

Status & challenges of HIAF project

He Zhao

On behalf of the HIAF project group

Institute of Modern Physics (IMP) Chinese Academy of Sciences (CAS)

Outline

1. General information of the HIAF

- 2. High intensity beam dynamics studies
- 3. Key technical challenges and R&D
- **4. Experimental terminals**
- **5.** Conclusion

Outline

1. General information of the HIAF

- 2. High intensity beam dynamics studies
- 3. Key technical challenges and R&D
- **4. Experimental terminals**
- **5.** Conclusion

Next-generation high intensity facilities are required for advances in nuclear physics and related research fields:

Fascinating and crucial questions

- To explore the limit of nuclear existence
- To study exotic nuclear structure
- Understand the origin of the elements
- To study the properties of High-Energy-Density Matter

Next-generation facilities are being constructed

- FAIR at GSI in Darmstadt, Germany
- FRIB at MSU in the U.S.
- NICA at JINR, Dubna, Russia
- HIAF at IMP, China

High-Intensity Heavy-Ion Accelerator Facility-HIAF

under construction with the support of both central and local governments

HIAF is one of the major national science and technology infrastructure

The project is proposed and constructed by IMP, CAS The campus locates in Huizhou City of Guangdong Province The total budget is 3.0 billion CNY The construction of project started at the end 2018, and the period is 7 years

HIAF: for advances in nuclear physics and related research fields

- Questions of nuclear physics:
- To explore the limit of nucleus existence
- To study exotic nuclear structure
- Understand the origin of the elements
- High charge state ions for a series of atomic physics programs.
- Slow extraction beam with wide energy range for applied science
- High energy and intensity ultra-short bunched ion beams for high energy and density matter research

Accelerator components and experiment terminals

HIAF main parameters

To provide very high intensity heavy ion beam

	SECR	iLinac	BRing	HFRS	SRing
Length / circumference (m)		114	569	192	277
Final energy of U (MeV/u)	0.014 (U ³⁵⁺)	17 (U ³⁵⁺)	835 (U ³⁵⁺)	800 (U ⁹²⁺)	800 (U ⁹²⁺)
Max. magnetic rigidity (Tm)			34	25	15
Max. beam intensity of U	50 pμA (U ³⁵⁺)	28 pµA (U ³⁵⁺)	2×10 ¹¹ ppp (U ³⁵⁺) 6×10 ¹¹ pps (U ³⁵⁺)		(0.5-1) ×10 ¹² ppp (U ⁹²⁺)
Operation mode	DC	CW or pulse	fast ramping (12T/s, 3Hz)	Momentum- resolution 1100	DC, deceleration
Emittance or Acceptance (H/V, π·mm·mrad, dp/p)		5 / 5	200/100, 0.5%	±30mrad(H)/±15 mrad(V), ±2%	40/40, 1.5% (normal mode)

HIAF main parameters

More typical beams

BRing

Rigidity	34Tm,	fr=3Hz
lon	Intensity (ppp)	Energy (GeV/u)
²³⁸ U ³⁵⁺	2.0×10^{11}	0.84
²³⁸ U ⁷⁶⁺	5.0×10^{10}	2.5
¹²⁹ Xe ²⁷⁺	3.6×10^{11}	1.4
⁷⁸ Kr ¹⁹⁺	5.0×10^{11}	1.7
⁴⁰ Ar ¹²⁺	7.0×10^{11}	2.3
¹⁸ O ⁶⁺	8.0×10 ¹¹	2.6
р	5.0×10^{13}	9.3

Rigidity	15 Tm		
Ion	Intensity (ppp)	Energy (GeV/u)	
²³⁸ U ⁹²⁺	$(1-5) \times 10^{11}$	1.1	
¹²⁹ Xe ⁵⁴⁺	$3.6 \times 5 \times 10^{11}$	1.2	
⁷⁸ Kr ³⁶⁺	$5.0 \times 5 \times 10^{11}$	1.3	
⁴⁰ Ar ¹⁸⁺	7.0×5×10 ¹¹	1.3	
¹⁸ O ⁸⁺	8.0×5×10 ¹¹	1.3	
р	2.0×5×10 ¹³	3.5	

SRing

HIAF construction time schedule

2019	2020	2021	2022	2023	2024	2025	2026
Civil construction					•		
		Electri	ctric power, cooling water, compressed air, network, cryogenic, supporting system, etc.				
ECR desi	gn & fabrication		SECR installation and commissioning First b			First beam	
	Linac design & fabrication iLinac installation and commiss			issioning	one kp		
Prototypes of PS, RF cavity, chamber, magnets, etc.		fabric	ation	BRing installation and commissioning	Complete Installation Day	one exp	
					HFRS	installation & missioning	
				SRin & co	g installation missioning	Complete Installation	Day one exp
			Terminals installation			,	

- > The ion source **SECR** will provide first beam early next year
- > The low energy CW ion beam of iLinac is expected at the end of 2024
- > The high energy pulse ion beam from **BRing** is in September of 2025
- > The Day One Experiment in **SRing** will be in April of 2026

High-Intensity Heavy Ion Accelerator Facility-HIAF

High-Intensity Heavy Ion Accelerator Facility-HIAF

Outline

1. General information of the HIAF

2. High intensity beam dynamics studies

3. Key technical challenges and R&D

4. Experimental terminals

5. Conclusion

- - Pulsed 28 pµA U³⁵⁺, U^{4x+}
 - CW 15 pµA U³⁵⁺
 - 17 MeV/u

- **45 GHz superconducting ECR**
 - Pulsed 50 pµA U³⁵⁺, U^{4x+}
 - CW 20 pµA U³⁵⁺
 - 14 KeV/u

 2.0×10^{11} with two planes painting, **nearly 10 times** over the conventional single-plane injection.

All 3rd order resonances driven by field errors with space charge could be compensated by correctors!

- Structural resonances mQ_x+nQ_y = 36 or 39 could be driven by space charge fields in the HIAF given by the theory, which is completely verified by the CISP-GPU simulations.
- Work point stay away from the red area; correction scheme is under investigation

□ With CISP-GPU simulations, it is the first time to study collective instability stimulated by the extra

broadband impedances from 3D-printed titanium alloy supported vacuum chamber in the BRing

600

In the proton beams, high order transverse mode coupling instability is stimulated, as the bunch σ_z is about 5 m while the peak of wake is at 0.1 m.

- Instability stimulated by the broadband impedances from rings is stabilized by:
- Chromaticity of a relatively large value ~ -5
- 2. Wideband feedback system with a band-width > 500 MHz

Outline

1. General information of the HIAF

2. High intensity beam dynamics studies

3. Key technical challenges and R&D

4. Experimental terminals

5. Conclusion

The first 45GHz superconducting ECR in the world: 50 $p\mu A\,(U^{35+})$

■ The critical one is to fabricate a fully Nb₃Sn superconducting magnet

Sextupole Coils

Coils integration

Full-sized cold mass

Most technical challenges have been verified, system integration is under progress

45 GHz microwave coupling

45GHz/20kW microware transmission system based on the quasi-optical design, ECR plasma with 45GHz microwave has been tested with exiting SECRAL2 ion source. The first beam at 45 GHz is expected in 2024

iLinac

High current superconducting ion linac

RFQ and SRF cavities fabrication

HWR015 type cavity

QWR007 type cavity

SFR cavity tuner

superconducting solenoid

SFR cavity coupler

solid state amplifiers

The highest ramping rate for heavy ion synchrotron, challenges for key system, such as power supply, RF and vacuum chamber

A major breakthrough through innovative technologies:

1. Fast ramping rate full energy storage power supply

2. Magnetic alloy core loaded RF system

3. Ceramiclined thin wall vacuum chamber

Fast ramping full energy storage power supply

Load specification and performance requirement of magnet power converters featured by fast ramping rate: 12T/s, ±38000A/s, the peak power reaches ±230MW totally at full load

Items	
Excitation current/voltage	3900A/4300V
load inductance	116mH
Load Resistance	36.4mΩ
Current changing rate	≤±38000A/s
Flat bottom error	≤±0.2A
tracking error	≤±0.2A
Flat top error	≤±0.2A

Challenges:

High tracking precision and low current ripple, especially strong un-allowable line voltage fluctuation due to very large cyclic variation of reactive power

Parameters of BRing bending magnet power supply

Parameters of BRing bending magnet power supply

A innovative power supply topology are proposed for HIAF BRing (variable forward excitation, full energy storage, PWM rectification technology)

- Energy from magnet load to capacitor tank
- Energy capacitor will be used to store energy during the falling, and provide the energy for next fast ramping
- The energy can be controlled by PWM rectification technology, only active power will be taken from the grid!

Circuit diagram of bending magnet power supply

Key technical challenges and R&D

> A full size prototype has been developed, the key technology and design of the power supply have been verified

1.2

0.8

^{0.4} 相

-0.8

-1.2

0.30

跟随误差

0.25

> First actual power supply of mass production, leading level performance has been achieved

Power requirement (MVA)	Conve ntional	Energy storage
BRing bendng magnet	180	15
BRing quadruple	50	6
magnet	20	v
Total of BRing	250	41

Test results on the real magnet loads:

Current 4000A, ramping rate > 40000A/s, tracking error< \pm 9.625e-5, power requirement of power convertors for bending and quadrupole magnets will reduce from 230MVA to 21MVA

□ High voltage: 240kV □ Short rise time($\leq 10\mu$ s) for beam compression

MA RF system:

Compared with ferrite, MA cores have the characteristics of high gradient, wide band, and fast response

Not well established yet:

Fabrication of MA core module

Cooling of MA-loaded cavities operating at intense power dissipation

- MA RF system with oil cooling has been constructed and power test show the good performance
 - □ The cavity RF voltage can reach 66kV@0.3~2.1MHz, with 3Hz and 70% duty cycle operating mode

Cavity pick (3Hz operating mode)

Impedance of MA cavity

High voltage pulse (50kV/10us)

LLRF VPX hardware

MA loaded RF system prototype

MA loaded cavity

Due to high ramping rates, thin wall vacuum chambers are needed for all magnets to keep eddy currents at a tolerable level.

- Complicated fabrication process
- Special material with high cost
- Low finished production rate
- Large gap of the magnet

New scheme:

Thin-wall chamber supported by ceramic rings

Stainless steel-0.3mm Ring-4 mm,one side

Ceramic ring with golden coating

Thickness :4mm

Titanium alloy-CT4 cage

Thickness :4mm

Thickness :5mm

Advantages for TC4 cages manufactured by **3D-SLM**(Selective Laser Melting):

Occupied a less magnetic gas gap; A higher yield strength with 912 MPa; A lower outgassing rate with 1.12×10⁻¹³ mbar.l/s.cm⁻²; In addition, high reliability, easy to manufacture, and low cost.....

Mechanical loading test of titanium alloy ring

Comparison of Mechanical Properties of Materials

	Outgassing rate mbar·l/s·cm ²	Yield strength MPa	Density kg/m ³
Titanium alloy	1.12×10 ⁻¹³	910-960	4510
Zirconia ceramic	2.1×10 ⁻¹³	380 (Anti- bending)	6050
stainless steel	5×10 ⁻¹³	202	7900

The titanium alloy-lined thin-wall vacuum chamber

Titanium alloy lined thin-wall vacuum chamber

Progress: The thin-walled vacuum chambers with various cross-sectional specifications, such as octagon, circular, racetrack shape, and so on, have been developed by IMP.

The arc chambers for bending magnet of BRing

Welding quality

The chambers of quadrupole magnets

• Currently, 48 sets of bending magnet chambers and over 80 sets of quadrupole magnet chambers are under fabrication and are expected to be completed by December 2023.

Hardware components

Mass production and fabrication

Solenoid of front-end

Fast ramping bending and quadrupole magnets of BRing

Superferric bending magnet with warm iron

Electron cooling device

Fast ramping full energy storage power supply

Sextupole magnets

Beam diagnostic devices & instruments

Coil dominated Canted Cosine Theta multipoles magnets

Hardware components

Test and measurement of key system and devices

SRF cavity vertical test

Test and measurement of superferric magnet

Cryomodule test

Kicker power supply test with real load

23 41 41 40 120 120 还原

Field measurement of bending magnets

被电电流波形

6541 /27 还原

Online beam test of BPM electronics

High power primary target test

Outline

1. General information of the HIAF

- 2. High intensity beam dynamics studies
- 3. Key technical challenges and R&D
- 4. Experimental terminals
- **5.** Conclusion

Low Energy Station

Pulse Mode: injector of the Booster; CW Mode: deliver intense beams for low-energy experiments

To produce heavy and super-heavy nuclei by fusion reactions and by multi-nucleon transfer reactions

High Energy Station

Stable beams provided by the Booster
DC-type extraction from the Booster

Typical beam parameters from the Booster Ring

lons	Energy(GeV/u)	Intensity (ppp)
р	9.3	2.0×10 ¹²
¹⁸ O ⁶⁺	2.6	6.0×10 ¹¹
⁷⁸ Kr ¹⁹⁺	1.7	3.0×10 ¹¹
²⁰⁹ Bi ³¹⁺	0.85	1.2×10 ¹¹
238U34+	0.8	1.0×10 ¹¹

Slow extraction: ~ 3s beam duration Not supported by the approved budget

The high-energy stable beams are ideal to produce hypernuclei and nuclear matter

- > Properties of nuclear matter: supported already by CAS and NSFC, about 200 Million CNY
- > Synthesis of new hypernuclei: seeking for financial support, international collaboration?

Moderate beam intensity and higher energies. A/Z=2 primary beams up to 4.25 GeV/u energy will be available

High Energy Fragment Separator (HFRS)

- Slowly extracted beams from the Booster
- Radioactive ion beams produced by HFRS

Acceptance, and Momentum Resolution

Requirements from Physics om.Acc. [%] Ang.Acc. [mrad] 123456

Physics Cases @HFRS

- New isotopes in the south east of ²⁰⁸Pb (PF of ²⁰⁸Pb and ²³⁸U)
- Neutron dripline up to Ni isotopes (PF of Kr and Xe)
- New isotopes by ²³⁸U fission (In-flight fission of ²³⁸U) \checkmark
- New isotopes using two step projectile fragmentations
- Synthesis of neutron rich hypernuclei \checkmark
- Study of tensor interactions: a basic change in structure model \checkmark
- ✓ Particle decay in flight of unbound nuclei
- Nuclear matter radii (Interaction cross sections)
- Nuclear proton radii (Charge changing cross sections) \checkmark
- Charge exchange reactions and β decay of r-process nuclei
- Nucleon excitations in nuclei
- Giant resonance of neutron rich nuclei
- Elastic scattering and transfer reactions
- Spectroscopy of meson-nucleus bound system \checkmark

Various experiments can be done at HFRS

Spectrometer Ring: Multi Working Modes of Storage Ring

Experiments:

- Isochronous Mass Spectroscopy
- Schottky Spectroscopy
- DR Spectroscopy
- In-ring Nuclear Reactions

Spectrometer Ring:

- > Circumference:188.7 m
- > Rigidity: 15 Tm
- Electron cooler
- Stochastic cooler

With fast extracted projectiles from the Booster, HFRS produces, separates and injects the isotopes of interests into the Spectrometer Ring

Carbon target sustainable to beam power

- The HIAF project can provide stable ions up to Uranium, and produce many kind of secondary isotopes
- The maximum magnetic rigidity is 34Tm, which corresponds to the energy of Uranium is about 830 MeV/u and proton is 9.3 GeV
- High beam intensity and fast ramping (12T/s) is the main feature of the synchrotron
- **The first beam will be extracted in 2025**
- HIAF will play a key role for sustainable development of heavy-ion science and technology in China. International collaboration and theories in assistance are very needed!

China advanced NUclear physics research Facility - An upgrade of the HIAF and CiADS

EicC

Consists of p-Ring, e-Ring and beam injectors, realizes dual-polarized high intensity electron ion collision, with full energy beam injection and rapid replacement based on e-injector and BRing-S.

HIAF-U

Upgrade HIAF with 200MeV/u iLinac, fastcycle injector BRing-N, superconducting synchrotron BRing-S and the merging ring MRing, providing high-intensity, high-quality ion beams from proton to uranium.

ISOL

Driven by the high power proton beam from CiADS Linac, producing high intensity neutron-rich nuclides and be postaccelerated by HIAF-U. Also producing high flux surface muon.

Thanks for your attention!

A REAL PROPERTY