Recent Progress in Study of PDFs from CT Global Analysis

Tie-Jiun Hou University of South China

12th Workshop on Hadron Physics in China and Opportunities Worldwide 2024.0805

https://cteq-tea.gitlab.io/

• RESEARCH PROJECTS AND RESULTS •

CLICK ON THE ITEM TO RETRIEVE THE PROJECT PAGE

APS

PHYSICAL REVIEW D covering particles, fields, gravitation, and cosmology

Editors' Suggestion

New parton distribution functions from a global analysis of quantum chromodynamics

Sayipjamal Dulat, Tie-Jiun Hou, Jun Gao, Marco Guzzi, Joey Huston, Pavel Nadolsky, Jon Pumplin, Carl Schmidt, Daniel Stump, and C.-P. Yuan Phys. Rev. D **93**, 033006 – Published 16 February 2016

ABSTRACT

We present new parton distribution functions (PDFs) at next-to-next-to-leading order (NNLO) from the CTEQ-

ARTICLES BY CTEQ-TEA AUTHORS

Representative publications of our research group and its collaborators listed in the INSPIRE-HEP database

CTEQ-TEA PARTON DISTRIBUTION FUNCTIONS

CTEQ-TEA (CT) parametrizations of parton distribution functions in the nucleon

CTEQ main page CTEQ-TEA projects

FAST EXAMINATION OF DATA CONSTRAINTS ON PDFS

L2explorer estimates experimental constraints on PDFs from the LHAPDF library using L2 sensitivities China: A. Ablat, S. Dulat, Y. Fu, T.-J. Hou, I. Sitiwaldi

Mexico: A. Courtoy

USA: M. Guzzi, T.J. Hobbs, J. Huston, H.-W. Lin, C. Schmidt, K. Xie, C.-P. Yuan and other coauthors

4

Toward a new generation of CT PDFs

1. Upgrade of PDF grids

2. Multiple based on preliminary the selections NNLO fits with

- vector boson [2305.10733]
- tt data [2307.11153]
- LHC Run-2 (di)jet [work in progress]
- 3. Work on implementation of N3LO contributions [work in progress]

4. Next-generation PDF uncertainty quantification:

- Bézier curves [2311.08447]
- multi-Gaussian approaches [2406.01664]

5. Physics applications

- QCD+QED PDFs for a neutron [2305.10497]
- PDF dependence of forward-backward asymmetry [2307.07839]
- Gluon determination with the help of lattice input [work in progress]

Upgrade of PDF grids

Ratio between PDF read from grids and fitting code

CT18 Drell-Yan data

- Noticeable tensions between the SIDIS di-muon data and the precision ATLAS 7 TeV Z/W data were found in global analysis.
- Two versions of PDFs: CT18(w/o ATLAS 7 Z/W data) and

CT18A(w/ ATLAS 7 Z/W data) were released

Ibrahim Sitiwaldi et al, 2305.10733

Post-CT18 LHC Drell-Yan data

ID	Exp	N_{pt}	χ^2/N_{pt}	-	
215	ATLAS 5.02 TeV W,Z	27	$0.82^{+0.55}_{-0.16}$ ($1.15^{+1.22}_{-0.43}$)	CT18 :	w/o ATL7ZW
211	ATLAS 8 TeV W	22	$2.42^{+2.49}_{-1.51}$ ($4.25^{+6.39}_{-3.34}$)		
214	ATLAS 8 TeV Z3D	188	$1.12^{+0.46}_{-0.02}$ ($1.99^{+5.10}_{-1.85}$)	CT18A :	w/ ATL7ZW
212	CMS 13 TeV Z	12	$2.48^{+4.76}_{-0.88}$ ($12.03^{+38.04}_{-21.84}$)	
217	LHCb 8 TeV W	14	$1.35_{-0.61}^{+0.59}$ ($1.35_{-0.64}^{+0.72}$)	CT18As:	CT18A w/ s asym.
218	LHCb 13 TeV Z	16	$1.18^{+1.42}_{-0.60}$ ($1.49^{+1.74}_{-0.89}$)		

New DY data drive new fitted PDFs closer to CT18A PDFs rather than CT18 PDFs.

CT18 or CT18A?

- The new Drell-Yan data **ATL8Z3D** and **CMS13Z** drive the strange PDF closer to CT18A than CT18.
- Mild tension in the strange PDF comes from the ATL8W and LHCb8W data sets.

LHC 13 TeV tt data set

521	ATL13had	2006.09274	ATLAS all-hadronic channel at 13 TeV
528	CMS13II	1811.06625	CMS dilepton channel at 13 TeV
581	CMS13lj	2108.02803	CMS lepton + jets channel at 13 TeV
587	ATL13lj	1908.07305	ATLAS lepton+jets channel at 13 TeV

- Distributions $m_{t\bar{t}}, y_{t\bar{t}}, y_{t\bar{t}}^{Boost} = \frac{1}{2}(y^{t,had} + y^{t,lep})$ and $H_T^{t\bar{t}} = p_T^{t,had} + P_T^{t,lep}$ are concerned.
- ATL131j releases two binning: ATL-bin and CMS-bin

Npts	$m_{tar{t}}$	${\cal Y}_{tar t}$	${\cal Y}^{Boost}_{tar t}$	$H_T^{t \bar t}$	$p_{T,t}$	y_t
ATL bin	9	7	9	9		
CMS bin	7	10			6	10

Bin-by-bin statistical correlations are made available for ATL bin.

• NNLO theoretical prediction is done by using MATRIX.

NNLO=NLO(Applgrid, MCFM 6.8) ×
$$K\left(\frac{\text{NNLO(MATRIX)}}{\text{NLO(MCFM 6.8)}}\right)$$

• Central-scale choices $\mu_R = \mu_f = H_T/4$ or $H_T/2$ are examined.

LHC 13 TeV tt data set: Stronger Impact

1.20

- The ATL13lj data provide minor impact to gluon PDF in large x region.
- The difference between CMS-bin and ATL-bin is mild.
- Statistical correlations have a negligible impact on the gluon PDF errors.
- nTT2 = ATL13had- y_{tt} + CMS13ll- y_{tt} + CMS13lj- m_{tt} + ATL13lj- y_{tt} + y^{B}_{tt} + m_{tt} + H_{T}^{tt} w/o stat. corr. (ATL bin)
- New tt data prefer softer gluon for x > 0.2.
- Stronger ability to reduce the uncertainty of gluon PDF as compare to that in CT18.

Preliminary

Incl. Jet v.s. dijet data set

Data	Ref	\sqrt{s}	\mathcal{L}_{int}	N_{pt}	$\frac{\operatorname{anti-}k_T}{R}$ (Observable	Kinematics	Scale
Data	1001	[TeV]	$[\mathrm{fb}^{-1}]$			0.0001.40010	1111011100105	μ_R, μ_F
					Inclu	sive Jet		
ATLAS	[56]	8	20.3	171	0.6	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d} y }$	y < 3.0 $p_T^{\text{jet}} \in [70, 2500]$	$p_T^{\rm jet}, \hat{H}_T$
ATLAS	[58]	13	3.2	177	0.4	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d} y }$	$ y < 3.0 p_T^{\rm jet} \in [100, 3937]$	$p_T^{\text{jet}}, \hat{H}_T$
CMS	[60]	13	36.5	78	0.7	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d} y }$	$\begin{aligned} y < 2.0 \\ p_T^{\rm jet} \in [97, 3103] \end{aligned}$	$p_T^{\rm jet}, \hat{H}_T$
	DiJet							
ATLAS	[61]	7	4.5	90	0.6	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{12}\mathrm{d}y^*}$	$y^* < 3.0$ $m_{12} \in [260, 5040]$	m_{12}
CMS	[62]	7	5.0	54	0.7	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{12}\mathrm{d} y_{\mathrm{max}} }$	$y_{\max} < 2.5$ $m_{12} \in [197, 5058]$	m_{12}
CMS	[63]	8	19.7	122	0.7	$\frac{\mathrm{d}^3\sigma}{\mathrm{d}p_{T,\mathrm{avg}}\mathrm{d}y^*\mathrm{d}y^b}$	$y^* < 3.0$ $y^b < 3.0$ $m_{12} \in [133, 1784]$	$m_{12} \\ p_{T,1}e^{0.3y*}$
ATLAS	[58]	13	3.2	136	0.4	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{12}\mathrm{d}y^*}$	$y^* < 3.0$ $m_{12} \in [260, 9066]$	m_{12}

- NNLO theoretical prediction was done by NNLOJET
- Scales choice $\mu_R = \mu_f = p_T^{jet}$ or H_T were examined.
- Incl. jet data prefer harder gluon in large x.
- Mild reduction in gluon PDF uncertainty from incl. jet data is observed.

12

χ^2/N_{pt} for fits that add one inclusive jet or dijet data set to the CT18 (without LHC jets) baseline at a time

Inclusive je	χ^2/N_{pt} using $\mu_{R,F} \propto HT$ or p_T^j						
Experiment	N _{pt}	HT/2	HT	2HT	$p_T^j/2$	p_T^j	$2p_T^j$
ATL8IncJet	171	1.7	1.74	1.87	1.75	1.66	1.7
ATL13IncJet	177	1.42	1.36	1.4	1.52	1.31	1.28
CMS13IncJet	78	1.2	1.16	1.2	1.08	1.09	1.1
Dijets	χ^2/N_{pt} using $\mu_{R,F} \propto HT$ or $p_T^* = p_T^{leading} \exp(0.3y^*)$						
Experiment	N _{pt}	$M_{jj}/2$	M _{jj}	2 <i>M_{jj}</i>	$p_T^*/2$	p_T^*	$2p_T^*$
ATL7DiJet	90	0.81	0.79	0.87			
CMS7DiJet	54	1.55	1.55	1.63			
CMS8DiJet	122	0.95	1.2	1.9	1.25	1	1.01
ATL13DiJet	136	0.9	0.87	0.93			

• Dijet data sets tend to have larger uncertainties than inc. jets, on facilitating PDFs better χ^2 for similar constraints on PDF.

Preliminary

 Dijet data are dominated by the CMS 8 TeV dataset

Preliminary

Incl. jet vs. dijet data sets: impact on the gluon

+ dijets: significant scale, dependence, varied pulls on g(x, Q)

The impact of the Inc. jet data on g(x, Q) is relatively independent of the scale choice. The final fit uses $\mu_{R,F} = p_T^j$, giving better χ^2 .

The impact of dijet data substantially depends on scale choices, especially in the case of CMS8 TeV dijet.

Example

NNLO fits with new data at 8 and 13 TeV

for CT18+new data (CT18 in parentheses) NNLO fits; 68% CL

Preliminary

- The most precise new experiments tend to have an elevated, in the same pattern as observed for CT18
- χ²/N_{pt} increases for experiments 124 and 125 (NuTeV), 126 and 127 (CCFR) and 203 (E866 DY), 266 and 267 (CMS 7TeV Ach), 268 (ATLAS 7TeV W, Ach).
- χ^2/N_{pt} decreases for experiments 249 (CMS 8 TeV Ach), 250 (LHCb 8 TeV W/Z) 16

Preliminary

Pulls on the gluon PDF by the new data type

- After including DY, tt, and inc. jet data simultaneously, we get a softer gluon.
- Note that new DY and the data favor a softer gluon, new inc. jet data prefer a harder gluon.
- Mild changes in the gluon uncertainty

Necessary components of an N3LO PDF analysis

Component		Availability
Splitting functions		Partial N3LO
	DIS, light flavors	Full N3LO
Hard	NC DIS, heavy flavors	Full N3LO (Blümlein et al.), not yet in fitting codes
cross	Vector boson production	Full N3LO for some processes, fixed N3LO/N2LO K-factor tables
sections	CC DIS, jet, production	N2LO
	pp→w+c, pp→z+b, pp→b	NLO (massive); NNLO (ZM)

- Looking forward to including all components exactly and fully to reduce the QCD scale uncertainty and guarantee the N3LO accuracy in the near future.
- CTEQ-TEA and other groups include some N3LO contributions in their fitting codes: remarkable progress of MSHT and NNPDF in aN3LO fits.
- These extended (N2LO+, or aN3LO) calculations agree with N2LO within their scale dependence

QCD cross sections @N3LO

 DIS: The CTEQ-TEA code implements complete flavor decompositions of DIS SFs at N3LO using approximate zero-mass Wilson coefficients with a rescaling variable (the Intermediate-Mass VFN scheme, cf. the figure)

Boting Wang's and Keping Xie's Theses, SMU

• Working on the implementation of massive N3LO heavy-quark coefficients to obtain N3LO

	Factorization	Mass dependence	Mass dependence of the	Introduce heavy-quark
	schemes	in the FC terms	FE and subtraction terms	PDFs at large Q
	\mathbf{FFN}	Exact	N/A	no
	ZM	None	None	yes
	IM	Approximate	Approximate	yes
_	GM	Exact	Approximate	yes

- **DGLAP evolution** is performed at N3LO with APFEL/APFEL++.
- Drell-Yan: Ongoing work to include N3LO DY effects using NNLO ApplFast + N3LO/N2LO K-factor tables

Preliminary

CT18aN3LO gluon

Taming PDF uncertainties

Several efforts to refine PDF uncertainty quantification:

- understand conceptual underpinnings of the multivariate inverse problem. Much can be learned from non-HEP statistics applications
- suppress aleatory and perturbative uncertainties (e.g., from higher-order contributions)
- comprehensively estimate epistemic uncertainties (e.g., due to the PDF parametrization forms)

The final Hessian error set (50-60) approximates the total uncertainty due to the above factors. 21

Bézier-curves methodology for global analyses – A toy model

22

L. Kotz et al, 2311.08447

L. Kotz et al, 2311.08447

The Fantômas pion PDFs

without parametrization dependence

- Fantômas was incorporated into the xFitter fitting program
- Framework to access pion PDFs available on xFitter.

xg (x,Q) at Q=1.4 GeV, 68% c.l. (band)

Statistic analysis

Improve precision:

CDF Science, 376 (2022) Repeat measurements with more precise balance

Gaussian Mixture Model (GMM)

- 2σ band does not cover both means
- Increase tolerance • $\Delta \chi^2 = T^2; T > 1$

Does not provide a faithful representation of the probability distribution

Gaussian Mixture Model

- parameterizing the likelihood as a sum of Gaussians
- 2 Gaussians is needed in this

case

n

25

Gaussian Mixture Model (GMM)

• Single Gaussian fit with combined data set A and B do not cover the likelihood of data set A or data set B • Enlarge tolerance do not help too much • The uncertainty band of GMM cover the means of data set A and B

K. Xie et al, 2305.10497

Neutron's photon PDF

- We have determined the neutron's photon PDF using a similar methodology as for the proton one.
- The structure function is determined using pQCD at high Q2 and HERMES and CLAS/CB data a low Q2
- We estimated many low-Q2 uncertainties, including the isospin symmetry violation and the QED evolution effects. We also explored implications for W-boson production, etc.
- CT18qed and MSHT20qed are in a good agreement
- In comparison to the first generation of photon PDFs, the uncertainty is significantly reduced.

Impact of A_{FB} in the high-mass Drell-Yan process

- A_{FR} at the LHC is sensitive to the energy dilution factor D (probability of $k_a^0 < k_{\overline{a}}^0$ in the Collins-Soper frame)
- $A_{FB}^{h} = \frac{N_{F}^{h} N_{B}^{h}}{N_{F}^{h} + N_{D}^{h}} \approx (1 2D) A_{FB}^{q}$
- A_{FB} at high invariant mass region probes \overline{u}/u , \overline{d}/d at x > 0.2

01 Ratio

Y. Fu et al., 2307.07839

C. Willis et al., 1809.09481

- CT18, MSHT20, and NNPDF4.0 predict • very different \bar{q}/q at x > 0.2
- The article quantified the potential effect of high-mass A_{FR} on large-x antiquarks See also NNPDF (2209.08115), Fiaschi et al. (2211.06188)

Uncertainty of Gluon PDF

in the

- CT18+• PDFs are well determined in "middle-x" region:ATL8 $10^{-4} \leq x \leq 0.4$
- Region of $x \rightarrow 1$ and $x \rightarrow 0$ are not experimental accessible. from CMS13

CT18 with Lattice input on gluon

- Clover on 2+1+1 HISQ
- $a \rightarrow 0$ fm, $M_{\pi} \rightarrow 135$ MeV and $a \approx 0.09$ fm, $M_{\pi} \approx 310$ MeV which represent the current and future levels of uncertainty.
- Good agreement with CT18 and NNPDF3.1
- Gluon PDF xg(x) extra at 2 GeV

CT18 with Lattice input on gluon

- Inclusion of lattice input in the CT18 global analysis has the potential to reduce its uncertainty.
- Here, a→0.00 fm case represents the current status, while a=0.09 fm case represents future potential.

Preliminary

CT18 with Lattice input on gluon

• The precision of the gluon PDF in the large-x region could potentially be improved by both incorporating jet data and lattice QCD input.

Near-future plans

1.Final selection of experiments for NNLO PDFs planned for the next year2.Work on N3LO contributions

3.Next-generation PDF uncertainty quantification

4.Recent and imminent releases

- Study on impact of the LHC incl. jet data on the proton structure
- QCD+QED PDFs for protons and neutrons
- Subtracted S-ACOT-MPS PDFs
- Fantômas 1.0 pion PDFs (Hessian)
- Release of the Fantômas PDF parametrization package in xFitter
- Impact of lattice large-x gluon data in the CTEQ-TEA global analysis

Thank you for your attention!