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Why CP violation?

• One of the Sakharov’s criteria of matter-anti-matter asymmetry 


➡ Requires new source of CP violation


• Determination of CKM matrix phase angles  


➡ To test the unitarity of the CKM matrix 


• Open windows to new dynamics beyond the SM
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[Sakharov, ’67]



New environment — Baryonic CP violation

• We propose to probe CP violation in  


• Two amplitudes with large weak phase difference ( ) and comparable magnitudes


• “Possible large CP violation”: arbitrariness due to poor knowledge of strong 
phase

Λb → DN → (K+π−)(pπ−)

γ
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[Shen,Wang,QQ, PRD(letter), 2309.09854]
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Direct CP violation

• Visualization of CPV requires interference between different amplitudes —— with 

different CP-conserving phases and CP-violating phases, otherwise


• The direct CPV is induced by interference between the tree and penguin amplitudes 
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A = A1eiϕ1eiδ1 + A2eiϕ2eiδ2 = A1eiϕ1eiδ1(1 + reiϕeiδ)

A = A1e−iϕ1eiδ1 + A2e−iϕ2eiδ2 = A1e−iϕ1eiδ1(1 + re−iϕeiδ)

ACP =
|A |2 − |A |2

|A |2 + |A |2 ∝ 2r sin ϕ sin δ

Weak phase, CP-violating Strong phase, CP-conserving

Is there a way out?

(M → f ) ≠ (M̄ → f̄ ) |M → f |2 = |M̄ → f̄ |2, but



CP conserving phase  Strong phase≠
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• Phase due to time evolution


➡ Neutral meson mixing 


➡ Neutrino oscillation


• Phase due to spatial evolution


➡ Spatial rotation —— angular distribution


• Visualize CP violation effects without strong phases


• Decode strong phases

sin δ, sin(δ + π/2) = cos δ ⇒ tan δ



Non-strong CP violation observables

• We propose/investigate two new types of CPV observables 


➡CPV induced by interference between two meson mixing


It does not require nonzero strong phases! 


Strong phases can be extracted from experiment data without theoretical input.


➡Complementary time-reversal-odd (T-odd) and -even observables TQ∓ = ∓ Q∓T
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[Shen,Song,QQ,2301.05848]

[Wang,QQ,Yu,2211.07332]

(M0
1 → M̄0

2 → M0
2) + (M0

1 → M̄0
1 → M0

2)

AQ−
CP ≡ ⟨Q−⟩ − ⟨Q̄−⟩ ∝ cos δs AQ−

CP ≡ ⟨Q+⟩ − ⟨Q̄+⟩ ∝ sin δs



Part 1. Double-mixing CP violation
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[Shen,Song,QQ, 2301.05848]



Mixing-related CP violation observables

8

• Common CPV observables  


✓ CPV in mixing (indirect CPV)


✓ CPV in interference between a decay without and with initial mixing


• CPV in interference between a decay without and with final mixing 

[Wang,Li,Yu,PRL119 (2017)181802]

(M0 → f ) + (M0 → M̄0 → f )

(P → M0) + (P → M̄0 → M0)

|M0 → M̄0 | ≠ |M̄0 → M0 | ( |q/p | ≠ 1)



• Visualization of CPV requires interference between 
different amplitudes


✓ CPV in mixing: different quark mediating box amplitudes 


It is dominant by one amplitude            small CPV, 


✓ CPV in interference between a decay without and with mixing

|q/p | ≈ 1
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M0 → f M0 → M̄0 → f

A = A1eiϕ1eiδ1 + A2eiϕ2eiδ2eiΔMt = A1eiϕ1eiδ1(1 + reiϕeiδ+iΔMt)

A = A1e−iϕ1eiδ1 + A2e−iϕ2eiδ2eiΔMt = A1e−iϕ1eiδ1(1 + re−iϕeiδ+iΔMt)

Mixing-related CP violation observables

q/p ≈ eiδw

CP-conserving phase



• Double mixing CP violation: induced by interference 
of different mixing paths of neutral mesons 


• Consider B0
s → ρ0K → ρ0π−e+ν
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B0
s → ρ0K̄0 → ρ0K0 → ρ0π−e+ν

B0
s → B̄0

s → ρ0K0 → ρ0π−e+ν

Double mixing CP violation

Upper path: 

Lower path: 

[Shen,Song,QQ, 2301.05848]



• The double-mixing CP asymmetry depends on two time variables and thus a two-
dimensional time dependence analysis can be performed.


• Significant in some channels, to be measured in experiments.


• It does not require nonzero strong phases, providing opportunities to directly extract 
weak phases without strong pollution.


• Strong phases can be extracted from experiment data without theoretical input.
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Advantages of Double mixing CP violation

B0
s → ρ0K → ρ0π−e+ν

B0 → D0K → D0π−e+ν
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• Take  as an example (penguin 0) 

• Two-time dependent CPV:   

    Sources:  1. ；    2. ；      3.  

B0
s (t1) → ρ0K̄0(t2) → ρ0π−e+ν ≈

ACP(t1, t2) = ( |M |2 − |M̄ |2 )/( |M |2 + |M̄ |2 )

|M1 |2 |M2 |2 M*1 M2 + M1M*2

CP violation induced by neutral meson mixing interference

Yin-Fa Shen,1, ⇤ Wen-Jie Song,1, † and Qin Qin1, ‡

1
School of physics, Huazhong University of Science and Technology, Wuhan 430074, China

We propose a novel kind of CP violation e↵ect

PACS numbers:

Introduction. —The CP violation is a crucial subject in
particle physics. Measurements of CP violation e↵ects in
flavor processes help determine the Cabibbo-Kobayashi-
Maskawa (CKM) [1, 2] matrix elements, which are funda-
mental parameters of the standard model. Moreover, CP
violation is one of the criteria of the matter-antimatter
asymmetry of the universe [3]. However, the CP violation
in the SM is too small to explain the observed matter-
anti-matter asymmetry in the universe [4, 5]. As such,
precision tests of CP asymmetries may open a window to
physics beyond the SM.

Although induced by the weak interaction, visualiza-
tion CP violation in hadrons decays typically requires in-
terplay between weak and strong processes and receives
pollution from strong dynamics. Therefore, examination
of CP violation in di↵erent platforms are crucial to probe
it, especially ones free of strong phases [6, 7]. We hereby
propose a novel CP violation e↵ect induced by interfer-
ence between two mixing processes — double-mixing CP
asymmetry, which can possibly provide an environment
free of strong phases.

The novel CP asymmetry exists in a decay chain, where
two oscillating neutral mesons are involved. To be more
specific, the primary meson M0

1 decay, before of after os-
cillates to its antiparticle M̄0

1 , into a secondary neutral
meson M̄0

2 (M
0
2 ) and other particles, and then M̄0

2 (M
0
2 )

further decay into the detectable final state together with
other particles. We can write it as M0

1 (t1) ! M̄0
2 (t2) !

f , where t1,2 are the time durations from the produc-
tion to the decay of M0

1,2. A simple case is shown in
FIG. 1, with interference between the evolution paths
M0

1 ! M̄0
2 f ! M0

2 and M0
1 ! M̄0

1 f ! M0
2 . CP asym-

metries are induced by interferences between di↵erent os-
cillation paths. There also exist other interfering paths
such as M0

1 ! M̄0
2 f ! M0

2 ! M̄0
2 and M0

1 ! M̄0
2 . If

M0
2 and M̄0

2 decay into the same final state, usually a CP
eigenstate, there are interferences between the four paths,
and induce very fruitful CP observables. Di↵erent from
all known CP violation e↵ects, including CP violation in
decay, also named as direct CP asymmetry, CP violation
in mixing, CP violation in interference between decay
and mixing, the double-mixing CP asymmetry are in-
duced by interferences between mixing amplitude of two
neutral mesons.

Phenomenologically, di↵erent from all known CP vi-
olation, the double-mixing CP asymmetry has depen-
dence on two time variables, t1 and t2. Therefore, a two-

FIG. 1: Interference between two mixing chains. The decay
products associated with M2 are not displayed.

dimensional time dependent CP asymmetry provides a
new platform to probe the relevant dynamics. It is found
that such a CP asymmetry is independent of direct CP
asymmetry and mixing CP asymmetry, and still exists in
absence of any strong phases. So it provides a method
to directly extract the weak phases in the CKM matrix.
Taking B̄s(t1) ! ⇢0K̄0(t2) ! ⇢0⇡�`⌫ as an example, the
new CP violation e↵ect can reach as large as 50%.
First observation of CP violation in the decays of Bs

mesons 1304.6173
This new e↵ect is neglected in many previous measure-

ments, ..., such that the wrong results were obtained and
need to be modified... It is also sensitive to some new dy-
namics beyond the standard model, ... Maybe the most
important feature, is that it provides a possibility that
the CP violation is independent on strong phases, and
can be used to extract weak phases directly.
Formulae. —In the following formulae, we accept the

convention that the mass eigenstates MH , L of the neu-
tral mesons are superpositions of their flavor eigenstates

|MH,Li = p
��M0

↵
⌥ q

��M̄0
↵
, (1)

where q, p are complex coe�cients. The mass and decay
width di↵erences are defined as�� = �H��L and�m ⌘
mH �mL such that the oscillation is formulated by

��M0(t)
↵

= g+(t)
��M0

↵
� q

p
g�(t)

��M̄0
↵
,

��M̄0(t)
↵

= g+(t)
��M̄0

↵
� p

q
g�(t)

��M0
↵
,

g±(t) =
1

2

h
e�imHt� 1

2�Ht ± e�imLt� 1
2�Lt

i
, (2)

in the case that the theory is CPT invariant.

M1(t1, t2) ∝ g1,+(t1)[ −
p
q

g2,−(t2)]

M2(t1, t2) ∝ [−
q
p

g1,−(t1)]g2,+(t2)
K̄0 → K0

B0
s → B̄0

s

M ≡ M1 + M2

Double mixing CP violation — Significance
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• Take  as an example (penguin 0)B0
s (t1) → ρ0K̄0(t2) → ρ0π−e+ν ≈

ACP(t1, t2) ∝ |g1,+(t1) |2 C+(t2) + |g1,−(t1) |2 C−(t2)+e−Γ1t1 sinh
ΔΓ1t1

2
Sh(t2) + e−Γ1t1 sin(Δm1t1) Sn(t2)

|M1 |2 |M2 |2

Double mixing CP violation — Significance

C+(t2) = |g2,−(t2) |2 p2

q2

2

−
q2

p2

2

C−(t2) = |g2,+(t2) |2 q1

p1

2

−
p1

q1

2

CP violation in  mixingK0

CP violation in  mixingB0
s
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Sh(t2) =
e−Γ2t2

2
[−2 sin Δm2t2 sin(ϕ1 + ϕ2 + 2δ)]

Sn(t2) =
e−Γ2t2

2
2 sinh

ΔΓ2t2
2

sin(ϕ1 + ϕ2 + 2δ)

q1/p1 = |q1/p1 |e−iϕ1

q2/p2 = |q2/p2 |e−iϕ2

< ρK̄ |Bs > = < ρK | B̄s > e2iδ

• Take  as an example (penguin 0)B0
s (t1) → ρ0K̄0(t2) → ρ0π−e+ν ≈

ACP(t1, t2) ∝ |g1,+(t1) |2 C+(t2) + |g1,−(t1) |2 C−(t2) + e−Γ1t1 sinh
ΔΓ1t1

2
Sh(t2) + e−Γ1t1 sin(Δm1t1) Sn(t2)

M*1 M2 + M1M*2

 mixing 
interference

Bs & KWeak Phase

Double mixing CP violation — Significance
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Sh ∝ sinh
ΔΓ1t1

2
sin(Δm2t2) sin(ϕ1 + ϕ2 + 2δ)]

Sn ∝ sin(Δm1t1) sinh
ΔΓ2t2

2
sin(ϕ1 + ϕ2 + 2δ) KS + KL

 interferenceKS, KL

• Take  as an example (penguin 0)B0
s (t1) → ρ0K̄0(t2) → ρ0π−e+ν ≈

Time dependence:

Measurable at LHCb!

Double mixing CP violation — Significance
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• Take  as an exampleB0
d(t1) → D0K0(t2) → (K−π+)(π+e−ν̄)

⟨D0K0 |B0⟩ = ⟨D̄0K0 |B0⟩rBei(δs+δ2)

Double mixing CP violation — CKM phase

⟨D0K̄0 | B̄0⟩ = ⟨D̄0K0 |B0⟩eiδ1

q1/p1 = |q1/p1 |e−iϕ1

q2/p2 = |q2/p2 |e−iϕ2

3 Parameters: , , rB δs δw ≡ ϕ2 − ϕ1 + δ1 − δ2 ≈ − 2β − γ

ACP(t1, t2) =
e−ΓBt1 sin ΔmBt1S(t2)

e−ΓBt1[C′ (t2)(1 + cos ΔmBt1)+S′ (t2)sin ΔmBt1]

S(t2) =
e−Γ2t2

2
rB[−2 sin δw cos δs sinh

ΔΓK

2
t2 + 2 sin δw sin δs sin ΔmKt2]

C′ (t2) =
e−Γ2t2

2
[(1 + r2

B)cosh
ΔΓK

2
t2 + (1 − r2

B)cos ΔmKt2]

S′ (t2) =
e−Γ2t2

2
rB[2 cos δw sin δs sinh

ΔΓK

2
t2 + 2 cos δw cos δs sin ΔmKt2]
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• Take  as an exampleB0
d(t1) → D0K0(t2) → (K−π+)(π+e−ν̄)

Double mixing CP violation — CKM phase
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• Take  as an exampleB0
d(t1) → D0K0(t2) → (K−π+)(π+e−ν̄)

Double mixing CP violation — CKM phase

Parameters Central value Uncertainty

0.367 ± 0.014

164 ± 4

109 ± 5

rB

δw

δs

Assuming 3000 events (Belle II):

Input:  = 2β + γ (109.9 ± 3.7)∘



Part 2. T-odd CP violation

19

[Wang, QQ, Yu, 2211.07332]



• Polarizations/helicities of particle provide fruitful information to build more observables.


• Lee-Yang parameters: α, β, γ

20

,      ,   α =
2Re(S*P)

|S |2 + |P |2 β =
2Im(S*P)

|S |2 + |P |2 γ =
|S |2 − |P |2

|S |2 + |P |2

A(Λ0 → pπ) = ūp(S + Pγ5)uΛ

Polarization induced observables

Theoretically, they are expressed by partial wave amplitudes (helicity amplitudes ) as:h± = S ± P

Experimentally, they are measured by proton polarizations:

Pp =
(α+cos θ) ̂p+β ̂p × ̂s+γ( ̂p × ̂s) × ̂p

1 + α cos θ
Spin measurements are difficult!



• Key point: particle spins are encoded in their decay products.


• With entangled  and , BESIII measure the Lee-Yang 
parameters and their induced CPV


• Application to more channels with Cascade decays (e.g. )


1. Angular distribution encodes the helicity amplitudes

2. They induce CPVs with different strong phase dependences

Ξ−Ξ̄+ Ξ− → Λπ− → p2π−

Λb → ΛV → p3π

21

ΔϕCP ≈
⟨α⟩

1 − ⟨α⟩2
( β + β̄

α − ᾱ )Ξ
= (−5 ± 15) × 10−3

Polarization induced observables

Strong phase independent!

[BESIII, Nature 2022]

 vs sin δs cos δs

[Geng, Liu, Wei, et al, 2106.10628,2109.09524,2206.00348;Zhou, et al, 2210.15357]



• Strong phase dependence:  vs  

• Question: does this complementarity generally exist?


• Question: if yes, how to find them systematically?

sin δs cos δs

22

Polarization induced observables

• Whatever the strong phase is, either  or 
 would be larger than 0.7.


• If both of CPVs are measured, the strong 
phase can be determined.

|sin δ |
|cos δ |
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• General conclusion: T-odd correlation  induces CPV with cosine dependence on 
strong phases


if it satisfies two conditions: (i) for the final-state basis { , n =1,2,…}, there is a 
unitary transformation , s.t. ; (2) 

Q−

|ψn⟩
U UT |ψn⟩ = e−iα |ψn⟩ UQ−U† = Q− .

T-odd correlation induced CP asymmetry

TQ− = − Q−T, AQ−
CP ≡

⟨Q−⟩ − ⟨Q̄−⟩
⟨Q−⟩ + ⟨Q̄−⟩

∝ cos δs

2

have cosine dependence on strong phase di↵erences. The
proof also provides a systematic method to find this type
of T-odd correlations, and thus can lead to a blanket
search for baryonic CPV. Applying it to two-body decays,
T-odd correlations can be built by triple- and pentuple-
products of momentum and spin vectors. Such T-odd
correlations are reflected as the imaginary parts of helic-
ity amplitude interference. This general conclusion was
previously observed in specific cases like B ! V V and
D ! V V decays [5–11]. It also provides a natural expla-
nation why T-odd correlation was generally used to in-
vestigate CPV in the higgs couplings htt̄ and h⌧ ⌧̄ without
the consideration of CP conserved phases [27, 28]. More-
over, for each of such T-odd corrections, there exists a
corresponding T-even correlation, whose expectation is
exactly the real part of the same helicity amplitude in-
terference. Therefore, CP asymmetries induced by such
T-odd and -even correlations are exactly complementary
to each other, and at least one of them would be large
whether the strong phase di↵erence is small or large.

Experimentally, although it is di�cult to directly mea-
sure them at colliders since particle spins are involved,
the T-odd and the corresponding T-even correlations can
be extracted from the angular distribution of further de-
cays of the primary decay products. We eventually pro-
pose the decay chains ⇤0

b ! N⇤(1520)⇢ ! p⇡⇡⇡ and
⇤0
b ! N⇤(1520)K⇤ ! p⇡K⇡ as examples to illustrate

their measurements and accessibility at the LHCb in the
near future, and the great potential of searching for CPV
in the baryon sector.

Strong phase dependence– We firstly prove the proposi-
tion that CP asymmetries induced by a type of T-odd
correlations Q�, A

Q�
CP , are proportional to the cosine of

involved strong phase angle di↵erences, cos �s. The ex-
plicit meaning of T-odd is that Q� transforms under a
time reversal as

T Q� = �Q�T . (1)

It should be noted that not any Q� can induce a CP
asymmetry proportional to cos �s [29]. A qualified Q�
must satisfy the following conditions: (i) In the Hilbert
space of the final states of a physical process that we
are interested, with a properly chosen basis {| ni, n
=1,2,...}, there exists a unitary transformation U that
transforms T | ni back to | ni up to a universal phase
factor, i.e., UT | ni = ei↵| ni; (ii) Q� is conserved un-
der this unitary transformation, i.e. UQ�U† = Q�. The

proof of AQ�
CP being proportional to cos �s is as follows.

The Q� expectation value of the final state |fi ⌘ S|ii
of a process can be expressed in terms of the transition
amplitudes from the initial state to basis vectors An ⌘

h n|S|ii, as

hf |Q�|fi = hi|S†Q�S|ii
=

X

m,n

h i|S†| mih m|Q�| nih n|S| ii

=
X

m,n

A⇤
mAnh m|Q�| ni . (2)

The dynamics are now coded in An’s, and h m|Q�| ni’s
only consist of kinematics. Then it can be shown that
the matrix element h m|Q�| ni is purely imaginary by

h m|Q�| ni = h m|T †T Q�| ni⇤

= �h m|T †Q�T | ni⇤

= �h m|T † U†U Q� U†U T | ni⇤

= �h m|T †U† Q� UT | ni⇤

= �h m|Q�| ni⇤ , (3)

where in the first step the anti-unitarity of T is used.
Because the expectation hf |Q�|fi must be real, only the
imaginary part of the amplitude interference Im(A⇤

mAn)
contributes. Or mathematically, one can obtain an equiv-
alent result through interchanging the position of indices
m and n since they are dummy, and then apply the her-
miticity of Q� as an observable. Significantly, the gen-
eral time evolution operator S that we used in the proof
implies that the above conclusion is valid for both per-
turbative and non-perturbative problems, and for diverse
physical systems such as beauty, charm, strange, top and
even Higgs physics.

The CP asymmetry induced by a T-odd correlation
Q� is defined as

AQ�
CP ⌘ hf |Q�|fi � hf̄ |Q̄�|f̄i

hf |Q�|fi+ hf̄ |Q̄�|f̄i
, (4)

where the CP transformed |f̄i ⌘ S(CP )|ii and Q̄� ⌘
(CP )Q�(CP )�1. Inserting complete basis of | ni and
| ̄ni ⌘ CP | ni, the numerator is given by

AQ�
CP /

X

m,n

i Im(A⇤
mAn � Ā⇤

mĀn)h m|Q�| ni , (5)

where the relation h m|Q�| ni = h ̄m|Q̄�| ̄ni indepen-
dent on dynamics has been used. The imaginary di↵er-
ence Im(A⇤

mAn�Ā⇤
mĀn) must be proportional to the sine

of the weak phase di↵erence sin �w and hence the cosine
of the relevant strong phase di↵erence cos �s. Quod erat

demonstrandum.

Analogously, if a T-even correlation Q+ satisfies con-
dition (i) and (ii), the right-hand side of (3) flips the
sign such that the Q+ expectation depends on the real
part of amplitude interferences. Therefore, its induced
CP asymmetry will be proportional to the sine of the
corresponding strong phase di↵erence, sin �s. Actually,
direct CP asymmetries are induced by a T-even corre-
lation, which can be defined by |fdihfd| with |fdi the

2

have cosine dependence on strong phase di↵erences. The
proof also provides a systematic method to find this type
of T-odd correlations, and thus can lead to a blanket
search for baryonic CPV. Applying it to two-body decays,
T-odd correlations can be built by triple- and pentuple-
products of momentum and spin vectors. Such T-odd
correlations are reflected as the imaginary parts of helic-
ity amplitude interference. This general conclusion was
previously observed in specific cases like B ! V V and
D ! V V decays [5–11]. It also provides a natural expla-
nation why T-odd correlation was generally used to in-
vestigate CPV in the higgs couplings htt̄ and h⌧ ⌧̄ without
the consideration of CP conserved phases [27, 28]. More-
over, for each of such T-odd corrections, there exists a
corresponding T-even correlation, whose expectation is
exactly the real part of the same helicity amplitude in-
terference. Therefore, CP asymmetries induced by such
T-odd and -even correlations are exactly complementary
to each other, and at least one of them would be large
whether the strong phase di↵erence is small or large.

Experimentally, although it is di�cult to directly mea-
sure them at colliders since particle spins are involved,
the T-odd and the corresponding T-even correlations can
be extracted from the angular distribution of further de-
cays of the primary decay products. We eventually pro-
pose the decay chains ⇤0

b ! N⇤(1520)⇢ ! p⇡⇡⇡ and
⇤0
b ! N⇤(1520)K⇤ ! p⇡K⇡ as examples to illustrate

their measurements and accessibility at the LHCb in the
near future, and the great potential of searching for CPV
in the baryon sector.

Strong phase dependence– We firstly prove the proposi-
tion that CP asymmetries induced by a type of T-odd
correlations Q�, A

Q�
CP , are proportional to the cosine of

involved strong phase angle di↵erences, cos �s. The ex-
plicit meaning of T-odd is that Q� transforms under a
time reversal as

T Q� = �Q�T . (1)

It should be noted that not any Q� can induce a CP
asymmetry proportional to cos �s [29]. A qualified Q�
must satisfy the following conditions: (i) In the Hilbert
space of the final states of a physical process that we
are interested, with a properly chosen basis {| ni, n
=1,2,...}, there exists a unitary transformation U that
transforms T | ni back to | ni up to a universal phase
factor, i.e., UT | ni = ei↵| ni; (ii) Q� is conserved un-
der this unitary transformation, i.e. UQ�U† = Q�. The

proof of AQ�
CP being proportional to cos �s is as follows.

The Q� expectation value of the final state |fi ⌘ S|ii
of a process can be expressed in terms of the transition
amplitudes from the initial state to basis vectors An ⌘

h n|S|ii, as

hf |Q�|fi = hi|S†Q�S|ii
=

X

m,n

h i|S†| mih m|Q�| nih n|S| ii

=
X

m,n

A⇤
mAnh m|Q�| ni . (2)

The dynamics are now coded in An’s, and h m|Q�| ni’s
only consist of kinematics. Then it can be shown that
the matrix element h m|Q�| ni is purely imaginary by

h m|Q�| ni = h m|T †T Q�| ni⇤

= �h m|T †Q�T | ni⇤

= �h m|T † U†U Q� U†U T | ni⇤

= �h m|T †U† Q� UT | ni⇤

= �h m|Q�| ni⇤ , (3)

where in the first step the anti-unitarity of T is used.
Because the expectation hf |Q�|fi must be real, only the
imaginary part of the amplitude interference Im(A⇤

mAn)
contributes. Or mathematically, one can obtain an equiv-
alent result through interchanging the position of indices
m and n since they are dummy, and then apply the her-
miticity of Q� as an observable. Significantly, the gen-
eral time evolution operator S that we used in the proof
implies that the above conclusion is valid for both per-
turbative and non-perturbative problems, and for diverse
physical systems such as beauty, charm, strange, top and
even Higgs physics.

The CP asymmetry induced by a T-odd correlation
Q� is defined as

AQ�
CP ⌘ hf |Q�|fi � hf̄ |Q̄�|f̄i

hf |Q�|fi+ hf̄ |Q̄�|f̄i
, (4)

where the CP transformed |f̄i ⌘ S(CP )|ii and Q̄� ⌘
(CP )Q�(CP )�1. Inserting complete basis of | ni and
| ̄ni ⌘ CP | ni, the numerator is given by

AQ�
CP /

X

m,n

i Im(A⇤
mAn � Ā⇤

mĀn)h m|Q�| ni , (5)

where the relation h m|Q�| ni = h ̄m|Q̄�| ̄ni indepen-
dent on dynamics has been used. The imaginary di↵er-
ence Im(A⇤

mAn�Ā⇤
mĀn) must be proportional to the sine

of the weak phase di↵erence sin �w and hence the cosine
of the relevant strong phase di↵erence cos �s. Quod erat

demonstrandum.

Analogously, if a T-even correlation Q+ satisfies con-
dition (i) and (ii), the right-hand side of (3) flips the
sign such that the Q+ expectation depends on the real
part of amplitude interferences. Therefore, its induced
CP asymmetry will be proportional to the sine of the
corresponding strong phase di↵erence, sin �s. Actually,
direct CP asymmetries are induced by a T-even corre-
lation, which can be defined by |fdihfd| with |fdi the

Proof: 

⟨ f |Q− | f⟩ ∋ Im(A*mAn) AQ−
CP ∝ sin δwcos δs

[Wang, QQ, Yu, 2211.07332] AQ+
CP ∝ sin δwsin δs



• Example 1. Triple product  in 


• Example 2. Triple product  in 

Q1 ≡ ( ⃗s1 × ⃗s2) ⋅ ̂p P → P1P2

Qp ≡ ( ̂p1 × ̂p2) ⋅ ̂p3 P → P1P2P3P4
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[Wang, QQ, Yu, 2211.07332]

T : ⃗p → − ⃗p , h → h; U = R(π) : − ⃗p → ⃗p , h → h condition (i)

T : Q1 → − Q1; U = R(π) : Q1 → Q1 condition (ii)

T : ⃗p → − ⃗p ; U = P : − ⃗p → ⃗p condition (i)

T : Qp → − Qp; U = P : Qp → − Qp condition (ii)



• For the decay , three such T-odd correlations


• Their expectations are imaginary helicity amplitude interferences


• Moreover, complementary T-even correlations are found 

Λb → N*(1520)K*
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[Wang, QQ, Yu, 2211.07332]

Q1 ≡ ( ⃗s1 × ⃗s2) ⋅ ̂p =
i
2

(s+
1 s−

2 − s−
1 s+

2 )

Q2 ≡ ( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p)Q1 + Q1( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p) =
i
2

sz
1sz

2(s+
1 s−

2 − s−
1 s+

2 ) +
i
2

(s+
1 s−

2 − s−
1 s+

2 )sz
1sz

2

Q3 ≡ ( ⃗s1 ⋅ ⃗s2)Q1 + Q1( ⃗s1 ⋅ ⃗s2) − Q2 =
i
2

(s+
1 s+

1 s−
2 s−

2 − s−
1 s−

1 s+
2 s+

2 )

⟨Q3⟩ = 2 3 Im (H+1,+ 3
2
H*

−1,− 1
2

+ H*
−1,− 3

2
H+1,+ 1

2
)

P1 ≡ ⃗s1 ⋅ ⃗s2 − ( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p), P2 ≡ ( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p)P1 + P1( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p),

P3 ≡ P2
1 − [ ⃗s 2

1 − ( ⃗s1 ⋅ ̂p)2][ ⃗s 2
2 − ( ⃗s2 ⋅ ̂p)2] − [( ⃗s1 × ⃗s1) ⋅ ̂p][( ⃗s2 × ⃗s2) ⋅ ̂p]

⟨P3⟩ ∝ Re (H+1,+ 3
2
H*

−1,− 1
2

+ H*
−1,− 3

2
H+1,+ 1

2
)

Exactly Complementary!

Real part

 vs cos δs sin δs

Triple product

Hepta product

Penta product



• The expectations of the complementary T-odd and T-even correlations are both 
encoded in angular distribution of secondary decays of 


• Complementary CP asymmetries 

can thereby be measured, which 

depend on .

N*(1520)K*

cos δs & sin δs
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(s+1 s
+
1 s

�
2 s

�
2 + s�1 s

�
1 s

+
2 s

+
2 )/2. Their expectations are ex-

actly the real parts of the interferences corresponding to
Q2,3 in (12).
Owing to the di�culties in measurements of particle

spins at colliders, the above observables are unlikely to
be directly measured at experiments. Fortunately, if the
final-state particles are unstable and thus subsequently
decay into more particles, most of the T-odd correlations
can be extracted from the angular distributions of the
integral decay chains. Next, we will perform the angular
analysis on the ⇤b ! N⇤(1520)V decay as an applying
example to the baryon CPV.
CPV in baryon sector.– We analyze the ⇤0

b !
N⇤(1520)V decay channel, where N⇤(1520) further de-
cays into p⇡ and V being K⇤ or ⇢ further decays into
K⇡ or ⇡⇡. To connect the T-odd observable to the ex-
perimental measurement, we derive the angular distribu-
tion of the decay chain ⇤0

b ! N⇤(1520)V ! p⇡P1P2 in
the framework of helicity formalism [30]. The kinematic
variables are identical to the depiction of FIG. 1, corre-
spondingly. The angular distribution is given as

d�

dc1 dc2 d'
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(13)
where s1,2 = sin ✓1,2 and c1,2 = cos ✓1,2. Two inde-
pendent T-odd observables are involved in the angular
distribution with respect to sin' and sin 2', AT,1 ⌘
Im (H+1,+ 3

2
H⇤

0,+ 1
2
+H⇤

�1,� 3
2
H0,� 1

2
) = �hQ1 + 2Q2i/

p
6

and AT,2 ⌘ Im (H+1,+ 3
2
H⇤

�1,� 1
2
+ H⇤

�1,� 3
2
H+1,+ 1

2
) =

hQ3i/(2
p
3). They can be extracted by integrating the

di↵erential decay width

AT,i /
Z

d�

dc1 dc2 d'
Wi dc1 dc2 d', (14)

with the weight functions W1 = sin' c1 c2 and W2 =
sin 2' s1 s2, respectively. The expectation of the comple-
mentary T-even correlations hP1+2P2i and hP3i are also
contained in the angular distribution (13) with respect
to cos' and cos 2', and can be analogously extracted.
In the rest frame of ⇤0

b , we define ~na = ~p1 ⇥ ~p2/|~p1 ⇥ ~p2|,

FIG. 1. The depicted figures of angular distributions of ⇤0
b !

N⇤(1520)K⇤ ! p⇡K⇡. The angle ✓1, ✓2 are defined in the
rest frames of K⇤ and N⇤(1520), respectively. These angles
also correspond to the definition of angular distribution (13).

~nb = ~p3 ⇥ ~p4/|~p3 ⇥ ~p4|, and then sin' and sin 2'
can be expressed in terms of the momentum variables,
sin' = (~na ⇥ ~nb) · p̂b = ~na · (~nb ⇥ p̂b) / (~p1 ⇥ ~p2) · ~p4 and
sin 2' = 2 sin' cos' / [(~p1⇥~p2) ·(~p3⇥~p4)][(~p1⇥~p2) ·~p4].
Here, we can see their T-odd property, but it must be
noticed that the true T-odd correlation is constructed
based on the polarizations and momenta of N⇤,K⇤, not
the p,K,⇡ momenta. Then, the induced CP asymme-
tries are given by the di↵erences between ATi and their
CP conjugate values

AT,i
CP =

AT,i � ĀT,i

AT,i + ĀT,i
. (15)

It should be emphasized that AT,i
CP are proportional to the

cosine of some strong phase di↵erence cos �s,i, as proved
before. More than that, CP asymmetries induced by
hP1+2P2i and hP3i are proportional to the sine of exactly
the same phase di↵erence sin �s,i, since these observables
are given by the real parts of the same helicity ampli-
tude interferences. Therefore, they are exactly comple-
mentary to each other. Whether �s,i is small or large, the
CP asymmetry has a chance to be observed. From the
experimental aspect, the data samples of N⇤(1520)K⇤

and N⇤(1520)⇢ are remarkable and prospective to search
for baryonic CPV [23]. Above discussion directly applies
to other decays with same quantum numbers like those
listed in [33] such as ⇤b ! ⇤(1520)⇢0,⇤(1520)�. It can
also be extended to other two-body baryon decays such
as ⇤0

b ! ⇤V [34–37], though it has a smaller data sam-
ple [38].
Summary.– In this work, we prove that a type of T-odd
correlations that satisfy two proposed conditions induce
CPV observables proportional to cosine of strong phase
di↵erences. This property makes them complementary
to traditional direct CP asymmetries and neutral me-
son mixing induced CPV observables, i.e., still sensitive
in case of small strong phase di↵erences. Hence, it is a
powerful tool that can be used to search for CPV in the
baryon sector. The proof in passing provides the recipe
of constructing such T-odd correlations. In baryon de-
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also correspond to the definition of angular distribution (13).
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can be expressed in terms of the momentum variables,
sin' = (~na ⇥ ~nb) · p̂b = ~na · (~nb ⇥ p̂b) / (~p1 ⇥ ~p2) · ~p4 and
sin 2' = 2 sin' cos' / [(~p1⇥~p2) ·(~p3⇥~p4)][(~p1⇥~p2) ·~p4].
Here, we can see their T-odd property, but it must be
noticed that the true T-odd correlation is constructed
based on the polarizations and momenta of N⇤,K⇤, not
the p,K,⇡ momenta. Then, the induced CP asymme-
tries are given by the di↵erences between ATi and their
CP conjugate values

AT,i
CP =

AT,i � ĀT,i

AT,i + ĀT,i
. (15)

It should be emphasized that AT,i
CP are proportional to the

cosine of some strong phase di↵erence cos �s,i, as proved
before. More than that, CP asymmetries induced by
hP1+2P2i and hP3i are proportional to the sine of exactly
the same phase di↵erence sin �s,i, since these observables
are given by the real parts of the same helicity ampli-
tude interferences. Therefore, they are exactly comple-
mentary to each other. Whether �s,i is small or large, the
CP asymmetry has a chance to be observed. From the
experimental aspect, the data samples of N⇤(1520)K⇤

and N⇤(1520)⇢ are remarkable and prospective to search
for baryonic CPV [23]. Above discussion directly applies
to other decays with same quantum numbers like those
listed in [33] such as ⇤b ! ⇤(1520)⇢0,⇤(1520)�. It can
also be extended to other two-body baryon decays such
as ⇤0

b ! ⇤V [34–37], though it has a smaller data sam-
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Summary.– In this work, we prove that a type of T-odd
correlations that satisfy two proposed conditions induce
CPV observables proportional to cosine of strong phase
di↵erences. This property makes them complementary
to traditional direct CP asymmetries and neutral me-
son mixing induced CPV observables, i.e., still sensitive
in case of small strong phase di↵erences. Hence, it is a
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⟨Q1 + 2Q2⟩

⟨P1 + 2P2⟩

[Wang, QQ, Yu, 2211.07332]
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Summary

• Visualization of CP violation in flavor physics requires CP-conserving phases, 
which are not necessary strong phases.


• New CPV observables are proposed, including double-mixing CPV, and a 
type of complementary T-odd and -even CPV.


• Double-mixing CPV does not require nonzero strong phases or extracts strong 
phases from data, providing opportunities to extract weak phases without 
strong pollution.


• T-odd and -even CPVs may help discover the baryonic CPV, and afterwards 
help determine the strong phase and hence the weak phase.


• Look forward to collaborating with both theorists and experimentalists.

28
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• Double mixing CP violation: induced by interference of different mixing paths of 
neutral mesons   


✓ At least two mixing mesons are involved 


✓ At least two decays in the chain —— cascade decay


• More complicated cases

30

Double mixing CP violation


