

第二届桂子山粒子物理前沿论坛

LHCb upgrades

Xuhao Yuan IHEP 2023-10-14

- Introduction
- Experiment sensitivity
- LHCb upgrades
 - Upgrade I (2019 2023)
 - ✓ Upgrade Ib (2026 2028)
 - Upgrade II (2032)
- Summary

LHCb: a forward spectrometer @ LHC

Detector before 2019

Main physics goal

To study b & c sectors on CPV, rare decays, new physics...
$$\begin{split} &\Delta p/p = 0.5\% \ @ < 20 \ {\rm GeV}/c, 1\% \ @ < 200 \ {\rm GeV}/c \\ & {\rm IP\ resolution} \sim 15 \ + \ 29/p_T \ [{\rm GeV}/c] \ \mu m \\ & {\rm Decay\ time\ resolution\ 45\ fs\ } (B_s \rightarrow J/\psi\phi) \\ & {\rm Kaon\ ID} \sim 95\% \ {\rm for\ 5\%\ } \pi \rightarrow K \ {\rm mis-ID\ probability} \\ & {\rm Xuhao\ Yuan,\ IHEP} \end{split}$$

LHCb physics performance in Run 1 & 2

A decade of important discoveries and precision measurements (9 fb⁻¹ pp data)

Year Major upgrade of ATLAS/CMS

Upgrade I (U1), started in LS2 and installation completed in this March $\mathcal{L}_{max} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

 \mathcal{L}_{max} 2x10³³ \mathcal{L}_{int} **50** fb⁻¹

Upgrade II (U2), starts after LS4 \mathcal{L}_{max} ~1.5x10³⁴ cm⁻²s⁻¹ \mathcal{L}_{int} ~**300** fb⁻¹

Some smaller detector consolidation and enhancements in LS3 (2026) ⇔ U1b

Xuhao Yuan, IHEP

LHCb also plan enhancements (U1b) 5

[<u></u>-9]

Int. luminosity

- ➤ Introduction
- Experiment sensitivity
- LHCb upgrades
 - Upgrade I (2019 2023)
 - ✓ Upgrade Ib (2026 2028)
 - Upgrade II (2032)
- Summary

 $B_s \rightarrow \mu^+ \mu^-$

Large cross section

Excellent σ_{VTX} & PID

LHCb 9 fb⁻¹ data result: Phys.Rev.Lett. 128 (2022) 4, 041801 $\mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$ SM: (3.66 ± 0.14)×10⁻⁹ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10} @ 95\%$ C.L. 15% accuracy on B_s^0 , compatible with SM

Expected precision

~7% @ UI, ~2% @ U II Systematics dominated by $f_s/f_d \sim 3\%$

The effective B_S^0 lifetime in $B_S^0 \to \mu^+ \mu^-$ also sensitive to NP for precisions of percent

- $\sigma(\tau)$, 50 fb⁻¹ ~ 5%
- $\sigma(\tau)$, 300 fb⁻¹ ~ 2%

$B_{\rm s}^0$ mixing phase, $\phi_{\rm s}$

To expect

• $\sigma(\phi_s) \sim 7 \text{ mrad } @ 50 \text{ fb}^{-1}$ • $\sigma(\phi_s) < 5 \text{ mrad } @ 300 \text{ fb}^{-1}$ Based on the same performance

@ Run2

 $\phi_s^{\text{SM}} = -2 \arg\left(\frac{V_{tb}V_{ts}^*}{V_{cb}V_{cs}^*}\right) \equiv -2\beta_s = -0.0376 \pm 0.0008 \text{ rad}$

CPV in interference mixing-decay

 $\phi_{\rm S}^{\rm LHCb} = -0.042 \pm 0.025$ rad

- > The only angle that can be determined exclusively from tree processes
- → Theoretically clean: $\delta \gamma / \gamma \leq \mathcal{O}(10^{-7})$
- SM benchmark for NP searches
- > The most recent LHCb result (15 decay modes): $\gamma = (65.4^{+4.2}_{-3.8})^{\circ}$ JHEP 12 (2021) 141

CKM angle γ

Run 1-2: Some tension between direct and indirect methods need better precision from tress measurements

▶ Upgrade in sensitivity: combination of many decays in
 B_(s) → D^(*)_(s)h^(*)
 □ Charged and neutral (π⁰, γ)
 □ Two- and multi body D decays

LHCb Upgrade II anticipates a precision on γ of about 0.35°

Key observables in flavor physics

Observable	Current LHCb		Upgrade I		Upgrade II	
	$(up to 9 fb^{-1})$		$(23{\rm fb}^{-1})$	$(50 {\rm fb}^{-1})$	$(300{\rm fb}^{-1})$	/
CKM tests						
$\gamma \ (B \to DK, \ etc.)$	4°	[9, 10]	1.5°	1°	0.35°	
$\phi_s \ (B^0_s o J/\psi \phi)$	$32\mathrm{mrac}$	d [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$	
$ V_{ub} / V_{cb} $ $(\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, etc.)$	6%	[29, 30]	3%	2%	1%	
$a_{\rm sl}^d \ (B^0 \to D^- \mu^+ \nu_\mu)$	36×10^{-5}	$^{-4}$ [34]	$8 imes 10^{-4}$	$5 imes 10^{-4}$	$2 imes 10^{-4}$	
$a_{\rm sl}^s \ (B_s^0 o D_s^- \mu^+ \nu_\mu)$	33×10^{-1}	$^{-4}$ [35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$	
Charm						
$\Delta A_{CP} (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	29×10^{-5}	$^{-5}$ [5]	$13 imes 10^{-5}$	8×10^{-5}	$3.3 imes10^{-5}$	
$A_{\Gamma} (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	11×10^{-1}	$^{-5}$ [38]	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}	
$\Delta x \ (D^0 \to K^0_{\rm s} \pi^+ \pi^-)$	18×10^{-1}	$^{-5}[37]$	$6.3 imes 10^{-5}$	4.1×10^{-5}	$1.6 imes 10^{-5}$	
Rare Decays						
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	⁻) 69%	[40, 41]	41%	27%	11%	
$S_{\mu\mu} (B^0_s \to \mu^+ \mu^-)$	_		_	_	0.2	
$A_{\rm T}^{(2)}~(B^0 \to K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016	
$A_{\rm T}^{\rm fm} \ (B^0 \to K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016	Г
$\mathcal{A}_{\phi\gamma}^{ar{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	[51]	0.124	0.083	0.033	
$S_{\phi\gamma}^{+\prime}(B_s^0 \to \phi\gamma)$	0.32	[51]	0.093	0.062	0.025	
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$	[53]	0.148	0.097	0.038	
Lepton Universality Tests						
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017	0.007	
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12	[61]	0.034	0.022	0.009	
$R(D^*) \ (B^0 \to D^{*-}\ell^+\nu_\ell)$	0.026	[62, 64]	0.007	0.005	0.002	

LHCC-2021-012

Upgrade II will fully realize the flavor physics potential of the HL-LHC

Further pursue a broad physics programme

- Spectroscopy
- High precision EW and Higgs
- Dark sector
- Exotic search
- Heavy ions and fixed target
- Success of the physics programme relies on
 ➢ HL-LHC providing LHCb ~ 50 fb⁻¹/year during Run 5&6
- A detector with similar or better performance as the present one for Run 3

- ➤ Introduction
- Experiment sensitivity
- LHCb upgrades
 - **Upgrade I** (2019 2023)
 - ✓ Upgrade Ib (2026 2028)
 - Upgrade II (2032)
- Summary

LHCb Upgrades

Run 2

LS2

Run 1

S1

16

14

12

10

Some smaller detector consolidation and enhancements in LS3 (2026) ⇐ U1b

Upgrade II (U2), starts after LS4 \mathcal{L}_{max} ~**1.5x10**³⁴ cm⁻²s⁻¹

 \mathcal{L}_{max} ~**2x10**³³ cm⁻²s⁻¹ \mathcal{L}_{int} ~50 fb⁻¹

Upgrade I (U1), started in LS2 and installation completed in this March

Upgrade I: a brand new detector

 New tracking system
 VErtexLOcator (VELO), Upstream Tracker (UT) and Scintillating Fiber Tracker (SciFi)

Particle ID: New optics + photon detectors Calos: Reduce PMT gain + new electronics

No hardware trigger

> 1st GPU trigger in a HEP experiment

upgrad

Velo pixel (VP)

New hybrid pixel detector

- c/b hadrons: flight ~mm before decay distinctive feature to select them
- Silicon pixels (55x55 um) single hit resolution 12-15 um
- \succ Closer to beam (5 mm -> 3 mm) => better σ_{IP}

Read_O

Primary V

RF foil (250 um thickness)

- Separate VELO from primary vacuum
- An vacuum incident on 2023 Jan 10

RF foils deformed

- No damage on sensors
- □ Cant fully close (3 mm -> 24.5 mm x2)
- □ Replace during YETS 2023

Upstream Tracker (UT)

UT: Si Strip detector

- High coverage, segmentation, resolution
- Speed up tracks reconstruction & reduce P_{GhostTrk}

Different sensors for different regions

Maximum occupancy ~ 1%

Scintillating fibers tracker (SciFi)

SciFi: Scintillating fibers detector

- 3 station with 4 detection layers
- >10 km scintillating fiber, covering 340m² area
- 2x2.5 m long modules with Readout SiPMs at the outer edge ⁸/₂
- $\succ \epsilon_{\text{Hit}} \sim 99\%$, $\sigma_{\text{Hit}} \sim 100 \ \mu m$, X/X₀~1% per layer

17

Ring imaging Cherenkov detector (RICHs)

RICH1 1888 1-inch MaPMTs

New optics+photon detectors (HPDs -> MaPMTs) \geq PID for $p \in (2.6, 100)$ GeV

Performance already better than Run2

RICH2 768 1inch MaPMTs in the inner region 384 in the outer region

Trigger & Real Time Analysis

- > No hardware trigger LO anymore
- Data stored @ 30 MHz by FPGAs
- ➢ HLT1 running on GPUs − track reconstruction
- HLT2 running on CPUs reconstruction and selection for each decay
- Alignment (VELO, RICH mirrors, UT, SciFi, Muon) and calibration (RICH, ECAL, HCAL) in real time

Physics performance

LHCb upgrade I detectors functions well ➤ W/ full triggers/"sub-detectors" signals return since 2019

Mass resolution compatible with MC expectations within 1 MeV

- ➤ Introduction
- Experiment sensitivity
- LHCb upgrades
 - Upgrade I (2019 2023)
 - ✓ Upgrade Ib (2026 2028)
 - **Upgrade II (2032)**
- Summary

High pile-up in Upgrade II

In Upgrade II \mathcal{L}_{max} ~1.5x10³⁴ cm⁻²s⁻¹ \mathcal{L}_{int} ~300 fb⁻¹

- ~ 40 visible interactions/Xing
- High pile-up induces PV spatial separation of the same order as VELO resolution -> PV unresolvable
- \succ Ensure $\varepsilon_{trigger}$ at high pileup condition

VELO: 4D detector with timing

 $\succ \sigma_t(\text{Track}) = 20 \text{ ps restores the performance to U1 level}$ Time [ps]

New techiques in R&D:

Run 3: pile-up ~5

Upgrade II: pile-up ~40

- Sensor: timing (~50 ps), radiation hardness (max ~6x10¹⁶n_{ea}/cm²) Candidates: Planar, LGAD, 3D pixel or new concepts
- Candidates of 28 nm tech. ASICs: VeloPix2, TimePix4 or PicpPix
- Replaceable modules, thinner or no RF foil, robust 3D printed Ti cooling substrate... Xuhao Yuan, IHEP

In VELO

~6 cm

Upgrade II UT (U2UT)

LHCb China group will lead this upgrade

- Current UT optimized for $\mathcal{L}_{Run 3\&4}$ Upgrade II luminosity $1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (x7.5 $\mathcal{L}_{Run 3\&4}$) \succ The occupancy (max ~10%) will compromise the performance
- Radiation does too high for current sensor

U2UT:

CMOS MAPS technique applied

Very promising and cost effective for large area pixel detectors.

Beam pipe

0.45 0.47 0.49 0.52 0.54 0.57 0.60 0.60

Channel occupancy [%]

2.5

1.5

2023/10/14

-2

Φ [rad]

U2UT R&D status

U2UT software <= Lead by LHCb China group

- Preliminary studies on
 - □ Track efficiency for $B^- \to D^0 K^-$, $D^0 \to K_s \pi^+ \pi^-$, $K_s \to \pi^+ \pi^-$ Optimizing U2UT coverage
 - Detector simulation mostly done and R.L. calculated

LHCb China group lead HVCMOS-based development

- Extensive tests using ATLASPix: lab test with cosmic ray and radioactive sources, testeam at DESY in April 2022
- Search for domestic foundry ongoing

Hitmap with Fe55 source

Magnet Stations (MS)

A new MS to be installed for reconstructing Upstream Tracks → Tracking capability, reconstruction → for low momentum tracks.

Instrument walls of magnet with extruded triangular scintillating bars.
 ➤ Light collected by WS, guided through clear fibers to SiPMs outside magnet.
 ➤ sub-% momentum measurement precision.

The Magnet Stations could be installed at LS3.

5D calorimeter with precision timing

Key features: energy resolution (10%/√E ⊕ 1%), radiation hardness (up to 1 MGy), timing capability (tens of ps) and granularity.
➢ Multiple technologies for different regions from inner to outer
➢ Possibility of adding timing layer: Si layers.

Possibility of replacing the inner-most modules at LS3.

TORCH: Time of Flight Detector

Low-momentum PID (2-10 GeV)

- Improve background suppression and flavor tagging
- \succ To measure θ_{γ} , L_{γ} , and time of arrival
- Aim: $\sigma_{ToF} \sim 10 15$ ps per track a single-photon timing resolution: 70 ps (30 photon/track)

LHCb upgrades

- Upgrade I: installation completed
- Upgrade II: starts in LS4, with consolidation in LS3
- LHCb Upgrade II to fully exploit HL-LHC for flavor physics and beyond
- FTDR approved and now in R&D phase
 - Next: TDR @2026, construction, installation and eventually operation for physics
- > LHCb China groups contribute more significantly, and you are welcome to join More physical results can be expected from LHCb

CERNY HILING PROJECT
CERN-ACC-NOTE-2018-003
2018-08-2
Ilias.Efthymiopoulos@cern.c
HCb Upgrades and operation at 10 ^{,,,} cm [,] s [,] luminosity –A first study
Arduini, V. Baglin, H. Burkhardt, F. Cerutti, S. Claudet, B. Di Girolamo, R. De Maria, I thymiopoulos, L.S. Esposito, N. Karastathis, R. Lindner, L.E. Medina Medrano, Y. Papaphilippou Parkes, D. Pellegrini, S. Redaelli, S. Roesler, F. Sanchez-Galan, P. Schwarz, E. Thomas, A. Tsinganis, Wollmann, G. Wilkinson ERN, Geneva, Switzerland
eywords: LHC, HL-LHC, HiLumi LHC, LHCb, https://indico.cern.ch/event/400665

- Physics case, LHCC-2018-027
- Accelerator study, CERN-ACC-2018-038
- Framework TDR, CERN-LHCC-2021-012

Thank you for your attentions

Xuhao Yuan, IHEP