Nucleon spin structure study at RHIC

Qinghua Xu (徐庆华), Shandong University(山东大学)

12th Workshop on Hadron Physics and Opportunities Worldwide, Dalian, 8.5-9, 2024

Outline

Introduction

D Recent spin highlights in p+p collisions from RHIC:

- \checkmark Gluon polarization (Jet, π^0 production): gluon polarization Δg
- ✓ Quark/Anti-quark polarization (W/Z): sea quark $\Delta \bar{u} / \Delta \bar{d}$
- \checkmark Hyperon spin transfer (\land): strange quark polarization
- ✓ Transverse spin asymmetry (W/Z, jet): Sivers function
- ✓ Transverse spin asymmetry (Hadron in jet): Collins & transversity

□ Summary & outlook

RHIC- 1st polarized proton-proton collider

- Spin direction changes from bunch to bunch, longitudinal or transverse
- Two main experiments: sPHENIX (PHENIX) & STAR

Spin structure of nucleon

• Spin sum rule (longitudinal case):

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \qquad [\Delta q = \int_{0}^{1} \Delta q(x) dx]$$

• Polarized parton densities:

$$\Delta q(x,Q^2) = q^+(x,Q^2) - q^-(x,Q^2)$$
$$q(x,Q^2) = q^+(x,Q^2) + q^-(x,Q^2)$$

RHIC performance with p+p collisions

- Long runs with long.
 pol. at 200 GeV in 2005, 2006, 2009, 2015.
- Collisions at 500 GeV with long. pol. in 2009, 2012 and 2013.
- Long runs with trans.
 pol. in 2006, 2008,
 2012, 2015 at 200GeV
 and 2011, 2017, 2022
 at 500 GeV.

Run24 with transversely polarized p+p at 200GeV is ongoing!

Accessing $\Delta g(x)$ in pp collision

Jet x_ (= 2p_/ \s)

6

Nucl. Part. Sci. 50, 525(2000)

STAR inclusive jet A_{LL} from run9

- 2009 STAR data is a factor of 4 more precise than 2006.
- The A_{LL} asymmetry is small, but clearly non-zero !

STAR inclusive jet A_{LL} from run9

- 2009 STAR data is a factor of 4 more precise than 2006.
- The A_{LL} asymmetry is small, but clearly non-zero !
- Impact of STAR data in NNPDF:

A_{LL} results on jet/ π^0 at 510 GeV from RHIC

• Further measurements to improve our knowledge on $\Delta g(x)$

 PHENIX π⁰ A_{LL} at 510 GeV, which is also sensitive to Δg in small x region

- STAR jet A_{LL} at 510 GeV, access small x region down to x~0.015.
- Most precision A_{LL} results at 200GeV from STAR 2015.

Correlation measurements with partonic kinematics

 Access to partonic kinematics through di-jet production

STAR, Phys. Rev. D95,071103(2017)

Central di-jet A_{LL} at 200 GeV at STAR

• Di-jet A_{LL} for two topologies, allowing for constraints on the shape of $\Delta g(x)$

STAR, PRD95,071103(2017)

Central-forward di-jet at 200 GeV at STAR

STAR, PRD98,032011(2018)

Wider rapidity coverage!

Recent STAR di-jet A₁₁ results

Most recent updates from DSSV group on Δg

 The impact of RHIC 2014+ data in constraining gluon polarization Δg :

> 1^{st} Lattice calculation: $\int_{0}^{1} dx \Delta g(x) = 0.251 \pm 0.047 (\text{stat.}) \pm 0.016 (\text{syst.})$ χ QCD, PRL118,102001(2017)

RHIC Cold QCD White paper, arXiv2302.00605

~40% of proton spin with 8σ

Recent progress on the sign of Δg

• Could Δg be negative?

> JAM global QCD fit indicate possible negative Δg with inclusive jet A_{LL} data only

- ➤ STAR dijet + PHENIX direct photo data disfavor negative Δg
- > New results with pion tagged jet also support positive Δg

Recent progress on the sign of Δg

• New results with pion tagged jet A_{LL} also support positive Δg

- Yi Yu @SPIN2023

•

•

•

Probing sea quark polarization via W production

• Unique quark polarimetry with W-bosons at RHIC:

$$A_{L}^{W^{+}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})} \sim \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, y_{W^{+}} >> 0\\ \frac{\Delta \overline{d}(x_{1})}{\overline{d}(x_{1})}, y_{W^{+}} << 0 \end{cases}$$

$$A_{L}^{W^{-}} \sim \begin{cases} -\frac{\Delta d(x_{1})}{d(x_{1})}, y_{W^{-}} >> 0\\ \frac{\Delta \overline{u}(x_{1})}{\overline{u}(x_{1})}, y_{W^{-}} << 0 \end{cases}$$

- Dedicated 500GeV p+p run at RHIC during 2011-2013
 - W-detection through high p_T lepton
 - A_L measurements at PHENIX and STAR

W A_L results – STAR 2013

- Combined STAR 2011-2013 results in comparison with theoretical predications
- A_L of W⁻ shows indication that data are larger than the DSSV predictions
- A_L of W⁺ is consistent with theoretical predictions using global fits based on DIS data
 -> universality

Impact of STAR 2013 W A_L results

 SU(2) flavor asymmetry observed in the polarized sea quark distribution, confirmed by JAM and reweighting NNPDF, DSSV:

Impact of STAR 2013 W A_L results

 SU(2) flavor asymmetry observed in the polarized sea quark distribution, confirmed by JAM and reweighting NNPDF, DSSV:

$$\begin{split} \Delta \bar{u} > 0 > \Delta \bar{d}, \ |\Delta \bar{d}| > |\Delta \bar{u}| \\ \int_{0.04}^{0.4} \Delta_s = \Delta \bar{u} - \Delta \bar{d} \\ \int_{0.04}^{0.4} dx \, \Delta_s(x, Q^2 = 10 \, \text{GeV}^2) = +0.06 \pm 0.03 \\ - \text{E. Nocera @ Hadron2019} \rightarrow +0.07 \pm 0.01 \end{split}$$

• The polarized flavor asymmetry is opposite to the unpolarized case !

- NNPDF2.3, NPB867, 244(2013)

Longitudinal spin transfer (D_{LL}) in p+p collisions

 D_{LL} measurements from STAR 2009 data, which is expected to provide sensitivity to strange quark polarization Δs.

- Q. Xu, Z.T. Liang, E. Sichtermann, PRD 73, 077503(2006)

Statistics uncertainties are comparable to the spread of models calculations.

D_{LL} results of (anti-)Lambda at STAR

 Theoretical studies show impact on asymmetry of strange and anti-strange quark polarization:

X.N. Liu, B. Q. Ma, Eur.Phys.J. C79 (2019) 409

22

New D_{LL} results with STAR 2015 data

- New results with twice statistics
- Results in agreement with various model predictions, except "DSV" calculation with "scen. 3" of polarized fragmentation function.

STAR, PRD109, 012004 (2024)

- D.de Florian, M.Stratmann, W.Vogelsang, PRL81,530(1998); - X.N. Liu, B.Q. Ma, EPJC 79,409 (2019)

$D_{\text{LL}} \, vs \, z$ results with STAR 2015 data

- First measurements of D_{LL} vs z in polarized p+p collisions, directly probing the polarized fragmentation functions.
- The results are comparable to model prediction within uncertainties.

- Z.-B. Kang, K. Lee, F. Zhao, Phys. Lett. B 809, 135756 (2020).

Nucleon 3d-structure & TMD distribution

• Transverse momentum dependent distribution (TMD):

Sivers, Transversity, Collins related measurements at RHIC

First W, Z A_N results at 500 GeV from STAR

- QCD predicts there is Sivers sign change in DIS and W/Z process in pp
- First A_N for W[±] and Z results : $A_N = \frac{d\sigma^{\uparrow} d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$

Sivers sign-change scenario preferred over no-sign change scenario.

• STAR results with a much larger data sample taken in 2017:

STAR, PLB 854, 138715(2024)

- 2017 results have much improved precision over those from the initial measurement
- New STAR data will have biggest impact on high-x region of the quark Sivers function.

Transverse spin asymmetry & TMDs

- STAR EM Jet A_N - sensitive to the initial state effect, Sivers effect

STAR, Phys. Rev. D103, 92009 (2021).

L. Gamberg, Z. Kang, A. Prokudin, Phys.Rev.Lett.110(2013)23,232301

- The jet TSSA is a few times smaller than the π⁰ TSSA in the same xF bin.
- The jet with photon multiplicity minimum requirement has significant smaller TSSA.
- The ANDY result shows the TSSA of the full jet, and is consistent with the result of the EM-jet which has at least 3 photons.

Transverse spin asymmetry & TMDs

- STAR EM Jet A_N sensitive to the initial state effect, Sivers effect
- Impact of our data in constraining Sivers function via global analysis

STAR, Phys. Rev. D103, 92009 (2021).

L. Gamberg, Z. Kang, A. Prokudin, Phys.Rev.Lett.110(2013)23,232301

Probing Sivers effect using dijet production in p+p

- k_{T} provides a kick to the dijet, makes it fold in the transverse momentum
- Jet charge tagging combined with unfolding to determine the quark flavor. Parton fractions from simulation used to extract the individual parton $\langle k_T \rangle$

> Results: d-quark $\langle k_T \rangle \approx -2 u$ -quark $\langle k_T \rangle$

For the first time, there is evidence of non-zero Sivers effect using dijets

Jet A_N at mid-rapidity in p+p collisions

STAR, PRD106, 072010 (2022) 0.04 0.03 0.03 0.15 STAR Preliminary $\sqrt{s} = 510 \text{ GeV}$ STAR $\mathbf{p}^{\uparrow} + \mathbf{p} \rightarrow \mathbf{jet} + \pi^{\pm} + \mathbf{X}$ $\mathbf{p}^{\uparrow} + \mathbf{p} \rightarrow \mathbf{jet} + \pi^{\pm} + \mathbf{X}$ 0.1 √s = 200 GeV 0.01 0.02 $x_{F} > 0$ 0.01 e^{sin(\$}) مراجع 0 -0.01 -0.02 KPRY: π^+ , $\langle z \rangle = 0.2$ -0.03 0.3 < z < 0.8 -0.05- KPRY: π, (z) = 0.2 anti-k_T R=0.6 (a) x_{_} > 0 -0.04 0.15 0.04 KPRY: Z.-B. Kang, A. Prokudin, F. Ringer, x_F < 0 0.03 F. Yuan, Phys. Lett. B774, 635 (2017) 0.0 0.1 0.02 0.01 0.05 A 0.05 -0.01<u></u>⊢ -0.02 • π⁺ (z) = 0.40 π⁻ (z) = 0.40 -0.03 (b) x_{_} < 0 -0.05**3% Scale Uncertainty Not Shown** -0.04 1.4% Scale Uncertainty Not Shown 0.25 0.3 0.05 0.1 0.15 0.2 0 0.05 0.1 0.2 0 0.15 Jet $x_T (2p_/\sqrt{s})$ Jet $x_{T} (2p_{T}/\sqrt{s})$

Full jet A_N providing sensitivity to the twist-3 correlators associated with the quark Sivers function

0.25

Probing transversity via Collins asymmetry in p+p

- Study proton transversity through its coupling to Collins function:
- Collins asymmetries:

Collins angle: $\Phi_c = \Phi_s - \Phi_h$ Collins modulation: $sin(\Phi_s - \Phi_h)$ j_T : transverse momentum in jet Φ_s : azimuthal angle of beam spin Φ_h : azimuthal angle of hadron

-F.Yuan, PRL100,32003

Collins asymmetries in p+p at STAR

 High precision data on Collins asymmetry in p+p collisions at 200 GeV, providing access to transversity:

 New results on Collins asymmetry in p+p collisions at 510 GeV, in excellent agreement with 200 GeV data at same x_T:

- Striking comparison indicating weak energy dependence,
- Provides important constraints on TMD evolution of Collins function

New Collins results at 510 GeV & comparison to 200 GeV

• Collins results as a function of j_T :

 j_T : pion's transverse momentum relative to the jet axis

Di-hadron spin asymmetries at STAR

- New measurements of di-pion asymmetries in p+p collisions at 200 and 510 GeV
- First measurement of unpolarized di-pion cross section at 200 GeV
 - model independent extraction of transversity

Transverse spin transfer D_{TT} results at STAR

• First D_{TT} measurements in p+p collision at 200 GeV at RHIC:

-STAR, PRD98, 091103R (2018)

- ✓ D_{TT} is connected to strange quark transversity and transversely polarized fragmentation function.
- ✓ D_{TT} of $\Lambda / \overline{\Lambda}$ are consistent with a model prediction, also consistent with zero within uncertainty.

New $\mathsf{D}_{\mathsf{T}\mathsf{T}}$ results from STAR

- New D_{TT} results from 2015 with twice statistics. Most precise data up to date.
- D_{TT} is consistent with the model predictions within uncertainties. STAR, PRD109, 012004 (2024)

38

New D_{TT} results from STAR

- First measurement of D_{TT} vs. z for $\Lambda(\overline{\Lambda})$ in p+p collisions, providing constraints on transversely polarized fragmentation functions.
- Results are consistent with zero within uncertainties.

 Λ polarization within a jet in unpolarized p+p collision

• 1st measurement on polarizing fragmentation function in p+p:

$$z = \frac{p_{\Lambda} * p_{jet}}{|p_{jet}| * |p_{jet}|}$$

Jet momentum fraction carried by $\Lambda(\overline{\Lambda})$

- Average polarization
 - $\Lambda : 1.72 \pm 1.13$ (stat.) $\pm 0.08\%$ (syst.)
 - $\overline{\Lambda}$: 3.42 ± 1.30(stat.) ± 0.32%(syst.)
- Constraint for collinear fragmentation functions
- Λ polarization is consistent with 0
- Indication of negative transverse polarization of $\overline{\Lambda}$ (~2.6 σ)
 - Taoya Gao @SPIN2023

- Successful p+p run in 2022 with forward detector upgrade (2.5<η<4)
- Last transverse spin run in 2024 (ongoing), unique physics opportunities in p+p and p+A before EIC

$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	$p{+}p$	$142 { m ~pb^{-1}}/12 { m w}$	2024
200	$p{+}\mathrm{Au}$	$0.69~{ m pb}^{-1}/10.5{ m w}$	2024
200	Au+Au	$18B / 32.7 \text{ nb}^{-1}/40 \text{w}$	2023 + 2025

STAR w/ forward upgrade

sPHENIX

- Successful p+p run in 2022 with forward detector upgrade (2.5<η<4)
- Last transverse spin run in 2024 (ongoing), unique physics opportunities in p+p and p+A before EIC

$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	$p{+}p$	$142 { m ~pb^{-1}}/12 { m w}$	2024
200	$p{+}\mathrm{Au}$	$0.69~{ m pb}^{-1}/10.5{ m w}$	2024
200	Au+Au	$18B \ / \ 32.7 \ \mathrm{nb^{-1}}/40 \mathrm{w}$	2023 + 2025

Essential x-Q² overlap with EIC, full jet reconstruction + charge-sign tagging

Summary

- □ Great achievements from RHIC spin program in ~20 years
- Observation of positive gluon polarization from RHIC:
 -probes with jets indicates sizable gluon polarization (ΔG~0.2)
- Unique probe of sea quark polarization via W production:
 - clear evidence of the SU(2) symmetry breaking: $\Delta \overline{u} > \Delta \overline{d}$
- Hyperon spin transfer provide access to polarized strange quark distribution and polarized fragmentation functions.
- □ Transverse spin physics at RHIC:
 - Results on W/Z, EM-jet, π^{\pm} spin asymmetries provide important information on underlying physics mechanism: Sivers & Collins, and transversity
- □ Future RHIC spin run until 2025
 - Unique physics opportunities in pp and pA before EIC

Backup slides

New Collins results from STAR

• Collins results vs. z : comparison to theoretical calculations

Z.-B. Kang, A. Prokudin, F. Ringer, and F. Yuan, Phys. Lett. B 774, 635(2017)

- > DMP, KPRY use global fit of Collins from SIDIS and e⁺e⁻ data, without TMD evolution
- KPRY-NLL consider TMD evolution at next leading log

Evidence for Nonlinear Gluon Effects & the A Dependence

- Di- π^0 correlation in forward region in p+p and p+A at 200 GeV
- A clear suppression of the correlated yields of back-to-back pairs in p+AI and p+Au compared to p+p data.

-The suppression in high-activity p+Au collisions is consistent with theoretical predictions including gluon saturation effects.

Lambda spin correlations in pp collisions

- $P_{\Lambda_1\Lambda_2}$ are consistent with zero within uncertainties
- Hint of spin-spin correlation signal for $\Lambda^0\overline{\Lambda}^0$ pairs at 2σ statistical significance
- Data suggest no significant spin-spin correlation of initial state s (anti-)quark pair
 - This measurement provides upper limit on Λ^0 hyperon spin-spin correlations in p+p collisions at $\sqrt{s} = 200$ GeV
- First experimental search for Λ^0 hyperon spin-spin correlations
 - Measure angle θ^* between the two boosted protons
 - The distribution of pair angle is given by:

 $\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} \sim 1 + \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2} \cos(\theta^*)$

• α_1 and α_2 are α_+ or α_- , depending on Λ^0 hyperon pair

Jan Vanek@ SPIN2023

Transverse single spin asymmetry (A_N) of W boson

• Sivers sign change in DIS and DY/W/Z process:

-Critical test for our understanding of TMD's and TMD factorization

- Active experimental programs at CERN-COMPASS (DY), Fermi-SpinQuest (E1039,DY), and RHIC (W production).
- Advantages of weak boson production
 - Low background
 - High Q²-scale (~ W/Z boson mass)