{2}[(\psi_5^0 + \phi_5^0 - \xi_5^0)(1-x_3) + (\phi_5^- - \phi_5^- - \xi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ & + (\phi_5^+ + \phi_5^+ - \xi_5^+)(\mu)(1-x_3 - 2(x_1^2 + x_2^2))], \\ S_2(x_i) = & \frac{3}{2}(x_2 - x_1)[-(\psi_5^0 + \phi_5^0 + \xi_5^0) + (\xi_5^- + \phi_5^- - \psi_5^0)x_3 + (\xi_5^+ + \phi_5^+ + \psi_5^0)(1-2x_3)], \\ P_2(x_i) = & \frac{3}{2}(x_2 - x_1)[(\psi_5^0 + \phi_5^0 - \xi_5^0) + (\xi_5^- - \phi_5^- + \psi_5^0)x_3 + (\xi_5^+ - \phi_5^+ - \psi_5^0)(1-2x_3)]. \end{split}$$

• Twist-6 LCDAs

$$V_6(x_i) = 2[\phi_6^0 + \phi_6^+(1 - 3x_3)],$$

$$A_6(x_i) = 2(x_2 - x_1)\phi_6^-,$$

$$T_6(x_i) = 2[\phi_6^0 + \frac{1}{2}(\phi_6^- - \phi_6^+)(1 - 3x_3)],$$

• LCDAs V_i, A_i, T_i, S_i, P_i are functions of parameters $\phi_i^{\pm,0}, \psi_i^{\pm,0}, \xi_i^{\pm,0}$

$$V_1(x_i) = 120x_1x_2x_3[\phi_3^0 + \phi_3^+(1 - 3x_3)],$$

$$A_1(x_i) = 120x_1x_2x_3(x_2 - x_1)\phi_3^-,$$

$$T_1(x_i) = 120x_1x_2x_3[\phi_3^0 + \frac{1}{2}(\phi_3^- - \phi_3^+)(1 - 3x_3)].$$

The parameters $\phi_i^{\pm,0}, \psi_i^{\pm,0}, \xi_i^{\pm,0}$ depend on 8 parameters

$$\xi_{4}^{0} = \xi_{5}^{0} = \frac{1}{6}\lambda_{2}, \qquad \psi_{4}^{0} = \psi_{5}^{0} = \frac{1}{2}(f_{N} - \lambda_{1}). \qquad \phi_{4}^{+} = \frac{1}{4}\left(\lambda_{1}(3 - 10f_{1}^{d}) - f_{N}(10V_{1}^{d} - 3)\right),$$

$$\psi_{4}^{+} = -\frac{1}{4}\left(\lambda_{1}(-2 + 5f_{1}^{d} + 5f_{1}^{u}) + f_{N}(2 + 5A_{1}^{u} - 5V_{1}^{d})\right),$$

$$\xi_{4}^{-} = \frac{5}{16}\lambda_{2}(4 - 15f_{2}^{d}),$$

$$\xi_{4}^{+} = \frac{1}{16}\lambda_{2}(4 - 15f_{2}^{d}),$$

$$\psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}(f_{1}^{d} - f_{1}^{u}) + f_{N}(2 + 4V_{1}^{u})\right),$$

$$\psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}(f_{1}^{d} - f_{1}^{u}) + f_{N}(3 + 4V_{1}^{d})\right),$$

$$\psi_{5}^{-} = \frac{5}{3}\left(\lambda_{1}(f_{1}^{d} - f_{1}^{u}) + f_{N}(2 - A_{1}^{u} - 3V_{1}^{d})\right),$$

$$\begin{split} \phi_3^0 &= \phi_6^0 = f_{\rm N}, & \phi_4^0 = \phi_5^0 = \frac{1}{2}(\lambda_1 + f_{\rm N}), & \phi_4^- = \frac{5}{4}\Big(\lambda_1\big(1 - 2f_1^d - 4f_1^u\big) + f_{\rm N}\big(2A_1^u - 1\big)\Big), \\ \xi_4^0 &= \xi_5^0 = \frac{1}{6}\lambda_2, & \psi_4^0 = \psi_5^0 = \frac{1}{2}(f_{\rm N} - \lambda_1). & \phi_4^+ = \frac{1}{4}\Big(\lambda_1\big(3 - 10f_1^d\big) - f_{\rm N}\big(10V_1^d - 3\big)\Big), \\ \psi_4^- &= -\frac{5}{4}\Big(\lambda_1\big(2 - 7f_1^d + f_1^u\big) + f_{\rm N}\big(A_1^u + 3V_1^d - 2\big)\Big), \\ (\lambda_1\big(-2 + 5f_1^d + 5f_1^u\big) + f_{\rm N}\big(2 + 5A_1^u - 5V_1^d\big)\Big), & \phi_5^- = \frac{5}{3}\Big(\lambda_1\big(f_1^d - f_1^u\big) + f_{\rm N}\big(2A_1^u - 1\big)\Big), & \phi_6^- = \frac{1}{2}\Big(\lambda_1\big(1 - 4f_1^d - 2f_1^u\big) + f_{\rm N}\big(1 + 4A_1^u\big)\Big), \\ \lambda_2\big(4 - 15f_2^d\big), & \phi_5^+ = -\frac{5}{6}\Big(\lambda_1\big(4f_1^d - 1\big) + f_{\rm N}\big(3 + 4V_1^d\big)\Big), & \phi_6^+ = \Big(\lambda_1\big(1 - 2f_1^d\big) + f_{\rm N}\big(4V_1^d - 1\big)\Big). \\ \psi_5^- &= \frac{5}{3}\Big(\lambda_1\big(-1 + f_1^u\big) + f_{\rm N}\big(2 - A_1^u - 3V_1^d\big)\Big), & \psi_5^+ = \frac{5}{3}\Big(\lambda_1\big(-1 + f_1^u\big) + f_{\rm N}\big(1 + A_1^u + V_1^d\big)\Big), \\ \xi_5^- &= -\frac{5}{4}\lambda_2f_2^d, \\ \xi_5^+ &= \frac{5}{12}\lambda_2\big(2 - 3f_2^d\big), \end{split}$$

$f_N(GeV^2)$	$\lambda_1 (GeV^2)$	$\lambda_2 (GeV^2)$	V_1^d	A_1^u	f_1^d	f_2^d	f_1^u
QCDSR(2001) $\begin{bmatrix} 8 \\ (5.3 \pm 0.5) \times 10^{-3} \\ 9 \\ (5.0 \pm 0.5) \times 10^{-3} \end{bmatrix}$ LCSR(2006) $\begin{bmatrix} 9 \\ (5.0 \pm 0.5) \times 10^{-3} \\ \end{bmatrix}$	$-(2.7\pm0.9)\times10^{-2}$	$(5.4 \pm 1.9) \times 10^{-2}$	0.23 ± 0.03	0.38 ± 0.15 0.38 ± 0.15 0.13	0.6 ± 0.2 0.4 ± 0.05 0.33	0.15 ± 0.06 0.22 ± 0.05 0.25	0.22 ± 0.15 0.07 ± 0.05 0.09

Light-Cone Distribution Amplitudes: proton

Table 2: Parameters in the proton LCDAs in units of 10^{-2} GeV² [73]. The accuracy of those parameters without uncertainties is of order of 50%.

	ϕ_i^0	ϕ_i^-	ϕ_i^+	ψ_i^0	ψ_i^-	ψ_i^+	ξ_i^0	ξ_i^-	$\overline{\xi_i^+}$
twist-3 $(i=3)$	0.53 ± 0.05	2.11	0.57						
twist-4 $(i=4)$	-1.08 ± 0.47	3.22	2.12	1.61 ± 0.47	-6.13	0.99	0.85 ± 0.31	2.79	0.56
twist-5 $(i=5)$	-1.08 ± 0.47	-2.01	1.42	$1.61\pm.047$	-0.98	-0.99	0.85 ± 0.31	-0.95	0.46
twist-6 $(i=6)$	0.53 ± 0.05	3.09	-0.25						

Parameters of LCDAs of proton

Model	Method	$f_N \cdot 10^3$ Gev ²	$\lambda_1 \cdot 10^3$ Gev ²	$\lambda_2 \cdot 10^3$ Gev ²	A_1^u	V_1^d	f_1^u	f_1^d	f_2^d	Ref.
	QCDSR	5.0(5)	-27(9)	54(19)						
ASY		-	-	-	0	1/3	1/10	3/10	4/15	
CZ	QCDSR	5.3(5)	-	-	0.47	0.22	-	-	-	[1]
KS	QCDSR	5.1(3)	-	-	0.34	0.24	-	-	-	[2]
COZ	QCDSR	5.0(3)	-	-	0.39	0.23	-	-	-	[3]
SB	QCDSR	-	-	-	0.38	0.24	-	-	-	[4]
BK	PQCD	6.64	-	-	0.08	0.31	-	-	-	[5]
BLW	QCDSR	-	-	-	0.38(15)	0.23(3)	0.07(5)	0.40(20)	0.22(5)	[6]
BLW	LCSR (LO)	-	-	-	0.13	0.30	0.09	0.33	0.25	[6]
ABO1	LCSR (NLO)	-	-	-	0.11	0.30	0.11	0.27	-	[7]
ABO2	LCSR (NLO)				0.11	0.30	0.11	0.29	-	[7]
LAT09	LATTICE	3.23 (63)	-35.57 (65)	70.02 (13)	0.19 (2)	0.20 (1)	-	-	-	[8]
LAT14	LATTICE	3.07 (36)	-38.77 (18)	77.64 (37)	0.07 (4)	0.31 (2)	-	-	-	[9]
LAT19	LATTICE	3.54 (6)	-44.9 (42)	93.4 (48)	0.30 (32)	0.192 (22)	-	-	-	[10]

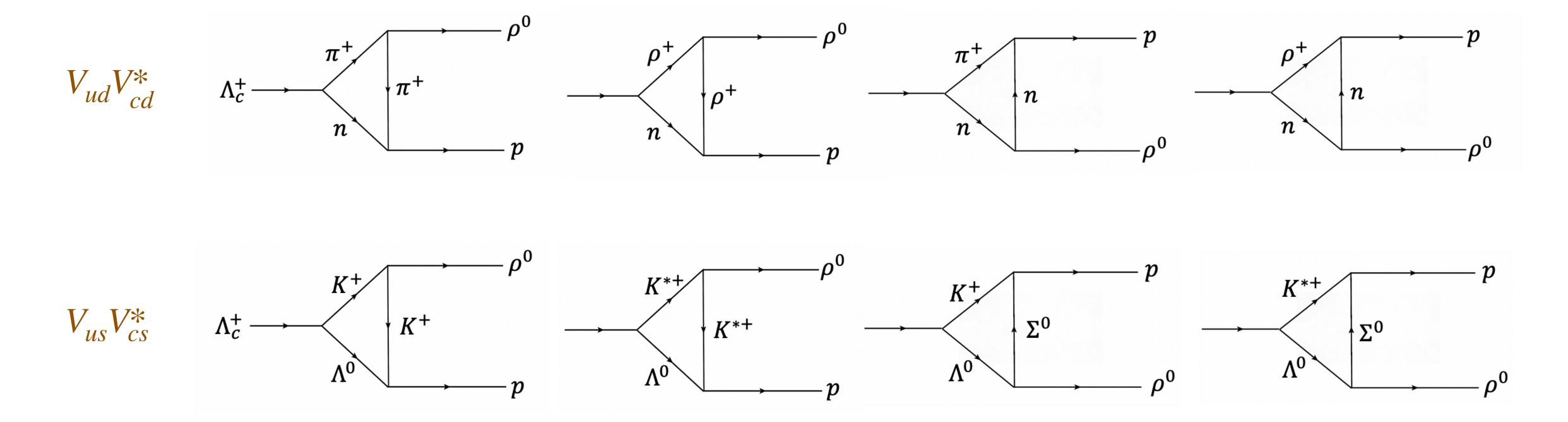
Reference

- [1] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B246, 52 (1984).
- [2] I. King and C. T. Sachrajda, Nucl. Phys. B279, 785 (1987).
- [3] V. Chernyak, A. Ogloblin, and I. Zhitnitsky, Z.Phys. C42, 569 (1989).
- [4] N. Stefanis and M. Bergmann, Phys.Rev. D47, 3685 (1993), hep-ph/9211250.
- [5] J. Bolz and P. Kroll, Z.Phys. A356, 327 (1996), hepph/9603289.
- [6] V. Braun, A. Lenz, and M. Wittmann, Phys.Rev. D73, 094019 (2006), hep-ph/0604050
- [7] I. Anikin, V. Braun, and N. Offen, Phys.Rev. D88, 114021 (2013), 1310.1375.
- [8] V. M. Braun et al. (QCDSF Collaboration), Phys.Rev. D79, 034504 (2009), 0811.2712.
- [9] V.M. Braun, S. Collins, B. Gl"aßle, M. G"ockeler, A. Sch"afer, R.W. Schiel, W. S"oldner, A. Sternbeck, P. Wein, Phys. Rev. D89, 094511 (2014)
- [10] Gunnar S. Bali et al. Light-cone distribution amplitudes of octet baryons from lattice QCD. *Eur. Phys. J. A*, 55(7):116, 2019.

Modes	Br(exp)	Br(this work)	$A_{CP}^{SM} \times 10$
$D^0 o \pi^+ \pi^-$	1.45 ± 0.05	1.43	0.58
$D^0 \longrightarrow K^+ K^-$	4.07 ± 0.10	4.19	-0.42
$D^0 \to K^0 \bar{K}^0$	0.320 ± 0.038	0.36	1.38
$D^0 o \pi^0 \pi^0$	0.81 ± 0.05	0.57	0.05
$D^0 o \pi^0 \eta$	0.68 ± 0.07	0.94	-0.29
$D^0 o \pi^0 \eta'$	0.91 ± 0.13	0.65	1.53
$D^0 o \eta \eta$	1.67 ± 0.18	1.48	0.18
$D^0 o \eta \eta'$	1.05 ± 0.26	1.54	-0.94
$D^+ o \pi^+ \pi^0$	1.18 ± 0.07	0.89	0
$D^+ \longrightarrow K^+ \bar{K}^0$	6.12 ± 0.22	5.95	-0.93
$D^+ o \pi^+ \eta$	3.54 ± 0.21	3.39	-0.26
$D^+ o \pi^+ \eta'$	4.68 ± 0.29	4.58	1.18
$D_S^+ \to \pi^0 K^+$	0.62 ± 0.23	0.67	0.39
$D_S^+ \to \pi^+ K^0$	2.52 ± 0.27	2.21	0.84
$D_S^+ \to K^+ \eta$	1.76 ± 0.36	1.00	0.70
$D_S^+ \to K^+ \eta'$	1.8 ± 0.5	1.92	-1.60

1. Understand QCD dynamics @ 1GeV by Branching Ratios

 $A_{CP}^{SM} = -1 \times 10^{-3}$


2. then predict charm CPV

H.n.Li, C.D.Lu, F.S.Yu, PRD2012

@ BESIII & CLEO

Triangle diagrams

Much more channels are included in the rescattering mechanism

CPV can be easily obtained within the rescattering mechanism

$$\lambda_d A_d + \lambda_s A_s$$