# The new physics implication for the recent Belle II observation of $B^+ \to K^+ \nu \bar{\nu}$



- 华南师范大学
  - 马小东
- 重味物理前沿论坛研讨会 2023.11.24-11.26, 武汉

# Outline

### Introduction

• New contribution to  $B^+ \to K^+ \nu \bar{\nu}$  from heavy mediator

 New decay modes involving new light states (sterile **neutrinos or DM-like particles**)

Summary



- SM uncertainty is well-controlled, mainly from hadronic form factor
- SM prediction:  $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{SM} = (4.43 \pm 0.31) \times 10^{-6}$
- $b \rightarrow s + \text{missing}$  are cleanest modes to search for new physics

 $B \rightarrow K^{(*)} \nu \bar{\nu} \bar{\nu} \bar{\nu} he SM$ 

• Tree-level contribution is forbidden, suppressed by GIM mechanism at loop-level



# **Recent Belle II result**



### Inclusive Tag analysis (ITA) more sensitive

- Combination:  $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{exp} = (2.4 \pm 0.7) \times 10^{-5}$
- Combine Belle II 2021 data,  $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})^{\text{ave}}_{\text{exp}} = (1.4 \pm 0.4) \times 10^{-5}$
- 2.8  $\sigma$  higher than SM prediction  $\Rightarrow$  New physics possibility



Hadronic Tag analysis (HTA) more conventional

A. Glazov, talk @EPS-HEP2023 E. Ganiew, talk @EPS-HEP2023



# **Experimental results vs SM prediction**

$$R_{K}^{\nu\nu} = \frac{\mathscr{B}(B^{+} \to K^{+}\nu\bar{\nu})_{exp}}{\mathscr{B}(B^{+} \to K^{+}\nu\bar{\nu})_{SM}} = 5.4 \pm 1.6.$$
$$R_{K^{*}}^{\nu\nu} = \frac{\mathscr{B}(B \to K^{*}\nu\bar{\nu})}{\mathscr{B}(B \to K^{*}\nu\bar{\nu})_{SM}} \leq 2.7 \text{ or } 1.9.$$

• 2.7  $\leftarrow$  combination of the charged and neutral modes

• 1.9 
$$\Leftarrow \mathscr{B}(B^0 \to K^{0*} \nu \bar{\nu}) \le 1.8 \times 10^{-5}$$

The predictions for the charged and neutral modes are the same in many models

Study ratios of experimental observation over SM prediction could bypass NP hidden in CKM

(90% CL)Belle, 1702.03224





# **NP** implication

- \* New contributions to  $B \rightarrow K^{(*)} + \nu \bar{\nu}$ 
  - Lepton flavor universality (LFU): same coupling to  $\nu_e \bar{\nu}_e, \nu_\mu \bar{\nu}_\mu, \nu_\tau \bar{\nu}_\tau$ ,

  - Lepton flavor conservation without universality: different coupling to  $\nu_e \bar{\nu}_e, \nu_\mu \bar{\nu}_\mu, \nu_\tau \bar{\nu}_\tau$ , • Lepton flavor violation (LFV):  $\nu_i \bar{\nu}_i$  with  $i \neq j$  are open

\* New invisible particles in the final state

- Sterile neutrino-like particle :  $B \rightarrow K^{(*)} + \nu N, B \rightarrow K^{(*)} + N\overline{N}$ • DM/ dark sector particles:  $B \rightarrow K^{(*)} + DM + DM$ • 2-body with dark scalar:  $B \rightarrow K^{(*)} + \phi(S)$

### New heavy mediators in the tree/loop, or new invisible particles in the final state





 $\bigstar B \to K^{(*)} + \nu_i \bar{\nu}_i$ 

- Peter Athron, R. Martinez, Cristian Sierra, 2308.13426
- L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro- Alcaraz, O. Sumensari, 2309.02246
- R. Bause, H. Gisbert, G. Hiller, 2309.00075
- Xiao-Gang He, XDM, German Valencia, 2309.12741
- Chuan-Hung Chen, Cheng-Wei Chiang, 2309.12904

$$B \to K^{(*)} + \nu N, B \to K^{(*)} + N\overline{N}$$

- T. Felkl, A. Giri, R. Mohanta, M. A. Schmidt, 2309.02940
- Xiao-Gang He, XDM, German Valencia, 2309.12741
- Herbert K. Dreiner, Julian Y. Gunther, Zeren Simon Wang, 2309.03727
- $\bigstar B \to K^{(*)} + \mathsf{DM} + \mathsf{DM}$ 
  - Xiao-Gang He, XDM, German Valencia, 2209.05223
  - Xiao-Gang He, XDM, German Valencia, 2309.12741
- $\bigstar B \to K^{(*)} + \phi(S)$ 
  - Murat Abdughani, Yakefu Reyimuaji. 2309.03706
  - Alexander Berezhnoy, Dmitri Melikhov, 2309.17191
  - Alakabha Datta, Danny Marfatia, 2310.15136

2308.13426 sauro- Alcaraz, O. Sumensari, 2309.02246 5 09.12741

, 2309.02940 09.12741 h Simon Wang, 2309.03727

09.05223 09.12741

03706 9.17191 36



# **EFT vs model interpretation**



- SMEFT,  $\nu$ SMEFT
- LEFT
- DMEFT

- $\mathcal{O}_{lq}^{(1)} = (\bar{L}\gamma^{\mu}L)(\bar{Q}\gamma_{\mu}Q)$  $\mathcal{O}_{la}^{(3)} = (\bar{L}\sigma^{I}\gamma^{\mu}L)(\bar{Q}\sigma^{I}\gamma_{\mu}Q)$
- $\mathcal{O}_{ld} = (\bar{L}\gamma^{\mu}L)(\bar{d}\gamma_{\mu}d)$
- **\*** UV models B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, 1008.4884
  - Non-universal U(1)' models:  $U(1)_{L_{\mu}-L_{\tau'}}$ , etc

  - R-parity violating SUSY
  - Scalar mediator coupling to DM particles

 $\mathcal{O}^{QN} = (\bar{Q}\gamma_{\mu}Q)(\bar{N}\gamma^{\mu}N)$  $\mathcal{O}^{dN} = (\bar{d}\gamma_{\mu}d)(\bar{N}\gamma^{\mu}N)$  $\mathcal{O}^{LNQd} = (\bar{L}^{\alpha}N)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}d)$  $\mathcal{O}^{LNQd,\mathrm{T}} = (\bar{L}^{\alpha}\sigma_{\mu\nu}N)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}d)$ 

Y. Liao, XDM, 1612.04527

• Leptoquarks:  $S_0(\bar{3},1,1/3)$ ,  $\tilde{S}_{1/2}(3,2,1/6)$ ,  $S_1(\bar{3},3,1/3)$ ,  $V_{1/2}(\bar{3},2,5/6)$ ,  $V_1(3,3,2/3)$ 







# Other related modes or anomalies

\* Modes give strong constraints

- • $R_K, R_{K^*}$  in  $b \to s\ell^+\ell^-, \ell^- = e, \mu$
- Neutral meson mixing:  $B_s \bar{B}_s, B_d \bar{B}_s$
- $\bullet B_{s} \to \mu^{+}\mu^{-}$
- $B \rightarrow K^* + inv$ .
- $\bullet B_{s} \to inv$ .

\* Other anomalies could be also included:

- $R(D), D(D^*)$  anomalies in  $b \to c \tau \nu$ :  $R_D / R_D^{SM} = 1.19(10), R_{D^*} / R_{D^*}^{SM} = 1.15(5)$
- The excess of electron-like events in the MiniBoone
- Muon g-2

$$\bar{B}_d, K^0 - \bar{K}^0$$

### - Strong interplay with $B \rightarrow K + inv$ . Can be used to test some scenarios in the future measurements

# HFAG & HFLAV, 2206.07501





## New contributions to $b \rightarrow s \nu \bar{\nu}$ with heavy new mediators

The starting point is the WEF or LEFT:

$$\mathcal{H}_{\rm NP} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^{\star} \frac{e^2}{16\pi^2} \sum_{ij} \left( C_L^{ij} \mathcal{O}_L^{ij} + C_R^{ij} \mathcal{O}_R^{ij} \right) + \text{h.c.}, \quad \begin{array}{l} \mathcal{O}_L^{ij} = (\bar{s}\gamma_\mu P_L d)(\bar{\nu}_i \gamma^\mu P_L d)(\bar{\nu}_i$$

The SM contributes only to  $C_{L,SM}^{ii} = -$ 

$$\begin{split} R_{K}^{\nu\nu} &\approx 1 - 0.1 \; \text{Re} \sum_{i} \left( C_{L}^{ii} + C_{R}^{ii} \right) + 0.008 \; \sum_{ij} \left| C_{L}^{ij} + C_{R}^{ij} \right|^{2}, \\ R_{K^{*}}^{\nu\nu} &\approx 1 + \text{Re} \sum_{i} \left( -0.1 \; C_{L}^{ii} + 0.07 \; C_{R}^{ii} \right) + \sum_{ij} \left[ 0.008 \left( C_{L}^{ij^{2}} + C_{R}^{ij^{2}} \right) - 0.01 C_{L}^{ij} C_{R}^{ij} \right] \end{split}$$

$$X(x_t)/s_W^2$$
,  $X(x_t) = 1.46 \pm 0.017$ 







### Models with only $S_0(\bar{3},1,1/3)$ , $S_1(\bar{3},3,1/3)$ , $V_1(3,3,2/3)$ are incompatible

# $C_{r}^{ij}$ alone cannot satisfy both $3.8 \leq R_{K}^{\nu\nu} \leq 7$ and $R_{K^{*}}^{\nu\nu} \leq 2.7(1.9)$

# Leptoquark models $\mathscr{L}_{S} = \lambda_{LS_{0}} \overline{Q^{c}} i\tau_{2} L S_{0}^{\dagger} + \lambda_{L\widetilde{S}_{1/2}} \overline{d} L \widetilde{S}_{1/2}^{\dagger} + \lambda_{LS_{1}} \overline{Q^{c}} i\tau_{2} \vec{\tau} \cdot \vec{S}_{1}^{\dagger} L + \text{ h. c.},$ $\mathscr{L}_{V} = \lambda_{LV_{1/2}} \overline{d^{c}} \gamma_{\mu} L V_{1/2}^{\dagger \mu} + \lambda_{LV_{1}} \overline{Q} \gamma_{\mu} \vec{\tau} \cdot \vec{V}_{1}^{\dagger \mu} L + \text{ h. c.},$









 $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-)_{\text{PDG}} \le 2.25 \times 10^{-3} (90\%)$ 

The WCs  $C_R^{\tau\tau}$  and  $C_R^{\mu\tau}$  generated by  $\tilde{S}_{1/2}$  or  $V_{1/2}$  imply large rates

### for other *B* decay modes





## Other lepton flavor structure for the interpretation



R. Bause, H. Gisbert, and G. Hiller, 2309.00075

- Lepton universality (X)
- Lepton flavor conservation without universality
- Lepton flavor violation

Models that feed only into one type of coupling cannot address the new **Belle II result in full** 

**Possible solutions:** couple only to tau-flavors lepton flavor violating ones.









# **SMEFT framework**

L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz, O. Sumensari, 2309.02246

### Our conclusions basically agree with those papers



 $-\mathscr{L}_{Y} \supset \left(\overline{u_{L}^{\mathsf{C}}} \mathbf{y}_{L}^{q} P_{L} \tau + \overline{u_{R}^{\mathsf{C}}} \mathbf{y}_{R}^{u} P_{R} \tau\right) \left(S_{1}^{-\frac{1}{3}}\right)^{*} - \overline{d_{L}^{\mathsf{C}}} V^{T} \mathbf{y}_{L}^{q} P_{L} \nu_{\tau} \left(S_{1}^{-\frac{1}{3}}\right)^{*} + \text{H.c. } S_{1}(3, 1, -1/3; 1)$  $\mathscr{H}_{d_i \to d_j \nu \bar{\nu}} = C_L^{\mathrm{SM}} V_{td_i}^* V_{td_j} \left( X_t + C_{L,ij}^{S_1} \delta_{\ell \tau} \right) \bar{d}_i \gamma_\mu P_L d_j \bar{\nu}_\ell \gamma^\mu P_L \nu_\ell$  $\mathscr{B}(B \to M \nu \bar{\nu}) = \mathscr{B}(B \to M \nu \bar{\nu})^{\mathrm{SM}} R^{\nu} \longrightarrow$ Same  $R_{\boldsymbol{k}^{(*)}}^{\nu\nu}$ 

### This scenario is in conflict with the $B o K^* u ar{ u}$ constraints

Leptoquark model with gauged  $U(1)_{L_{u}} - L_{v}$ 

Chuan-Hung Chen, Cheng-Wei Chiang, 2309.12904





## New decay modes with sterile neutrinos

 $\mathcal{O}_{I}^{'ij} = (\bar{s}\gamma_{\mu}P_{L}d)(\bar{\nu}_{i}\gamma^{\mu}P_{R}\nu_{j})$  $\mathcal{O}_{R}^{'ij} = (\bar{s}\gamma_{\mu}P_{R}d)(\bar{\nu}_{i}\gamma^{\mu}P_{R}\nu_{j})$ 

 $R_{K}^{\nu\nu} \approx 1 + 0.008 \sum_{L} \left| C_{L}^{'ij} + C_{R}^{'ij} \right|^{2},$  $R_{K^*}^{\nu\nu} \approx 1 + \sum_{i} 0.008 \left( C_L^{'ij^2} + C_R^{'ij^2} \right) - 0.01 C_L^{'ij} C_R^{'ij}$ .

Ι



Both  $C_{r}^{'ij} \neq 0$  and  $C_{P}^{'ij} \neq 0$  are needed to deviate from  $R_{K}^{\nu\nu} = R_{K^*}^{\nu\nu}$ 



# **Sterile Neutrinos in** *v***SMEFT**

#### New decay mode involving sterile neutrino

 $C^{QN}(\bar{Q}\gamma_{\mu}Q)(\bar{N}\gamma^{\mu}N)$ 

 $C^{dN}(\bar{d}\gamma_{\mu}d)(\bar{N}\gamma^{\mu}N)$  $C^{LNQd}(\bar{L}^{\alpha}N)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}d)$  $C^{LNQd,\mathsf{T}}(\bar{L}^{\alpha}\sigma_{\mu\nu}N)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}d)$ 

#### Y. Liao, XDM, 1612.04527

#### **UV** completions

2nd EW scalar doublet, leptoquarks, etc



T. Felkl, A. Giri, R. Mohanta, and M. A. Schmidt, 2309.02940

 Assumption with a single operator dominant • Tensor operator is almost excluded by  $B^0 \to K^{*0} + inv$ . • The vector and scalar operators are viable





# $b \rightarrow s + DM + DM$ in LEFT framework

#### **Scalar DM case**

$$\mathcal{O}_{q\phi}^{S,sb} = (\bar{s}b)(\phi^{\dagger}\phi),$$
$$\mathcal{O}_{q\phi}^{V,sb} = (\bar{s}\gamma^{\mu}b)(\phi^{\dagger}i\overleftrightarrow{\partial}_{\mu}\phi), (\times)$$

#### **Fermion DM case**

$$\mathcal{O}_{q\chi1(2)}^{S,sb} = (\bar{s}b)(\bar{\chi}(i\gamma_5)\chi),$$
  

$$\mathcal{O}_{q\chi1(2)}^{V,sb} = (\bar{s}\gamma^{\mu}b)(\bar{\chi}\gamma_{\mu}(\gamma_5)\chi), (\times)$$
  

$$\mathcal{O}_{q\chi1(2)}^{T,sb} = (\bar{s}\sigma^{\mu\nu}b)(\bar{\chi}\sigma_{\mu\nu}(\gamma_5)\chi), (\times)$$

 $Q\Lambda J$ 

 $\mathcal{O}_{qX6}^{V,sb} = (\bar{s}\gamma_{\mu}b)i\partial_{\nu}(X_{\rho}^{\dagger}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}.(\times)$ 

\* The (X) stands for the interactions vanishes for "real" field

#### **Vector DM case**

- $\mathcal{O}_{aX}^{S,sb} = (\overline{s}b)(X_{\mu}^{\dagger}X^{\mu}),$
- $\mathcal{O}_{qX1}^{T,sb} = \frac{i}{2} (\overline{s}\sigma^{\mu\nu}b) (X_{\mu}^{\dagger}X_{\nu} X_{\nu}^{\dagger}X_{\mu}), (\times)$
- $\mathcal{O}_{qX2}^{T,sb} = \frac{1}{2} (\overline{s}\sigma^{\mu\nu}\gamma_5 b) (X_{\mu}^{\dagger}X_{\nu} X_{\nu}^{\dagger}X_{\mu}), (\times)$
- $\mathcal{O}_{aX2}^{V,sb} = (\bar{s}\gamma_{\mu}b)\partial_{\nu}(X^{\mu\dagger}X^{\nu} + X^{\nu\dagger}X^{\mu}),$
- $\mathcal{O}_{aX3}^{V,sb} = (\overline{s}\gamma_{\mu}b)(X_{\rho}^{\dagger}\overleftrightarrow{\partial_{\nu}}X_{\sigma})\epsilon^{\mu\nu\rho\sigma},$
- $\mathcal{O}_{aX4}^{V,sb} = (\bar{s}\gamma^{\mu}b)(X_{\nu}^{\dagger}i\overleftrightarrow{\partial}_{\mu}X^{\nu}), (\times)$
- $\mathcal{O}_{\alpha Y5}^{V,sb} = (\bar{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\mu\dagger}X^{\nu} X^{\nu\dagger}X^{\mu}), (\times)$



# $b \rightarrow s + DM + DM$ in LEFT framework

#### **Scalar DM case**





# **Massless Bino in R-parity-violating Supersymmetry**

Super potential  $W_{\Delta L \neq 0} = \lambda'_{iik} L_i$ 

 $B^+ \to K^+ \nu(\bar{\nu}) \tilde{\chi}_1^0$ : a single lightest neutralino, tree level  $B^+ \to K^+ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ : negligible contribution from 1-loop

 $B^+ \rightarrow K^+ \nu \tilde{\chi}_1^0, \lambda'_{i32}, \lambda'_{i12}, \lambda'_{i22}$ suppressed by **CKM elements**  $B^+ \rightarrow K^+ \bar{\nu} \tilde{\chi}_1^0, \lambda'_{i23}, \lambda'_{i13}, \lambda'_{i33}$ 

> Large parts of the parameter space for  $\lambda'_{i23/i32}$  and the degenerate sfermion mass  $\tilde{m}$  can explain the latest Belle II measurement

Herbert K. Dreiner, Julian Y. Gunther, Zeren Simon Wang, arXiv:2309.03727



 $\Gamma(B^+ \to K^+ \nu_i(\bar{\nu}_i)\tilde{\chi}_1^0) = \frac{0.0038 \,\text{GeV}^5}{\tilde{\mu}^4} |V_{u_i b} \lambda'_{ij2}|^2 (|V_{u_i s} \lambda'_{ij3}|^2)$ 



# A scalar-mediator dark matter/sector scenario

### The scalar mediator couples mainly to top quark:

$$\mathscr{L}_{\text{int}} = -\frac{ym_t}{v}\phi\bar{t}t - \frac{ym_t}{v}\phi\bar{t}t - \frac{ym_t}{v}\phi\bar{t}t - \frac{ym_b}{v}g_{b\to s\phi}g\bar{t}d\bar{s}_Lb_R - \frac{ym_b}{v$$

 $B \to K^+ \phi \to K^+ \chi \chi$ Extensions of such model could also accommodate other excesses or anomalies: Muon g-2, MiniBooNE electron-like events







### Signal region: $\eta(BDT2) > 0.92$



- Excess between 3-7  $GeV^2$
- Not conclusive due to coarse binning choice, dictated from experimental resolution

# The q<sup>2</sup> distribution

#### Most sensitive region: $\eta(BDT2) > 0.98$



Elisa Manoni's Talk @CERN EP seminar, 2023



# Scalar and fermion DM cases



The vector current operators with scalar or vector DM particles with masses in the hundreds of MeV can match the anomaly.











# **Vector DM case**

### All cases cannot match!





# Conclusion

- Several interesting scenarios that could accommodate the recent Belle II anomaly are reviewed, including heavy mediators and new decay modes;
- For heavy mediator case, the viable explanations are mediators that couple only to tau-flavors and/or LFV ones;
- The EFT consideration involves new light states are also possible;
- $B \to K^* + inv$ .,  $B_s \to inv$ . and other rare B decay modes can be simultaneously to probe or constrain those NP scenarios;
- The future significantly improved data from Belle II can be expected to shed light on this anomaly.







# Thank you for your time!