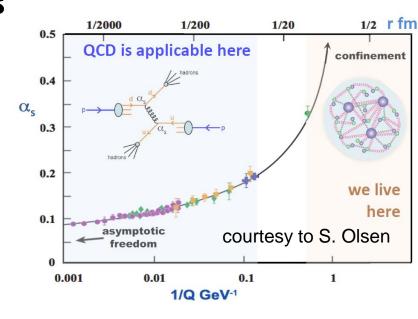
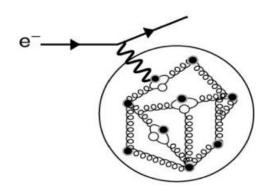
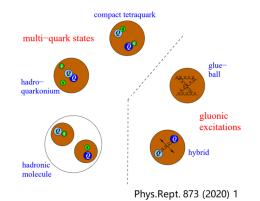
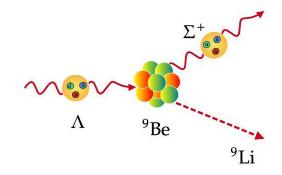
Highlights of hadron physics@ ₩5III

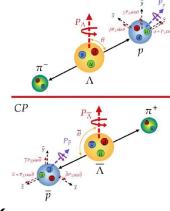

Beijiang Liu (on behalf of BESIII)


Institute of High Energy Physics, Chinese Academy of Sciences


The 12th Workshop on Hadron Physics and Opportunities Worldwide, Dalian, 2024

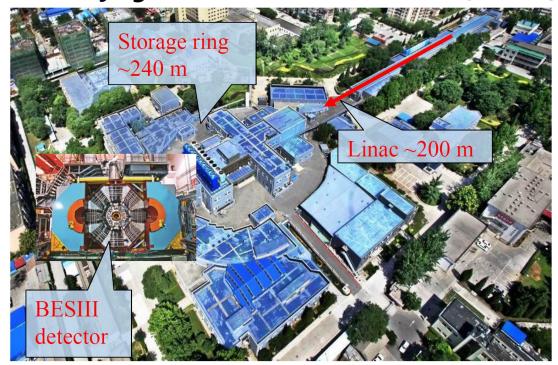

Hadrons

- Dominant part of visible matter in the universe
- To fully understand the strong interaction
 - Understanding the rich and complex features of its bound states, hadrons
 - ➤ How are hadrons formed from quarks and gluons?
 - ➤ What is the origin of confinement?
 - ➤ How is the mass of hadron generated in QCD?
 - ➤ What is the dynamics of effective DoF in hadrons?


Structure

Spectroscopy

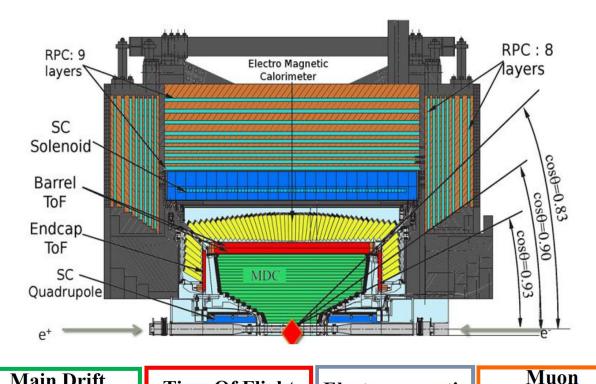
Interactions


Hadron physics

BESIII@BECPII

Beijing Electron Positron Collider(BEPCII)

Double-ring, symmetry, multi-bunch e⁺ e⁻ collider


 $E_{cm} = 1.84 \text{ to } 4.95 \text{ GeV}$

Energy spread: $\Delta E \approx 5 \times 10^{-4}$

Peak luminosity in continuously operation @E_{cm}=

3.77 GeV: $1.1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Beijing Spectrometer(BESIII)

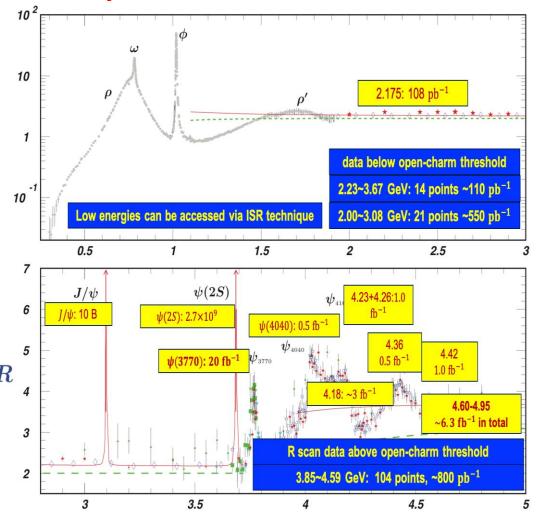
Main Drift Chamber Small cell, 43 layer σ_{xy} =130 μ m dE/dx~6% σ_p/p = 0.5% at 1

GeV

Time Of Flight
Plastic scintillator σ_T (barrel): 65 ps σ_T (endcap): 110 ps
(update to 60 ps
with MRPC)

Calorimeter
CsI(Tl): L=28 cm
Barrel σ_E =2.5%
Endcap σ_E =5.0%

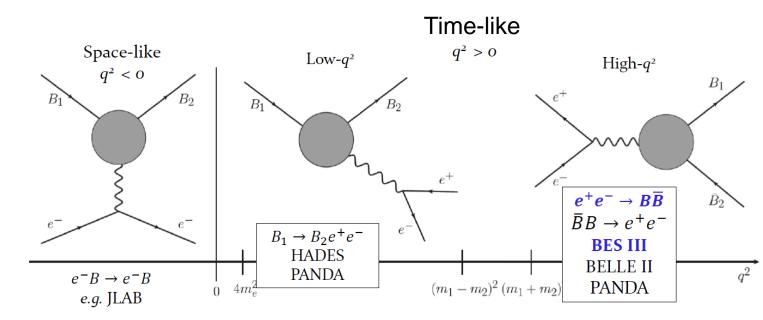
Electromagnetic


Counter RPC
Barrel: 9 layers
Endcap: 8
layers $\sigma_{spatial}$: 1.48
cm

World's largest τ – charm data sets in e^+e^- annihilation

Data sets collected so far include

- $> 10 \times 10^9$ J/ ψ events
- $\geq 2.7 \times 10^9 \ \psi(2S)$ events
- \gt 20 fb⁻¹ $\psi(3770)$
- Scan data [1.84, 3.08] GeV; [3.735, 4.600]GeV, 143
 energy points, ~2.0 fb⁻¹
- \triangleright Large data sets for XYZ study \sim 22 fb⁻¹
- \triangleright Entangled hadron pair-productions near thresholds R

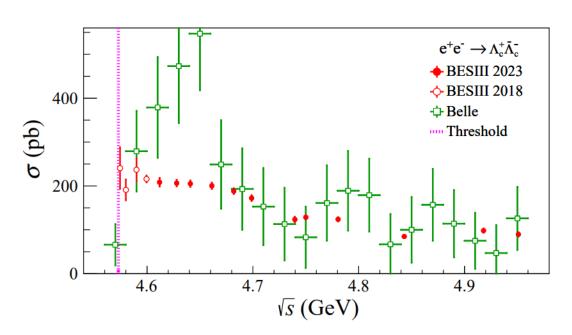

Totally about 50 fb⁻¹ from 2.0-4.95 GeV

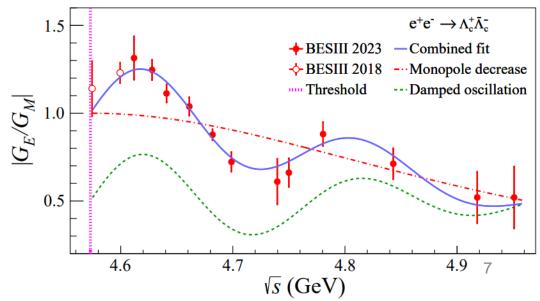
Rich physics program:

Spectroscopy & decays of light hadrons and charmonium, charm physics, precision measurements of QCD parameters, tests of fundamental symmetry,

Electromagnetic Form Factors (EMFFs)

Hadron structure with BESIII

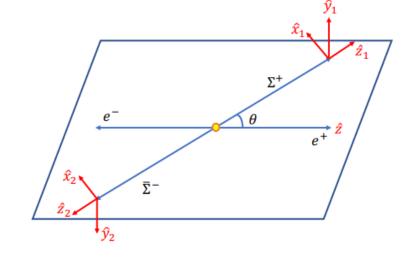

$$e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c}^-$$


Energy scans from 4.61 to 4.95 GeV

- Sharp rise in cross section near threshold
- Disagreement with Belle data near 4.6 GeV
- No discernible oscillations of the effective form factors G_{eff}

With the polar-angle distribution of Λ_c^+

- |G_E| and |G_M| are extracted
- Energy dependence of R = $|\frac{G_E}{G_M}|$:
 - → Damped oscillations with frequency
 - ~3.5 times larger than for the proton

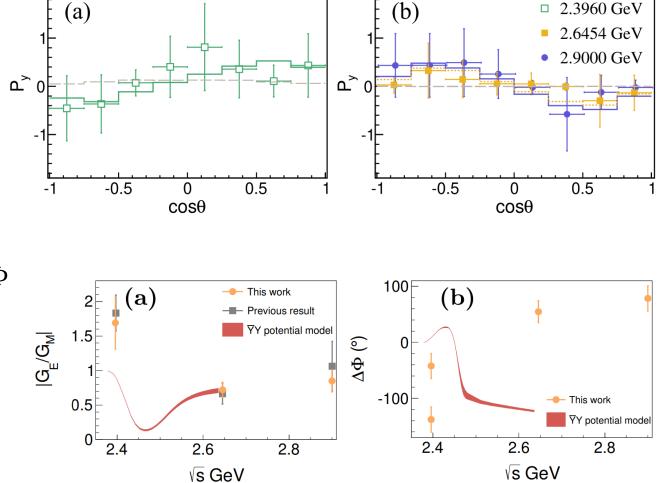


Complete decomposition of Σ^+ EMFFs

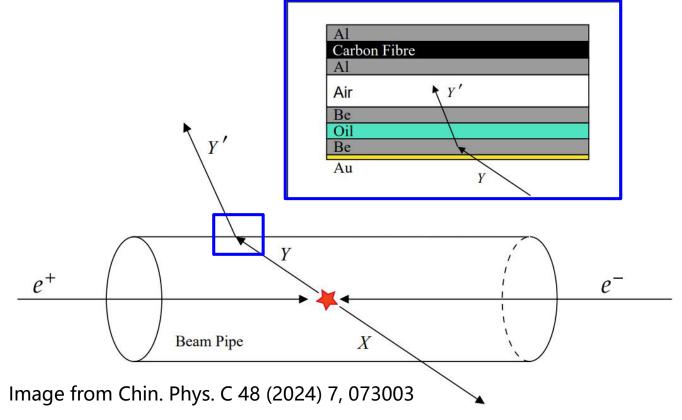
• Using a fully differential angular description of the final state particles $e^+e^- \to \Sigma^+ (\to p\pi^0)\bar{\Sigma}^- (\to \bar{p}\pi^0)$, the relative magnitude and phase of Σ^+ EMFFs can be extracted:

$$W(\xi) \propto \frac{\mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi)}{\mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi)}$$
 Unpolarized part
$$+ \alpha_1 \alpha_2 (\mathcal{F}_1(\xi) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi))$$
 Correlated part
$$+ \sqrt{1 - \alpha^2} \sin(\Delta \Phi) (-\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi)),$$
 Polarized part

$$\begin{split} \mathcal{F}_0(\xi) &= 1 \\ \mathcal{F}_1(\xi) &= \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 - \cos^2\theta \cos\theta_1 \cos\theta_2 \\ \mathcal{F}_2(\xi) &= \sin\theta \cos\theta (\sin\theta_1 \cos\theta_2 \cos\phi_1 - \cos\theta_1 \sin\theta_2 \cos\phi_2) \\ \mathcal{F}_3(\xi) &= \sin\theta \cos\theta \sin\theta_1 \sin\phi_1 \\ \mathcal{F}_4(\xi) &= \sin\theta \cos\theta \sin\theta_2 \sin\phi_2 \\ \mathcal{F}_5(\xi) &= \cos^2\theta \\ \mathcal{F}_6(\xi) &= \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 - \cos\theta_1 \cos\theta_2. \end{split}$$


• A nonzero relative phase leads to polarization P_y of the out going baryons:

$$P_{y} = \frac{\sqrt{1 - \alpha^{2}} \sin\theta \cos\theta}{1 + \alpha \cos^{2}\theta} \sin(\Delta\Phi)$$


Complete decomposition of Σ^+ EMFFs

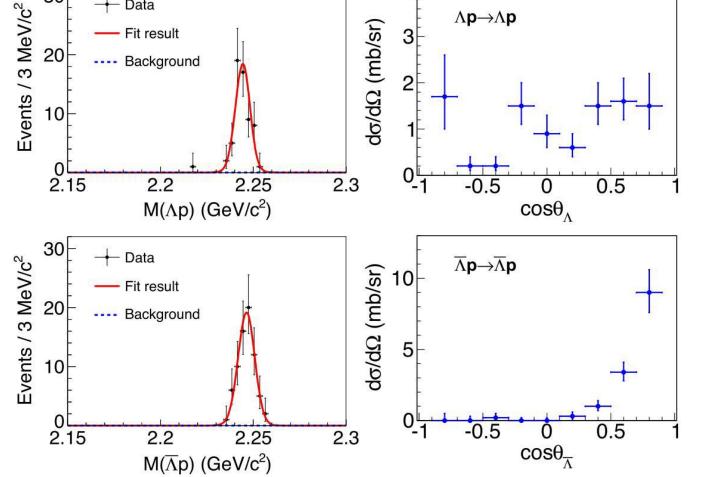
BESIII PRL 132, 081904 (2024)

- Polarization is observed at \sqrt{s} =2.396, 2.644 and 2.90 GeV with a significance of 2.2 σ , 3.6 σ and 4.1 σ
- Relative phase is determined for the first time in a wide q^2 range
 - $|G_E/G_M|$ and $\Delta\Phi$ line-shape is compared with $\overline{Y}Y$ model [PRD 103, 014028 (2021)], different tendency in $\Delta\Phi$
 - ΔΦ evolution is an important input for understanding its asymptotic behavior and the dynamics of baryons

* $\Delta\Phi$ / 180° – $\Delta\Phi$ ambiguity

Hadron (YN) interactions with BESIII

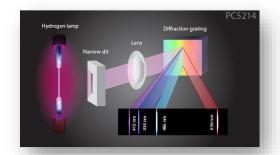
- Crucial component to predict hypernuclei properties
- Key to understand the hyperon puzzle of neutron stars


BESIII PRL 130, 251902 (2023) BESIII PRC 109, L052201 (2024) BESIII PRL 132, 231902 (2024)

First study of antihyperon-nucleon scattering

BESIII PRL 132, 231902 (2024)

Beam: $\Lambda/\overline{\Lambda}$ from $J/\psi \to \Lambda\overline{\Lambda}$, using 10B J/ψ $p_{\Lambda} = 1.074 \pm 0.017 \text{ GeV/c}^2$, $\left|\cos\theta_{\Lambda(\overline{\Lambda})}\right| < 0.9$

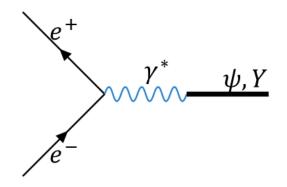

Target: proton, the hydrogen nuclei in the cooling oil of the beam pipe

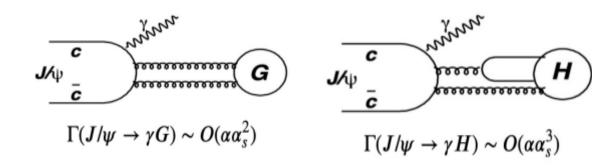
$$\sigma(\Lambda p \to \Lambda p) = (12.2 \pm 1.6(\text{stat.}) \pm 1.1(\text{syst.})) \text{ mb}$$

$$\sigma(\overline{\Lambda} p \to \overline{\Lambda} p) = (17.5 \pm 2.1(\text{stat.}) \pm 1.6(\text{syst.})) \text{ mb}$$

- Slight tendency of forward scattering for $\Lambda p \to \Lambda p$
- Strong forward peak for $\overline{\Lambda}p
 ightarrow \overline{\Lambda}p$

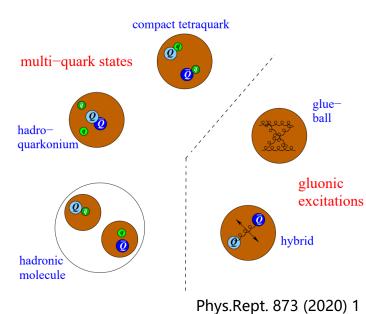
Atomic Spectrum: Bohr model → QED




Hadron spectrum:

Quark model → QCD

Hadron spectroscopy with BESIII


QCD exotics

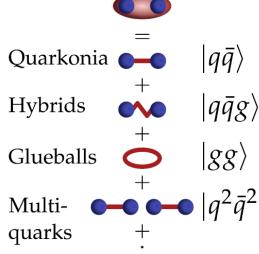
Hadron spectroscopy

- How does QCD give rise to hadrons?
 - Quark model seems to work really well. Why?
- Key to access the effective degree of freedom of QCD
 - Strong evidences for multi-quark in heavy quark sector

Evidence for gluonic excitations remains sparse

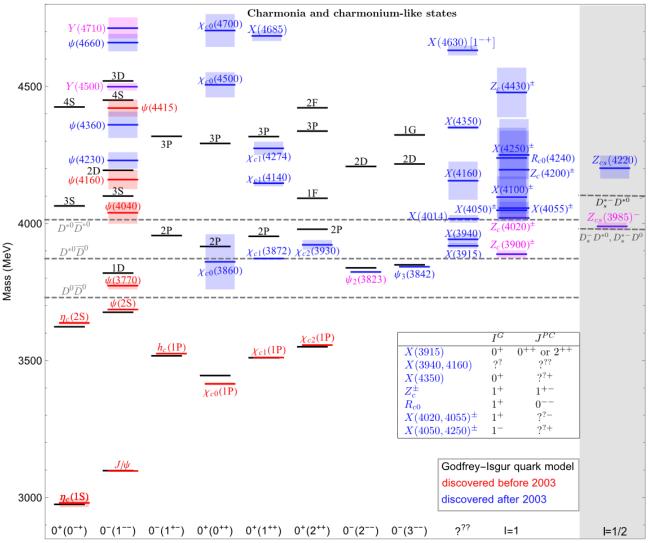
Manifestly exotic: with forbidden QN Physical meson

A linear superposition of all allowed color-singlet configurations


> **Identification of exotics** is challenging

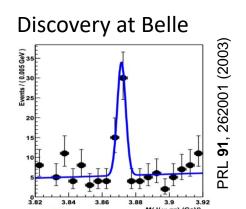
Flavor exotic: Z_c , T_{cc} , $T_{\psi\psi}$ Spin exotic: $I^{PC} = 0^{--}$, $even^{+-}$, odd^{-+}

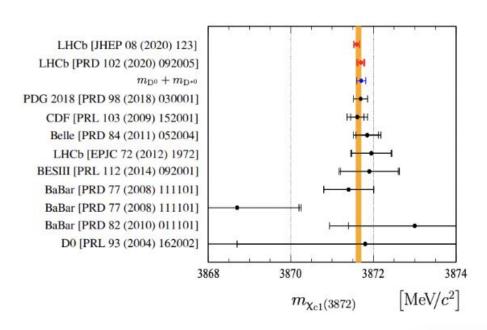
Crypto exotic: with QN as $q\bar{q}$

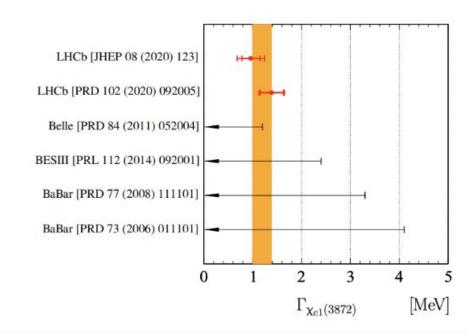

Supernumerary states - -> glueball Abnormal properties

+ Kinematic effects

Charmonium-like states



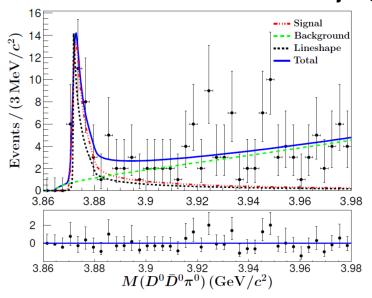

arXiv:2203.08290

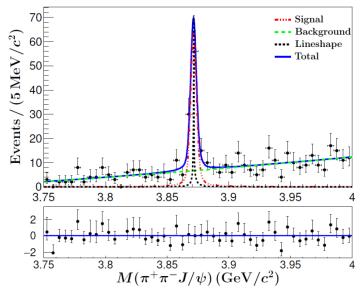

- Conventional $c\overline{c}$ meson fit well with potential model
- Abundance of new states with various probes
 - *b*-hadron decays
 - hadron/heavy-ion collisions
 - γγ processes
 - e^+e^- collisions
 - BESIII: dominant for vectors and states produced from vector decays

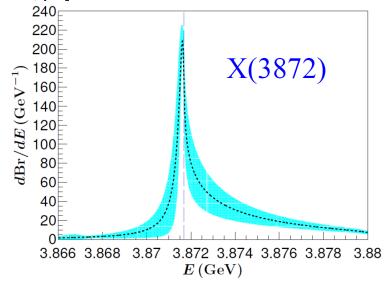
14

X(3872)

Many experiments contribute to it


- Spin assignment: **J**^{PC} = **1**⁺⁺
- Mass is consistent with m(D⁰) + m(D^{*0})
- Width is **surprisingly narrow**
- **Prompt production:** $X(3872)-\psi(2S)$ yield ratio from p-p with increasing multiplicities toward p-Pb and Pb-Pb collisions
- Decay properties: $\rightarrow \omega J/\psi$, $\rho J/\psi$; $\rightarrow \gamma J/\psi$, $\gamma \psi(2S)$


Its nature is still under debate!


 \rightarrow conventional $\chi_{c1}(2^3P_1)$, DD* molecular state, tetraquark, hybrid, vector glueball, or mixed?

X(3872) line shape @BESIII

 $e^+e^- o \gamma X(3872)$, $X(3872) o D^0 \overline{D}{}^0 \pi^0$ and $\pi^+\pi^- J/\psi$ BESIII PRL 132, 151903 (2024)

Pole positions

Two sheets with respect to $D^{*0}\overline{D}{}^{0}$ branch cut

• Sheet I:
$$E - E_X - g\sqrt{-2\mu(E - E_R + i\Gamma/2)}$$

• Sheet II:
$$E - E_X + g\sqrt{-2\mu(E - E_R + i\Gamma/2)}$$

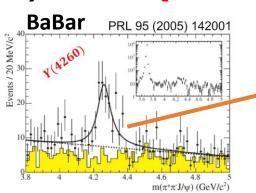
$$E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i \text{ MeV}$$

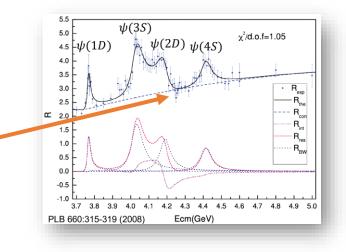
$$E_{\text{II}} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$$

	LHCb	Belle	BESIII	
g	$0.108 \pm 0.003^{+0.005}_{-0.006}$	$0.29^{+2.69}_{-0.15}$	$0.16 \pm 0.10^{+1.12}_{-0.11}$	
$Re[E_I]$ [MeV]	7.10	7.12	$7.04 \pm 0.15^{+0.07}_{-0.08}$	
$Im[E_I]$ [MeV]	-0.13	-0.12	$-0.19 \pm 0.08^{+0.14}_{-0.19}$	
$Re[k^+]$ [MeV]	-13.9	-15.3	$-12.6 \pm 5.5^{+6.6}_{-6.2}$	
$Im[k^+]$ [MeV]	8.8	7.7	$12.3 \pm 6.8^{+6.0}_{-6.4}$	
a (fm)	-27.1	-31.2	$-16.5^{+7.0}_{-27.6}{}^{+5.6}_{-27.7}$	
r_e (fm)	-5.3	$-3.0^{+1.3}_{-1.5}$	$-4.1^{+0.9}_{-3.3}{}^{+2.8}_{-4.4}$	
$ar{Z}_A$	0.15 (0.33)	$0.08^{+0.04}_{-0.03}$	$0.18^{+0.06}_{-0.17}~^{+0.19}_{-0.16}$	

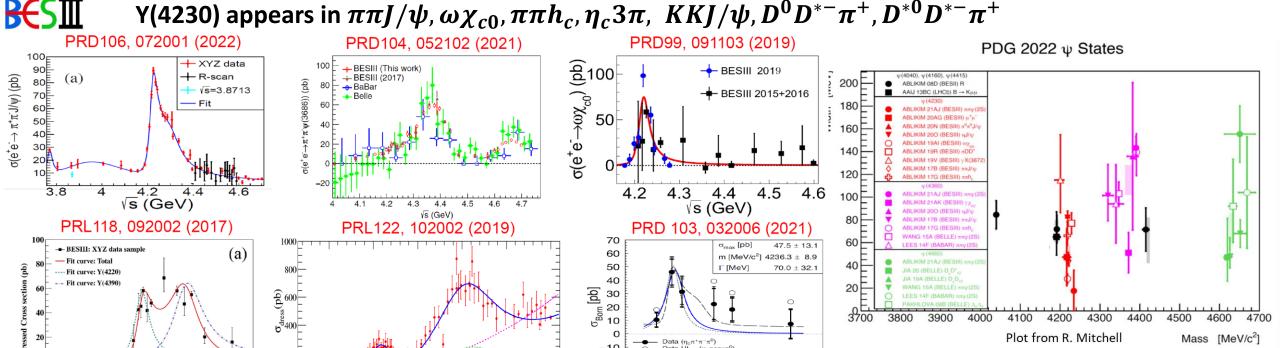
Weinberg's compositeness: Z=1: pure elementary state; Z=0: pure bound (composite) state

Vector states: $Y(4260) \rightarrow Y(4230)$

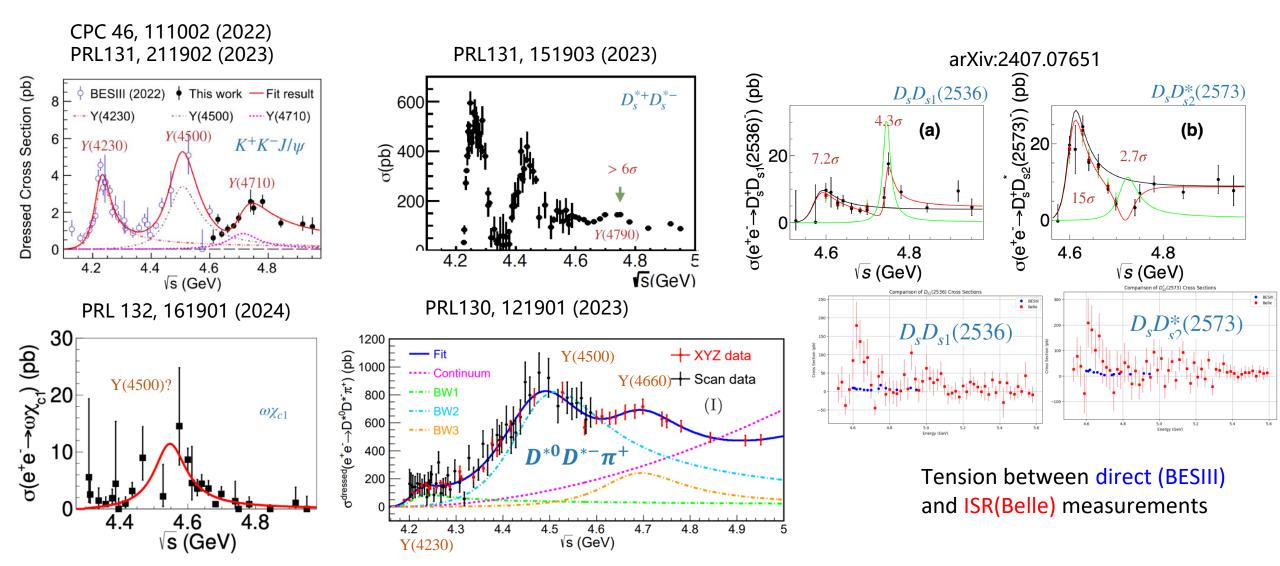

E_{CM}^{4.3}(GeV)


- Y(4260) firstly seen by BaBar
 - Inconsistent with simple $c\overline{c}$ scenario
 - Candidates for exotics:

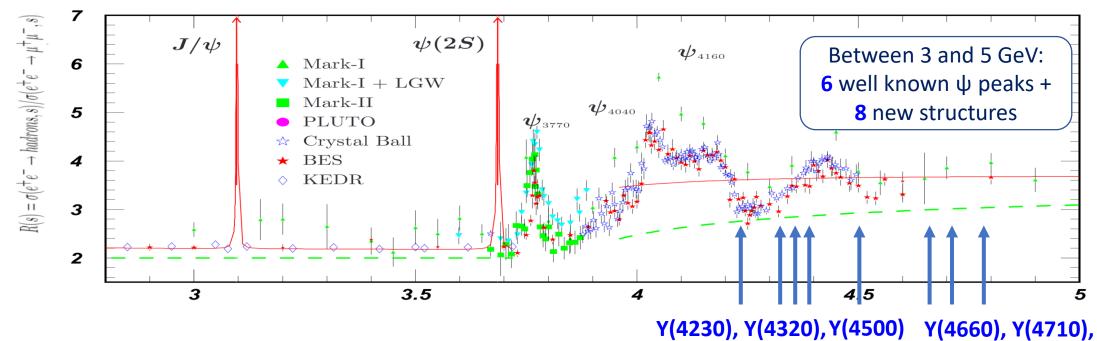
4.0 4.1


4.2 4.3 4.4

Hybrid /molecule /Tetraquark ?

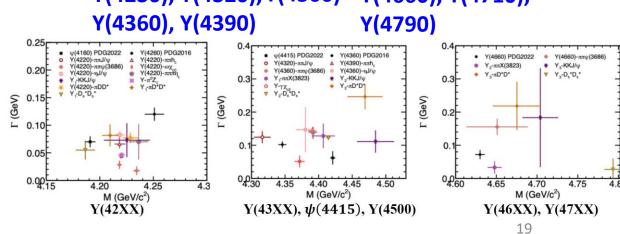


Mass~4220 MeV, width~ 50 MeV

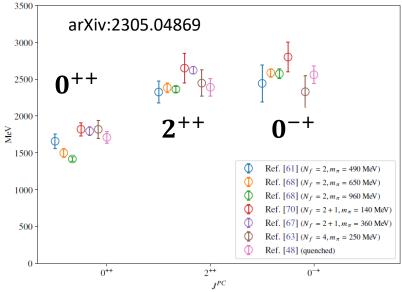


√s [GeV]

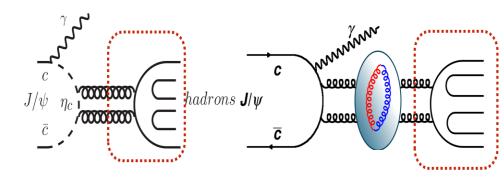
Observations of Y(4500), Y(4710) and Y(4790)



How many vectors in charmonium energy region?


Besides $c\overline{c}$ states, we also expect $gc\overline{c}$ hybrids, and $c\overline{c}q\overline{q}$ tetraquark states. Have they already been observed?

→ More theoretical/experimental efforts necessary



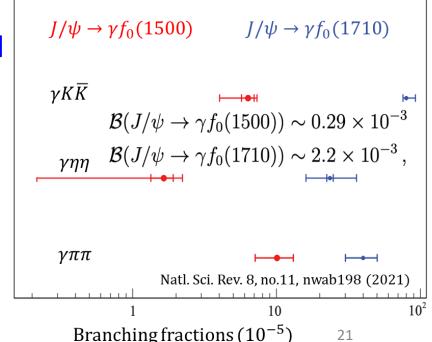
Glueball hunting for over 40 years

- Glueballs: the most direct prediction of QCD
 - Gluon self-interactions
 - Can massless gluons form massive, exotic matter?
- Theoretical predictions from LQCD and QCDinspired models mostly consistent
- Supernumerary states that do not fit into $q \overline{q}$ multiplets
- Production: Strongly produced in gluon-rich processes
- Decay: gluon is flavor-blind
 - No rigorous predictions
 - Could be analogy to OZI suppressed decays of charmonium, as they all decay via gluons [PLB 380 189(1996), Commu. Theor. Phys. 24.373(1995)]

Light Yang-Mills glueballs on lattice (quenched and unquenched results)

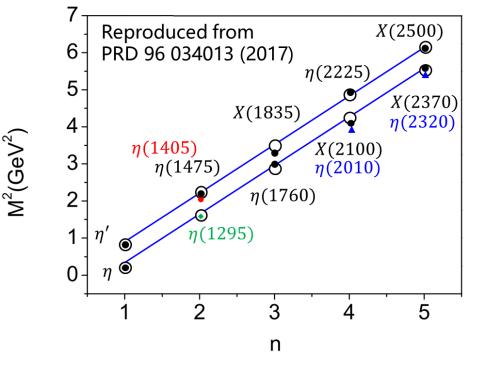
Scalar glueball candidate

- Supernumerary scalars suggest additional degrees of freedom
 - However, mixing scenarios are controversial
- Measured B(J/ $\psi \rightarrow \gamma f_0(1710)$) is **x10 larger** than $f_0(1500)$ BESIII [PRD 87 092009, PRD 92 052003, PRD 98 072003]
 - LQCD: $\Gamma(J/\psi \to \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$ [PRL 110, 091601(2013)]
 - **BESIII:** $f_0(1710)$ largely overlays with the scalar glueball
 - ➤ Identification of scalar glueball with coupled-channel analyses based on BESIII data


[PLB 816, 136227 (2021), EPJC 82, 80 (2022), PLB 826, 136906 (2022)]

• Further more, suppression of $f_0(1710)\to\eta\eta'$ supports $f_0(1710)$ has a large overlap with glueball

 $f_0(1370)$ $f_0(1500)$ $f_0(1710)$ $u\bar{u} + d\bar{d}$ $s\bar{s}$ ggCheng et al, Phys. Rev. D74 (2006) 094005 $f_0(1370)$ $f_0(1500)$ $f_0(1710)$


 $\blacksquare gg$

Close and Kirk, PLB483 (2000) 345

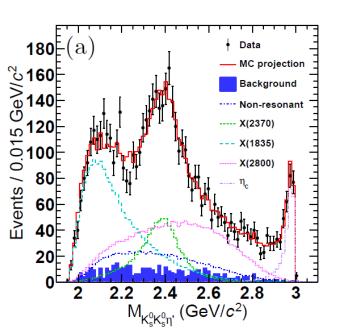
Where is the 0⁻⁺ glueball

- Pseudoscalar sector, a promising window
 - Only η , η' (& radial excitations) from quark model
- Mass
 - LQCD: 0⁻⁺ glueball (2.3~2.6 GeV)
 - The first glueball candidate: $\iota(1440)$ (Split into $\eta(1405)$ and $\eta(1475)$)
 - Mass incompatible with LQCD
 - Little experimental information above 2 GeV
- Production
 - LQCD: $\Gamma(J/\psi \to \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$, at the same level as 0⁻⁺ mesons [PRD.100.054511(2019)]
- Decays
 - Possible guidance: OZI suppressed decays of η_c
 - 3 pseudoscalar final state is a good place to look for (0⁻⁺ → 2P is forbidden)

$\eta_c \rightarrow 3 \text{ P in PDG}$

Decays involving hadronic resonances

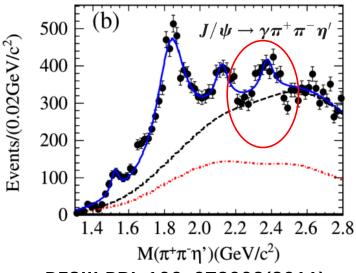
 $(1.7 \pm 0.5)\%$


```
\eta'(958)\pi\pi ( 1.87\pm0.26) % ( 1.61\pm0.25) % 

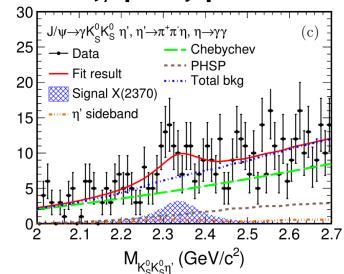
\eta'(958)K\overline{K} Decays into stable hadrons ( 7.0\pm0.4) % ( 1.32\pm0.15) %
```

- No dominant decay
 - Flavor symmetric

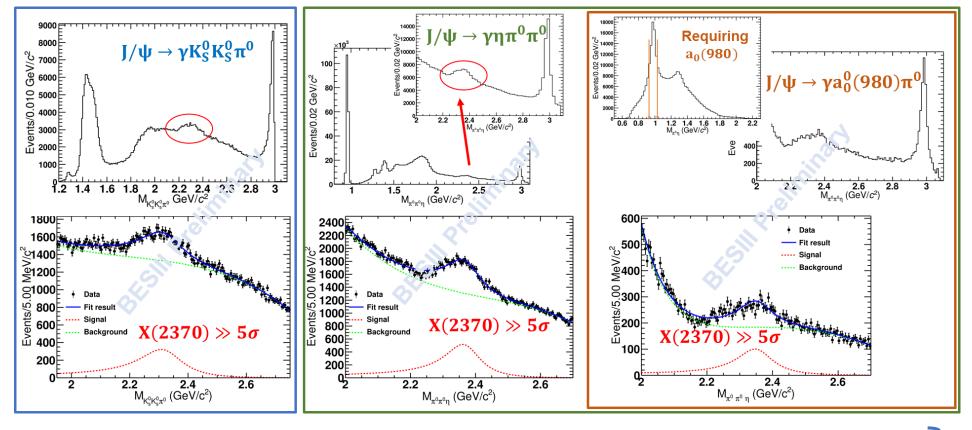
A glueball-like state X(2370)


- Discovered by BESIII in $J/\psi \rightarrow \gamma \eta' \pi \pi$ in 2011
- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi \pi$, $\gamma \eta' KK$
 - Not seen in J/ $\psi \to \gamma \eta' \eta \eta$ [BESIII PRD 103 012009 (2021)], J/ $\psi \to \gamma \gamma \varphi$ [BESIII arXiv: 2401.00918]. Upper limits of BF are well consistent with predictions of 0^{-+} glueball
- Mass consistent with LQCD prediction for 0^{-+} glueball
- Spin-parity determined to be 0^{-+} BESIII PRL 132, 181901(2024)

 $J/\psi \to \gamma \eta' K^0_S K^0_S$


$$\begin{split} J^{pc} &= 0\text{-+ with significance} > 9.8\sigma \\ M &= 2395 \pm 11^{+26}\text{-}94 \text{ MeV} \\ \Gamma &= 188^{+18}\text{-}17^{+124}\text{-}33 \text{ MeV} \\ B(J/\psi \rightarrow \gamma X(2370))B(X(2370) \rightarrow f_0(980)\eta')B(f_0(980) \rightarrow \text{K}^0\text{s}\text{K}^0\text{s}) \\ &= 1.31 \pm 0.22^{+2.85}\text{-}0.84 \times 10^{-5} \end{split}$$

$J/\psi \rightarrow \gamma \eta' \pi \pi$


BESIII PRL 106, 072002(2011), PRL 117, 042002 (2016)

BESIII EPJC 80 746(2020)

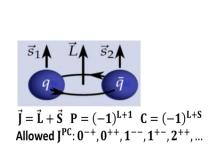
Events/(0.01GeV/c²

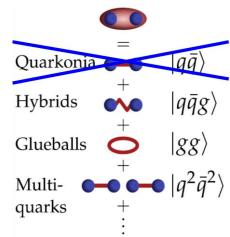
New decay modes

X(2370) observed in the gluon-rich J/ψ radiative decays

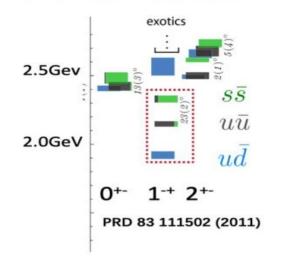
- J^{PC} determined to be 0⁻⁺
- Mass and production rate consistent with LQCD
- Decay modes $X(2370)\to \eta'\pi\pi, \eta'KK, K^0_SK^0_S\eta, K^0_SK^0_S\pi^0, \eta\pi^0\pi^0, a^0_0(980)\pi^0$ observed, in analog to η_c

Consistent with $\mathbf{0}^{-+}$ glueball


Light hadrons with exotic quantum numbers


- Unambiguous signature: exotic quantum numbers forbidden for $q\bar{q}$: $J^{PC}=0^{--}$, even⁺⁻, odd⁻⁺
- Only 3 candidates over 30 yrs:

All 1⁻⁺ isovectors
$$\pi_1(1400), \pi_1(1600), \pi_1(2015)$$


* $\pi_1(1400)$ and $\pi_1(1600)$ can be explained as one resonance with recent coupled channel analyses

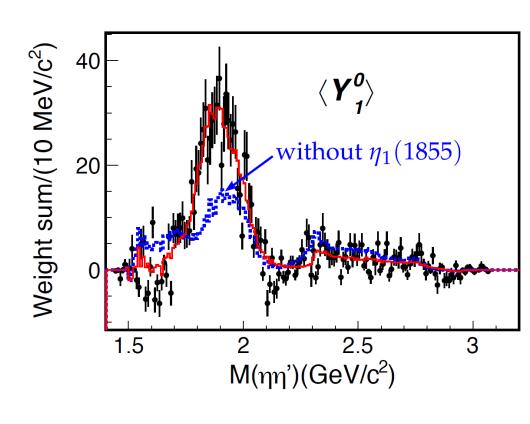
- Lightest spin-exotic state in LQCD: 1⁻⁺ hybrid
- Isoscalar 1⁻⁺ is critical to establish the nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta \eta'$ in P-wave

Lattice QCD Predictions:

$$\pi_{1} I^{G}(J^{PC}) = \mathbf{1}^{-}(\mathbf{1}^{-+})$$

$$K_{1} I^{G}(J^{P}) = \frac{1}{2}^{-}(1^{-})$$

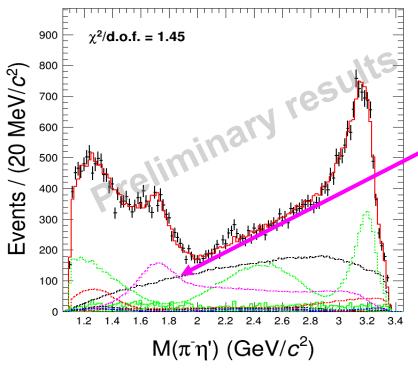
$$\eta_{1} I^{G}(J^{PC}) = \mathbf{0}^{+}(\mathbf{1}^{-+})$$


Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

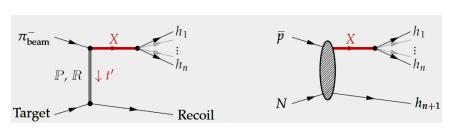
PRL 129 192002(2022), PRD 106 072012(2022)

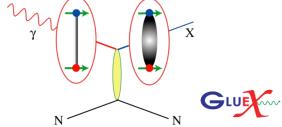
• An isoscalar 1⁻⁺ , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ)

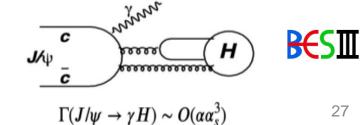
$$\begin{split} M &= \left(1855 \pm 9^{+6}_{-1}\right) \text{MeV/c}^2, \ \Gamma = \left(188 \pm 18^{+3}_{-8}\right) \text{MeV/c}^2 \\ B(J/\psi \to \gamma \eta_1 (1855) \to \gamma \eta \eta') &= \left(2.70 \pm 0.41^{+0.16}_{-0.35}\right) \times 10^{-6} \end{split}$$


- Mass consistent with hybrid on LQCD
- Inspired many interpretations: Hybrid/ $K\overline{K}_1$ Molecule/Tetraquark?
- Opens a new direction to completing the picture of spin-exotics

"Here, the result by the BESIII experiment of a possible observation of an $\eta_1(1855)$ state could be a breakthrough."

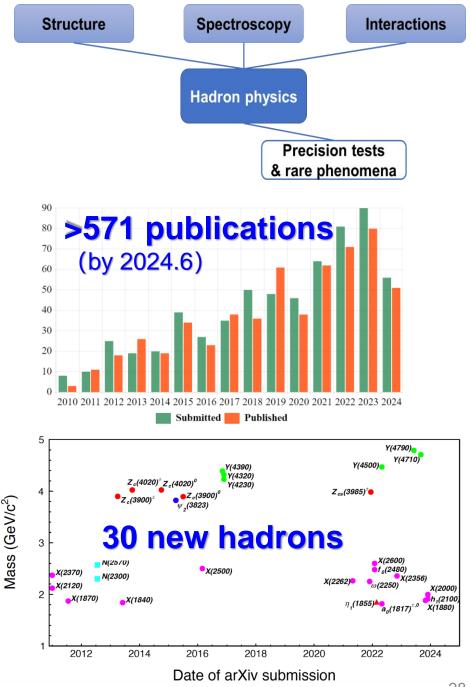

Observation of $\pi_1(1600)$ in $\chi_{c_1} \to \eta' \pi^+ \pi^-$


$2.7 \times 10^9 \psi(3686)$ @BESIII [preliminary]



- Amplitude analysis of $\chi_{c_1} \rightarrow \eta' \pi^+ \pi^-$ is performed
- $\pi_1(1600)$ observed> 10σ
- with a significant BW phase motion
- I^{PC}= 1⁻⁺, better than other assignments well over 10σ
 - Evidence of $\pi_1 \to \eta' \pi$ at CLEO-c is confirmed [PR D84 112009 (2011)]

Observations of π_1 and η_1 in charmonium decays provide a new path to study 1^{-+}



27

Summary

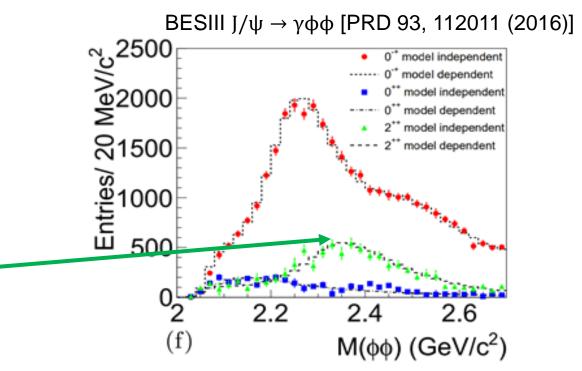
- BESIII has a rich program of hadron physics
- Lots of progress
- Great potential to be fully explored
 - 50 fb $^{-1}$ data on disk, including 10×10^9 J/ ψ and 2.7×10^9 ψ'
 - Running until ~2030
 - Upgrade in this summer
 - $\mathcal{L} \times 3 @\sqrt{s} = 4.7 \text{ GeV}$
 - $\sqrt{s} \rightarrow 5.6 \ GeV$, starting from 2028
 - CGEM inner tracker

Thank you for your attention

Indications of tensor glueball

$$\Gamma(J/\psi o\gamma G_{2^+})=1.01(22)keV$$
 $\Gamma(J/\psi o\gamma G_{2^+})/\Gamma_{tot}=1.1 imes10^{-2}$ CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

Experimental results

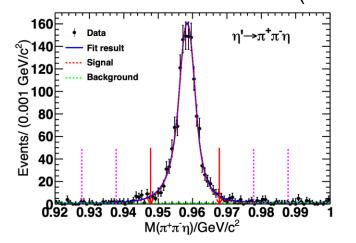

$$\begin{array}{c} Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta \eta) = \left(3.8^{+0.62}_{-0.65}{}^{+2.37}_{-2.07}\right) \times 10^{-5} \\ \text{BESIII PRD 87,092009 (2013)} \end{array}$$

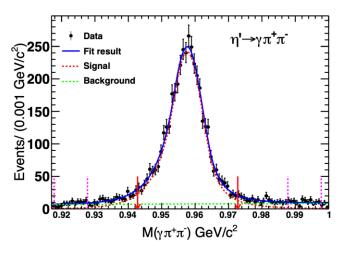
$$Br(J/\psi \to \gamma f_2(2340) \to \gamma \varphi \varphi) = \left(1.91 \pm 0.14^{+0.72}_{-0.73}\right) \times 10^{-4}$$
 BESIII PRD 93, 112011 (2016)

$$\begin{split} Br(J/\psi \to \gamma f_2(2340) \to \gamma K_s K_s) &= \left(5.\, 54^{+0.34+3.82}_{-0.40-1.49}\right) \times 10^{-5} \\ \text{BESIII PRD 98,072003 (2018)} \end{split}$$

$$Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta' \eta') = \left(8.67 \pm 0.70^{+0.16}_{-1.67}\right) \times 10^{-6}$$
 BESIII PRD 105,072002 (2022)

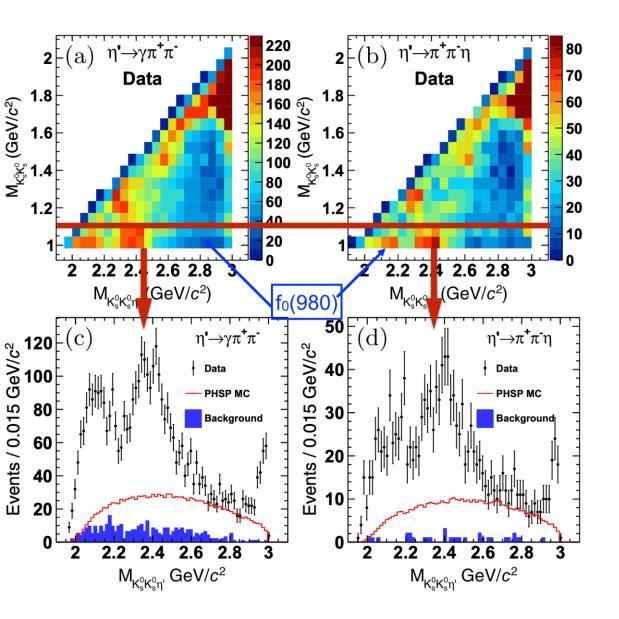
still desired to study more decay modes

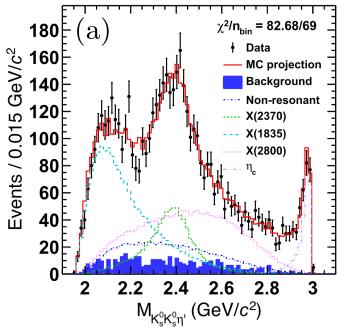



- f₂(2010), f₂(2300) and f₂(2340) in πp reactions are all observed in J/ψ → γφφ with a strong production of f₂(2340)
- Consistent with double-Pomeron exchange from WA102@CERN

Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

- η' reconstructed with $\eta \pi^+ \pi^-$ and $\gamma \pi^+ \pi^-$
- K_S^0 reconstructed with $\pi^+\pi^-$
- Almost background free
 - Negligible mis-combination for K_S^0 (<0.1%)
 - No background from $J/\psi \to \pi^0 \eta' K_S^0 K_S^0$ or $\eta' K_S^0 K_S^0$
 - Forbidden by exchange symmetry and CP conservation
 - No peaking background
 - Little Non- η' backgrounds estimated from η' sidebands
 - 1.8% for $\eta^\prime \to \eta \pi^+ \pi^-,$ 6.8% for $\eta^\prime \to \gamma \pi^+ \pi^-$


BESIII PRL 132 181901(2024)


Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

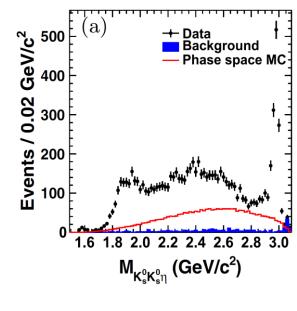
BESIII PRL 132 181901(2024)

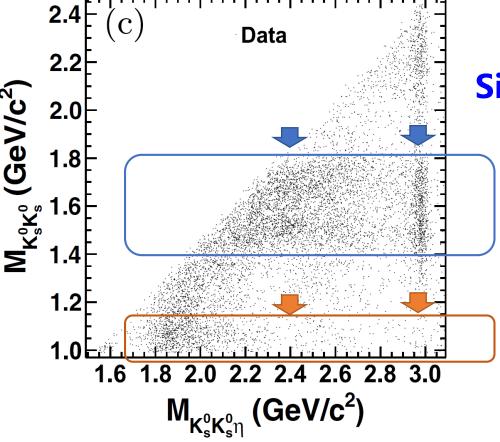
- A clear connection between the $f_0(980)$ and $X(2370)/\eta_c$
 - $f_0(980)$ selection with $M(K_S^0K_S^0) < 1.1$ GeV/ c^2
 - Clear signals of the X(2370) and η_c
- Amplitude analysis
 - Quasi two-body decay amplitudes in the sequential decay processes J/ψ → γX, X → Yη', Y → K_S⁰K_S⁰ and J/ψ → γX, X → ZK_S⁰, Z → K_S⁰η' are constructed using the covariant tensor formalism[Eur. Phys. J. A 16, 537]

Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

BESIII PRL 132 181901(2024)

Nominal fit solution

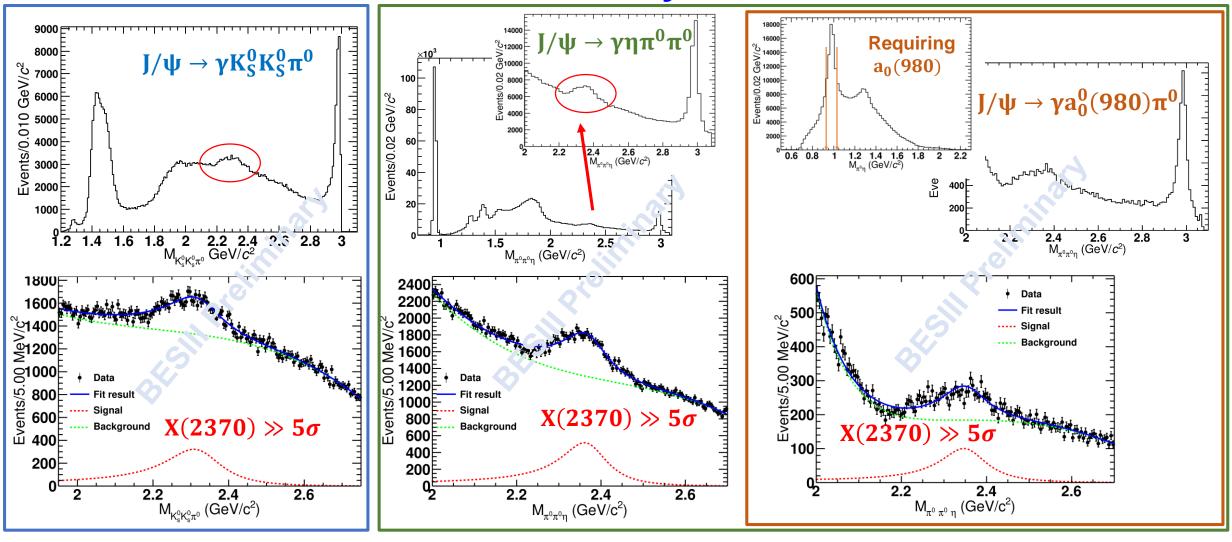

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0-+	$f_0(980)\eta'$	2799 ⁺⁵² ₋₄₈	660 ⁺¹⁸⁰ ₋₁₁₆	16.4σ
η_c	0-+	$f_0(980)\eta'$	2983.9	32.0	> 20.0 <i>\sigma</i>
PHSP	0-+	$\eta'(K_S^0K_S^0)_{S-wave}$			9.0σ
		$\eta'(K_S^0K_S^0)_{D-wave}$			16.3σ


- $X(2370)'s J^{PC} = 0^{-+}$ with 9.8 σ
- Product branching fraction:

$$\begin{split} &B(J/\psi \to \gamma X(2370) B\big(X(2370) \to \eta' K_S^0 K_S^0\big) B\big(f_0(980) \to K_S^0 K_S^0\big) \\ &= \big(1.31 \pm 0.22^{+2.85}_{-0.84}\big) \times 10^{-5} \end{split}$$

X(2370) seen in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ BESIII PRL 115 091803(2015)



Similar decay patterns of the X(2370) and η_c

clear X(2370) AND η_c signals

no X(2370) OR η_c signal

Observation of new decay modes of X(2370)

• $X(2370) \rightarrow K_S^0 K_S^0 \pi^0$, * $\eta \pi^0 \pi^0$, $a_0^0 (980) \pi^0$ firstly observed, all accompanied with η_c

^{*} $\eta(2320) \rightarrow \eta \eta \eta, \eta \pi \pi$ [PL B496 145(2000)] could be the current X(2370) at BESIII

What we have learned before

-- from MarkIII, BES, Crystal barrel, OBELIX, WA102, GAMS, E852, ...

Scalar: 1 nonet in quark model, f₀ & f₀'

Exp: overpopulation

LQCD: ground state 0+ glueball ~1.7 GeV;

$$\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$$

Tensor: 2 nonets(3P2,3F2), complicated

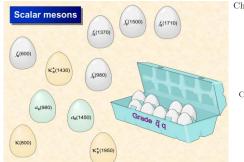
Exp: large uncertainty

LQCD: 2++(2.3~2.4 GeV);

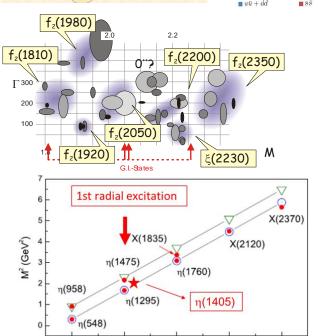
 $\Gamma(J/\psi \rightarrow \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$

Pseudoscalar: η & η', "simple"

Exp: lacking of info. above 2 GeV; puzzles $\eta(1295)$?


 $\eta(1405/1475)$?

LQCD: $0^{-+}(2.3\sim2.6 \text{ GeV})$


$$\Gamma(J/\psi \to \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$$

e⁺e⁻ annihilation

pp annihilation central exclusive production charge-exchange reactions

Landscape of glueballs has been updated with BESIII's inputs

Scalar: 1 nonet in quark model, f₀ & f₀

Exp: overpopulation

LQCD : ground state 0+ glueball ~1.7 GeV;

$$\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$$

Tensor: 2 nonets(3P2,3F2), complicated

Exp: large uncertainty

LQCD: $2^{++}(2.3\sim2.4 \text{ GeV})$; $\Gamma(J/\psi \to \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$

Pseudoscalar: η & η', "simple"

Exp: lacking of info. above 2 GeV; puzzles $\eta(1295)$? $\eta(1405/1475)$?

LQCD: $0^{-+}(2.3 \sim 2.6 \text{ GeV})$ $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$

- √f₀(1710) is largely overlapped with the scalar glueball, according to its production and decay properties
- **✓ Large production rate of** f₂(2340) in J/ψ radiative decays
- **✓ Non-observation of** $\eta(1295)$
- ✓ Insights of $\eta(1405/1475)$
- ✓X(2370): a good candidate with analogy decay pattern as $η_c$

Scalar glueball candidate: decay properties

Flavor-blindness of glueball decays

$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$$

*with chiral suppression

PRL 95 172001, PRL 98 149103

Expectation:

$$\Gamma(G \to \pi\pi)/\Gamma(G \to K\bar{K}) \approx \frac{f_{\pi}^4}{f_K^4} \approx 0.48$$

Measured:

$$\frac{1}{P \cdot S} \Gamma(G \to \pi \pi: K\bar{K}: \eta \eta) \approx \underline{1.3: 3.16: 1}$$

New inputs from $J/\psi \rightarrow \gamma \eta \eta'$

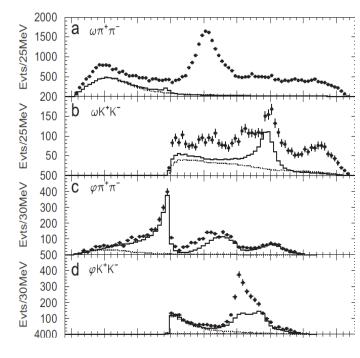
[BESIII PRL 129 192002(2022), PRD 106 072012(2022]

consistent with PDG

• Significant $f_0(1500)$

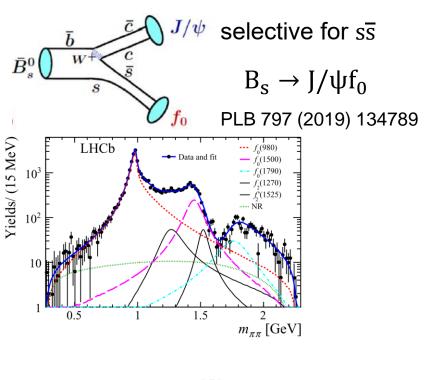
$$\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$$

• Absence of $f_0(1710)$


$$\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @90\% \text{ C. L.}$$

- Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball
 - Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

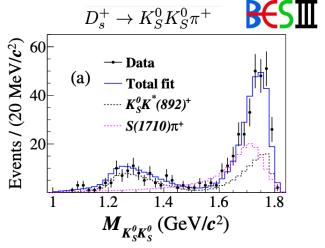
[PR D 92, 121902; PR D 92, 114035]

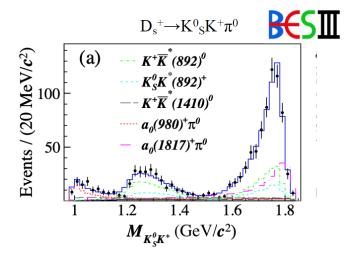

More scalars

 $f_0(1710)/f_0(1790)$?

- ωK+K⁻ → Peak around 1700 MeV/c²
 (OZI rule: n̄n structure)
- $\phi \pi^+ \pi^-$ Enhancement at 1790 MeV/ c^2
- $\phi K^+ K^ \rightarrow$ No peak around 1700 MeV/ c^2

 $f_0(1800)$



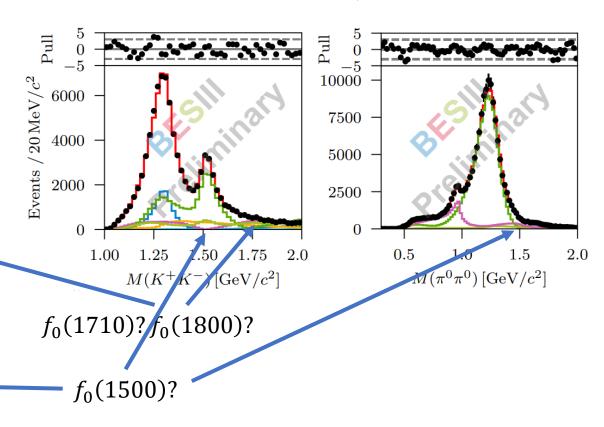

 $a_0(1817)$

Isovector partner of $f_0(1800)$?

[Shulei 's talk] PRD105, L051103 (2022)

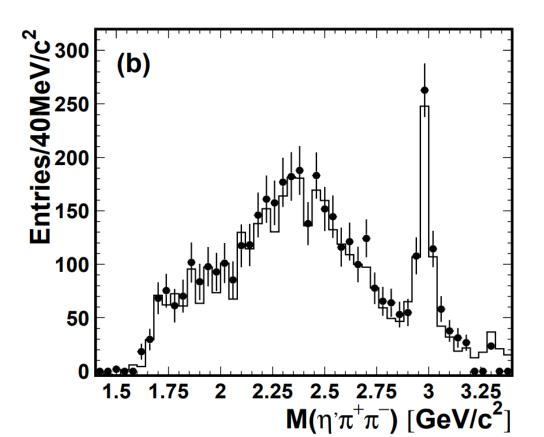
PRL129, 182001 (2022)

Two photon couplings


 $\gamma\gamma \rightarrow K_SK_S$ Belle PTEP 2013 (2013) 12, 123C01

Parameter	$f_0(1710) \text{ fit}$				
	fit-H	fit-L	$_{\mathrm{H,L}}$ combined	PDG	
χ^2/ndf	694.2/585	701.6/585	_	_	
$\overline{\mathrm{Mass}(f_J) \; (\mathrm{MeV}/c^2)}$	1750^{+5+29}_{-6-18}	1749^{+5+31}_{-6-42}	1750^{+6+29}_{-7-18}	1720 ± 6	
$\Gamma_{\mathrm{tot}}(f_J) \; (\mathrm{MeV})$	$138^{+12}_{-11}^{+96}$	145^{+11+31}_{-10-54}	139^{+11+96}_{-12-50}	135 ± 6	
$\Gamma_{\gamma\gamma}\mathcal{B}(K\bar{K})_{f_J} \text{ (eV)}$	12^{+3+227}_{-2-8}	21^{+6}_{-4-26}	12^{+3+227}_{-2-8}	unknown	

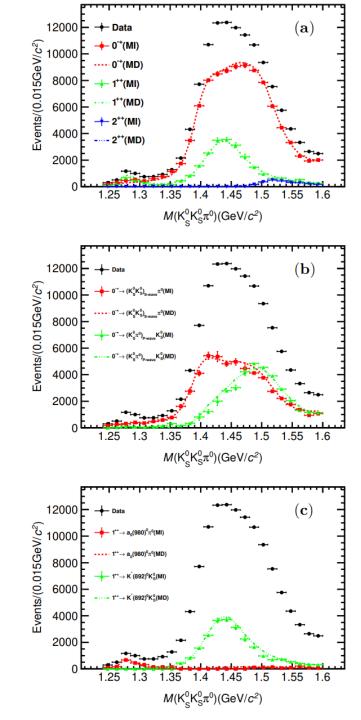
$$\gamma\gamma \rightarrow \pi^0\pi^0$$
 Belle PRD 78 (2008) 052004


Parameter	Nominal	$r_{02} = 0$	No $f_0(Y)$	Unit
$Mass(f_0(980))$	982.2 ± 1.0	980.2 ± 1.0	$983.7^{+1.5}_{-1.0}$	MeV/c^2
$\Gamma_{\gamma\gamma}(f_0(980))$	$285.5^{+17.2}_{-17.1}$	$297.0^{+14.2}_{-13.7}$	$370.5^{+20.2}_{-18.7}$	eV
$g_{f_0(980)\pi\pi}$	1.82 ± 0.03	1.79 ± 0.03	1.89 ± 0.03	${ m GeV}$
$\operatorname{Mass}(f_0(Y))$	1469.7 ± 4.7	1466.8 ± 0.6	_	MeV/c^2
$\Gamma(f_0(Y))$	$89.7^{+8.1}_{-6.6}$	$422.4^{+18.4}_{-19.8}$	_	MeV
$\Gamma_{\gamma\gamma}\mathcal{B}(f_0(Y)\to\pi^0\pi^0)$	$11.2^{+5.0}_{-4.0}$	$6780.2^{+626.5}_{-574.7}$	0 (fixed)	eV

BESIII preliminary

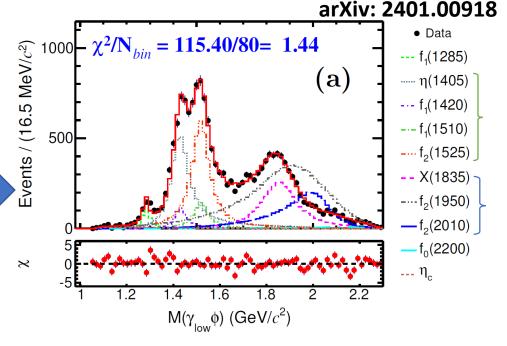
•
$$\gamma\gamma \to \eta'\pi^+\pi^-$$

Belle PRD 86 052002(2012)


Shed new lights on the $\eta(1405)/\eta(1475)$ puzzle

 $J/\psi \rightarrow \gamma K_S K_S \pi^0$

BESIII JHEP 03 121(2023)


- Mass Independent PWA in bins of $M(K_SK_S\pi^0)$ to detangle J^{PC} components
 - Valuable inputs to develop models
- Mass Dependent PWA with BW to extract resonances
- Consistency between MI and MD results
- Dominated by 0⁻⁺
 - Two BWs around 1.4 GeV is needed

- $\eta(1405)/\eta(1475)$ poles in coupled-channel analysis
 - PRD 107, L091505 (2023); PRD 109, 014021 (2024)

$J/\psi \rightarrow \gamma \gamma \phi$, a s̄s flavor filter

From the amplitude analysis,

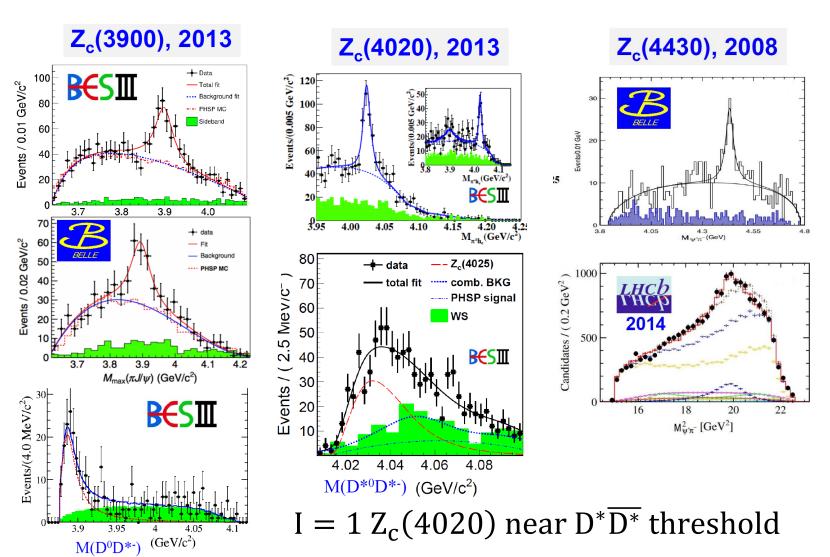
- $\eta(1405)$ is observed, while $\eta(1475)$ can not be excluded
- $X(1835) \rightarrow \gamma \phi$ suggests its assignment of η' excitation
- $\eta_c o \gamma \phi$ are observed. The very first radiative decay mode of η_c
- Observation of $f_2(1950)$ and $f_0(2200) \rightarrow \gamma \phi$ unfavored their glueball interpretations[PRD 108, 014023, arXiv: 2404.01564]
- No evidence of $X(2370)/\eta_1(1855)$, well consistent with the predictions for glueball/hybrid [PRD 107, 114020, NPA 1037, 122683]

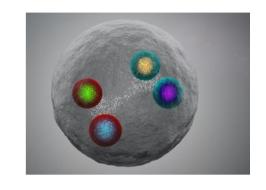
Amplitude analysis

Amplitude analysis is a key tool of hadron spectroscopy to disentangle contributions from individual resonances and to extract the resonance's spin-parity, mass, width and decay properties

$$Prob(\xi:\alpha) = \frac{\omega(\xi,\alpha)\epsilon(\xi)}{\int d\xi\omega(\xi,\alpha)\epsilon(\xi)} \qquad \xi \text{ (the four-momenta of the final-state particles),} \\ \omega(\xi,\alpha) = \frac{d\sigma}{d\Phi} = |\sum_i A_i|^2 \text{ differential cross section,} \\ \ln L = \sum_{i=1}^{N_{data}} \ln(Prob(\xi,\alpha)) \qquad \epsilon(\xi) \text{ efficiency}$$

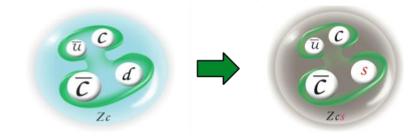
For J/ψ radiative decays

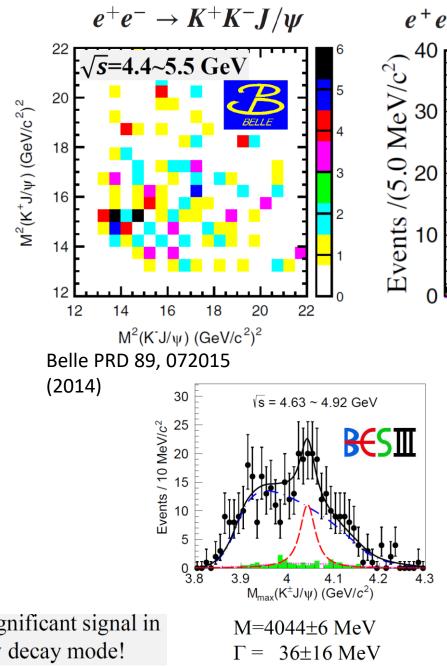

[Eur. Phys. J. A 16, 537]

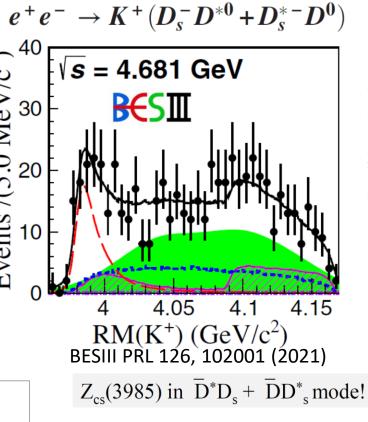

$$\begin{split} A &= \psi_{\mu}(m_1) e_{\nu}^*(m_2) A^{\mu\nu} = \psi_{\mu}(m_1) e_{\nu}^*(m_2) \sum_i \varLambda_i U_i^{\mu\nu} \\ \text{e.g. J/ψ} &\to \gamma 0^{-+}, 0^{-+} \to f_0 \eta, f_0 \pi \pi \\ &\langle \gamma 0^{-+} | (f_0 \eta) 1 \rangle = S_{\mu\nu} B_1(Q_{\psi\gamma X}) f_{(12)}^{(f_0)} \\ &S_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta} p_{\psi}^{\alpha} q^{\beta} \end{split}$$

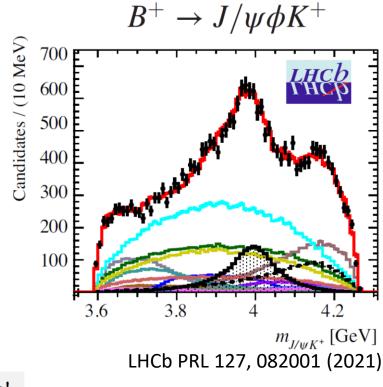
 $B_1(Q_{\psi \nu X})$ is Blatt-Weisskopf centrifugal barrier for $J/\psi \rightarrow \gamma X$

Perform an un-binned loglikelihood fit (fit the data event-wise to high-dimensional distributions using complex weights) to make our model for ω agree with the experimental distribution by varying the α


Z_c states


All are observed in π +charmonium $c\overline{c}u\overline{d}$


Existence of states with $d \rightarrow s$?

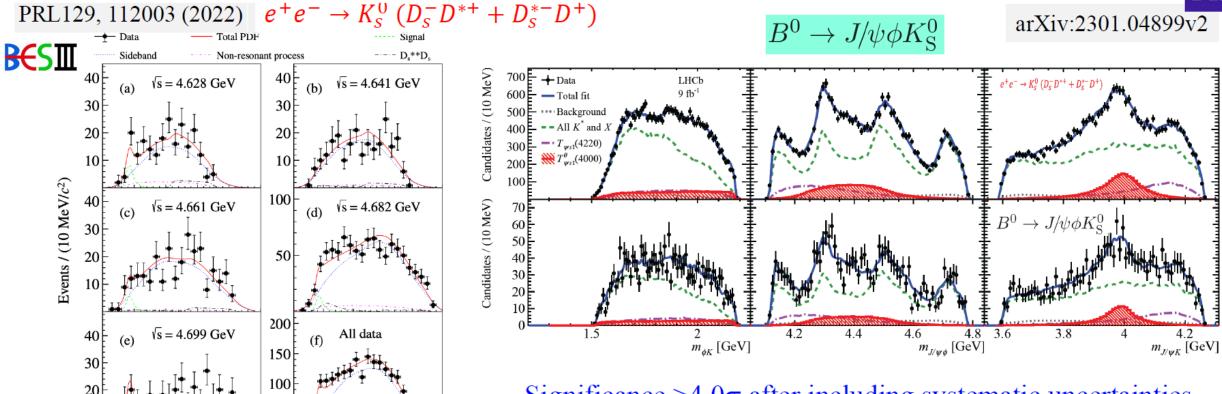


Search for states decay into KJ/ψ , $D_s^*\overline{D}$, D_s

 $I = 1 Z_c(3900)$ near $D\overline{D^*}$ threshold

 $Z_{cs}(4000)$ and $Z_{cs}(4220)$ in $K^{\pm}J/\psi$ decay mode!

State	Signif.	JP	Mass (MeV)	Width (MeV)
$Z_{cs}(3985)$	5.3σ	??	$3982.5^{+1.8}_{-2.6} \pm 2.1$	$12.8^{+5.3}_{-4.4} \pm 3.0$
$Z_{cs}(4000)$	15σ	1+	$4003 \pm 6^{+4}_{-14}$	131±15±26
Z. (4220)	5.90	1+	$4216 \pm 24^{+43}$	$233 \pm 52^{+97}$


Same state?

No significant signal in $K^{\pm}J/\psi$ decay mode!

Significance: 2.3σ

BESIII PRL131, 211902 (2023)

Evidence for the neutral $Z_{cs}(3985)$, $Z_{cs}(4000)$

Significance >4.0 σ after including systematic uncertainties Significance 5.4 σ with isospin symmetry imposed

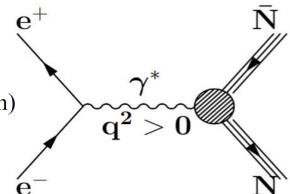
State	Mass (MeV/ c^2)	Width (MeV)	Significance
$Z_{cs}(3985)^+$	$3985.2^{+2.1}_{-2.0} \pm 1.7$	$13.8^{+8.1}_{-5.2} \pm 4.9$	5.3σ
$Z_{cs}(3985)^0$	$3992.2 \pm 1.7 \pm 1.6$	$7.7^{+4.1}_{-3.8} \pm 4.3$	4.6σ

4.05 4.1 4.15 4.2 3.95 4 4.05 4.1 4.15 4.2 RM(K_c)(GeV/c²)

Mass (MeV)	${\rm Width}~({\rm MeV})$	Fit fraction (%)	$\Delta M \; ({ m MeV})$
$3991^{+12}_{-10}{}^{+9}_{-17}$	$105^{+29}_{-25}^{+17}_{-23}$	$7.9 \pm 2.5 {}^{+3.0}_{-2.8}$	$-12{}^{+11}_{-10}{}^{+6}_{-4}$

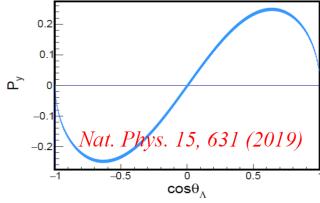
$$I = \frac{1}{2} Z_{cs}(3985)$$

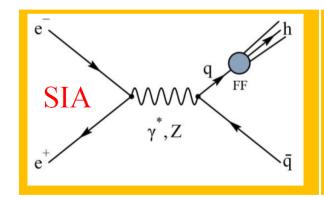
Time-like EMFFs: theoretic review


1961, first paper by N. Cabibbo and R. Gatto *Phys. Rev.* 124 (1961) 1577-1595

• The production cross section of $e^+e^- \to B\overline{B}$ (1/2 baryon) is given:

$$\frac{\mathrm{d}\sigma_{B\overline{B}}}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2C\beta}{2q^2} \left[\left(1 + \cos^2\theta\right) |G_M|^2 + \frac{1}{\tau} |G_E|^2 \sin^2\theta \right], \tau = \frac{q^2}{4m_B^2}$$


Integrated version: $\sigma_{B\bar{B}} = \frac{4\pi\alpha^2 C\beta}{3q^2} \left[|G_M|^2 + \frac{1}{2\tau} |G_E|^2 \right]$ (Born cross section)


$$\xrightarrow{|G_E|=|G_M|} \sigma_{B\bar{B}} = \frac{2\pi\alpha^2 C\beta}{q^2} |G_{\text{eff}}|^2$$

• The complex feature of TLFF leads to transversely polarized baryon even the beams are unpolarized. Nuov Cim A 109, 241–256 (1996)

$$P_{y} = -\frac{\sin 2\theta \operatorname{Im}[G_{E}G_{M}^{*}]/\sqrt{\tau}}{\frac{|G_{E}|^{2}\sin^{2}\theta}{\tau} + |G_{M}|^{2}(1 + \cos^{2}\theta)}$$

$$e^+e^-$$
: $\sigma = \sum_q \sigma(e^+e^- \to q\bar{q}) \otimes FF$

- No PDFs necessary
- Calculations know at NNLO
- Flavor structure not directly accessible

Two types of fragmentation functions can be studied at BEPCII/BESIII

- Unpolarized fragmentation function
 - Unique Q<10 GeV data
 - More results from charged π/K and heavy flavor

Normalized differential cross section

$$\frac{1}{\sigma_{\text{had}}} \frac{d\sigma_{\pi^0}}{dp_{\pi^0}} = \frac{N_{\pi^0}}{N_{\text{had}}} \frac{1}{\Delta p_{\pi^0}}$$

 π^0/K_S , PRL 130 231901(2023) η , arXiv:2401.17873

Collins fragmentation function

 $\pi\pi$, PRL 116, 042001 (2016)

- Essential input in the 3D imaging era of the nucleon structure study
- More results from $K\pi + X$ and KK + X