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Spin degrees of freedom: additional handles to test theories.

Interesting: SN=½=½ΔΣ+ΔG+LG+Lq.


                                                                               

                                                                                                                                          


 Spin permits more complete study of QCD;


 Mechanism of confinement; 


 How effective degrees of freedom (hadrons) emerge from 
fundamental ones (quark and gluons); (just like e.g. chemistry emerges from 
quantum theory)


 Test nucleon/nuclear structure effectives theories or models 
(χPT, AdS/QCD, Dyson-Schwinger Equations...)


 Precise PDFs needed for high energy or atomic physics.
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1970s-1980s: success of constituent quark model. Suggests SN = ½ΔΣ


EMC (1987): ΔΣ ~ 0


⇒Nucleon spin composition is not trivial. Thus it reveals interesting 
information on the nucleon structure and the mechanisms of the strong force 

The many reasons to study the nucleon spin structure
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JLab is contributing to all these aspects
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Interesting: SN=½=½ΔΣ+ΔG+LG+Lq.


                                                                               

                                                                                                                                          


 Spin permits more complete study of QCD;


 Mechanism of confinement; 


 How effective degrees of freedom (hadrons) emerge from 
fundamental ones (quark and gluons); (just like e.g. chemistry emerges from 
quantum theory)


 Test nucleon/nuclear structure effectives theories or models 
(χPT, AdS/QCD, Dyson-Schwinger Equations...)


 Precise PDFs needed for high energy or atomic physics.



Lepton 
scattering spin 
structure 

experiments 
(mostly inclusive):

6 GeV

era

6 GeV

era

E12-06-110 (JLab)      3He                    2.  to 3.3         0.3 to 0.8                            2 to 10A1, A2
12 GeV


era     RGC (JLab)           p,d,n                         1.  to  4.          0.1 to 0.8                            1 to 10A1

E12-06-021 (JLab)      3He                           1.  to 3.3        0.2 to 0.95                          2.5 to 6d2



6 GeV

era

6 GeV

era

E12-06-110 (JLab)      3He                    2.  to 3.3         0.3 to 0.8                            2 to 10A1, A2
12 GeV


era     RGC (JLab)           p,d,n                         1.  to  4.          0.1 to 0.8                            1 to 10A1

E12-06-021 (JLab)      3He                           1.  to 3.3        0.2 to 0.95                          2.5 to 6d2

X

Ne-(k)

e-(k’)
!*(q)

Friday, January 20, 2017

X
P(p)

P(p’)
!*(q)

l(p’)

l(p)

A) C)

D)

B) E)q

q

!

!

q

q
!*(q) l

l

u

d

W-

q

q

!

c,b

c,b

d

u

W+

Wednesday, January 25, 2017

Inclusive lepton 
scattering is the tip 

of the iceberg. 

Lepton 
scattering spin 
structure 

experiments

Pol. SIDIS experiments.

Colliders experiments:



Car traffic photos 

A. Deur  Hadron24, Dalian, China, 08/07/2024 

Resolution

(E
xp

os
ur

e 
tim

e)
-1



A. Deur  Hadron24, Dalian, China, 08/07/2024 

d.o.f: hadrons 

d.o.f: partons

d.o.f: constituent quarks, hadrons

d.o.f: partons

valence quarks

d.o.f: quarks


4-momentum transfer Q2 

En
er

gy
 tr

an
sf

er
 ν

d.o.f: quarks and flux 

tubes/QCD strings(?)

JLab’s spin program and the multiple aspects the nucleon



JLab’s spin program and the multiple aspects the nucleon

A. Deur  Hadron24, Dalian, China, 08/07/2024 

d.o.f: partons

d.o.f: hadrons 

(nucleons, pions,...)

d.o.f: constituent quarks, hadrons

d.o.f: partons

valence quarks

d.o.f: quarks


JLab 6 GeV

4-momentum transfer Q2 

En
er

gy
 tr

an
sf

er
 ν

d.o.f: quarks and flux 

tubes/QCD strings(?)



A. Deur  Hadron24, Dalian, China, 08/07/2024 

d.o.f: partons

d.o.f: hadrons 

(nucleons, pions,...)

d.o.f: constituent quarks, hadrons

d.o.f: partons

valence quarks

d.o.f: quarks


4-momentum transfer Q2 

En
er

gy
 tr

an
sf

er
 ν

JLab 12 GeV

JLab’s spin program and the multiple aspects the nucleon

d.o.f: quarks and flux 

tubes/QCD strings(?)



A. Deur  Hadron24, Dalian, China, 08/07/2024 

d.o.f: partons

d.o.f: hadrons 

(nucleons, pions,...)

d.o.f: constituent quarks, hadrons

d.o.f: partons

valence quarks

d.o.f: quarks


4-momentum transfer Q2 

En
er

gy
 tr

an
sf

er
 ν

E99-117

EG1b

EG1dvcs

SANE

E01010

E06-014

E97-110,EG4

E08-022

E94-010

EG1a

E97-104

RSS

RGC 
E12-06-110 

6 GeV era

6 GeV era
6 GeV era

6 GeV era

E12-06-021 

JLab’s spin program and the multiple aspects the nucleon

d.o.f: quarks and flux 

tubes/QCD strings(?)

12 GeV era

12 GeV era

12 GeV era



A. Deur  Hadron24, Dalian, China, 08/07/2024 

d.o.f: partons

d.o.f: hadrons 

(nucleons, pions,...)

d.o.f: constituent quarks, hadrons

d.o.f: partons

valence quarks

d.o.f: quarks


4-momentum transfer Q2 

En
er

gy
 tr

an
sf

er
 ν

E99-117

EG1b

EG1dvcs

SANE

E01010

E06-014

E97-110,EG4

E08-022

E94-010

EG1a

E97-104

RSS

RGC 
E12-06-110 

E12-06-021 Polarized 

PDFs

JLab’s spin program and the multiple aspects the nucleon

d.o.f: quarks and flux 

tubes/QCD strings(?)

6 GeV era

6 GeV era
6 GeV era

6 GeV era

12 GeV era

12 GeV era

12 GeV era



PDFs measurements at JLab: large-x 6 GeV results
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E12-06-110 (Hall C) RGC (Hall B)

Large x DIS at JLab: 12 GeV preliminary results
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E12-06-110 (Hall C)
Spokespersons: X. Zheng, G. Cates, J. P. Chen, Z. E. Meziani


Ph.D Students: M. Chen, M. Rehfuss


L/T Pol. 3He target, with 30 uA electron beam, 85% polarized


40 cm. In-beam polarization reach up to 60%.

Luminosity (2x1036 cm-2s-1) and FOM are


A factor of ~2 improved over the world record!


Large x DIS at JLab: 12 GeV preliminary results
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Preliminary results from  (3He) in Hall C:  

 Twist-3 matrix element  quark-gluon correlations (color polarizability/color Lorentz force)
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JLab’s spin program and the multiple aspects the nucleon
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Sum Rules
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Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a 
global property of the target (mass, spin,…).


Can be used to:

•Test theory (e.g. QCD, χEFT) and/or hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, 
Bjorken sum rules.

•Measure the global property. Ex: spin polarizability sum rules.


Here, we will discuss spin sum rules, in which the integral is over spin structure function(s).


•Gerassimov-Drell-Hearn (GDH) sum rule,

•Bjorken sum rule,

•Schwinger sum rule,

•Burkhardt–Cottingham (BC) sum rule,

•Spin polarizability sum rules.


Electromagnetic polarizabilities generalized to electroproduction (Q2-dependent) 

We will discuss here polarizabilities generalized to electroproduction (Q2-dependent).

Generalized forward spin polarizability (Q2);

Generalized Longitudinal-transverse spin polarizability (Q2).


γ0
δLT
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The GDH and Generalized GDH Sum Rules

target anomalous

magnetic momentM2

-4π2Sακ2
∫             dν =

target spintarget mass

 σA(ν)-σP(ν)
ννthr

∞

photoprod. cross 
section with photon 

spin anti-parallel to S 
photon spin parallel to S

QED coupling

constantγ(ν)

GDH sum rule: derived for real photons (Q2 =0):
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GDH sum rule: derived for real photons (Q2 =0):

	

The GDH and Generalized GDH Sum Rules

Generalized GDH sum rule: valid for any Q2. Recover the original GDH sum rule  as Q2 !0

	

I1(ν,Q2): first covariant polarized VVCS 

amplitude
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amplitudeΓ1( ) ≙ ∫g1(x, )dx =      I1(0, )Q2 Q2 Q2

2M2



Bjorken sum rule = Generalized GDH sum rule on proton - neutron: 

• Derived (1966) independently from GDH sum rule (1965/1966) and using different formalisms.

• Connection with generalized GDH sum rule occurred much later (Anselmino:1989 ….. Ji-Osborne:1999)

• Provided crucial test that QCD works also when spin d.o.f. are explicit.


	

Γp−n
1 ≡ ∫ gp

1 − gn
1 dx
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g2(x,Q2): second spin structure function (mostly a perp. target pol. 
observable)

Bjorken sum rule = Generalized GDH sum rule on proton - neutron: 

• Derived (1966) independently from GDH sum rule (1965/1966) and using different formalisms.

• Connection with generalized GDH sum rule occurred much later (Anselmino:1989 ….. Ji-Osborne:1999)

• Provided crucial test that QCD works also when spin d.o.f. are explicit.


	

Γp−n
1 ≡ ∫ gp

1 − gn
1 dx

Schwinger sum rule:  ILT(Q2) =
8M2

Q2 ∫
1−

0
(g1 + g2)dx

Q2→0
κet

anomalous magnetic 
moment×charge

A. Deur  Hadron24, Dalian, China, 08/07/2024 



g2(x,Q2): second spin structure function (mostly a perp. target pol. 
observable)

Bjorken sum rule = Generalized GDH sum rule on proton - neutron: 

• Derived (1966) independently from GDH sum rule (1965/1966) and using different formalisms.

• Connection with generalized GDH sum rule occurred much later (Anselmino:1989 ….. Ji-Osborne:1999)

• Provided crucial test that QCD works also when spin d.o.f. are explicit.


	

Γp−n
1 ≡ ∫ gp

1 − gn
1 dx

Burkhardt–Cottingham sum rule:  Γ2(Q2) ≡ ∫
1

0
g2(x, Q2)dx = 0 ∀ Q2

Schwinger sum rule:  ILT(Q2) =
8M2

Q2 ∫
1−

0
(g1 + g2)dx

Q2→0
κet

anomalous magnetic 
moment×charge

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Spin polarizability sum rules involve higher moments:
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We do not know how to measure directly generalized spin polarizabilities. The sum rules are used to access them.
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First measured in the 1990s at Jefferson Lab: 

• (Q2) on proton & neutron,

• (Q2) on neutron.

γ0
δLT

Burkhardt–Cottingham sum rule:  Γ2(Q2) ≡ ∫
1

0
g2(x, Q2)dx = 0 ∀ Q2



Important to test χEFT: the leading effective theory dealing with the first level of 
complexity emerging from the Standard Model.

Nuclear physics

d.o.f: hadrons

Fundamental forces: electromagnetic, weak, strong, gravitation

Fundamental particles: quarks, electrons, neutrinos…

hadronic physics 

 d.o.f: hadrons

χEFT

Testing χEFT

χEFT has been very successful in describing many hadronic and nuclear phenomena. 
However, the late 1990s JLab experiments suggested that it did not describe well 
nucleon spin observables, or/and that the Q2 range of validity of χEFT was smaller 
than expected for spin observables.

 ⇒ Crucial piece of our global understanding of Nature.

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Results from JLab 1990’s experiments (Hall A E94010, CLAS EG1a,b):
A: ~agree

X: ~disagree

- : No prediction available

JLab’s first generation of χEFT tests/polarizability measurements at low     Q2

X

Generalized 
GDH

Generalized 
GDH

Bjorken SR generalized spin polarizabilities

1990s-2000s χEFT predictions in tension with 

spin observable data more often than not.
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Testing χEFT

Nucleon resonance Δ1232 contribution suppressed

(More robust χEFT calculations) 

More robust measurements (no significant 

missing low-x contribution). 

😃 😃 😃 😃

😃

😃

😃

😃

😃
😃

Yet, some of the spin observables were expected to be well suited for testing χEFT :

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Testing χEFT

χEFT calculation problem? Or were the experiments not reaching deep enough into 
the χEFT applicability domain, i.e., at low Q2? 

! Refined χEFT calculations, with improved expansion schemes & including the 
Δ1232 .


! New experimental program at JLab reaching well into the χEFT applicability 
domain & with improved precision.

A: ~agree

X: ~disagree

- : No prediction available

X
😃 😃 😃 😃

😃

😃

😃

😃

😃
😃

Results from JLab 1990’s experiments (Hall A E94010, CLAS EG1a,b):

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Low Q2 + covering large 𝜈 range so that sum rule’s integrals can be formed⇒forward angles
Estimating sum rules at low Q2:


A. Deur  Hadron24, Dalian, China, 08/07/2024 



JLab Hall A:

Low Q2 + covering large 𝜈 range so that sum rule’s integrals can be formed⇒forward angles
Estimating sum rules at low Q2:


E97-110 (neutron, using longitudinally 

and transversally polarized 3He):

Spokespeople: J.P. Chen, A.D., F. Garibaldi

Students: C. Peng (Duke U.), J. Singh (UVa), 

V. Sulkosky (W&M), J. Yuan (Rutgers U.)


E08-027 (NH3, longitudinally and 

transversally polarized):

Spokespeople: A. Camsonne, J.P. Chen, D. Crabb, K. Slifer

J.P. Chen talk, Friday 14h-14h30.


E03-006 (NH3, longitudinally polarized):

Spokespeople: M. Ripani, M. Battaglieri, A.D., R. de Vita

Students: H. Kang (Seoul U.), K. Kovacs (UVa)


E06-017 (ND3, longitudinally polarized):

Spokespeople: A.D., G. Dodge, M. Ripani, K. Slifer

Students: K. Adhikari (ODU)


EG4 run group


JLab Hall B:

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Lots of data on spin structure functions and their moments 
from E97-110, E03-006 and E05-111
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Spin structure functions:
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Moments for spin sum rules on p, n, D and 3He.
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Details, with single plots, are in the back-up slides. If 
you are especially curious of one, please ask about it. 
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Moments for spin sum rules on p, n, D and 3He.



Summary: testing/using sum rules
Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a 
global property of the target (mass, spin,…).


Can be used to:


•Test theory (e.g. QCD, χEFT) and/or hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, 
Bjorken sum rules.


•Measure the global property.


•Gerassimov-Drell-Hearn sum rule: 

•  agrees with GDH expectation,

•  and  ~agree with GDH expectations,

• : -behavior too steep for  extrapolation, but no sign that anything is wrong.


•  and  with uncertainty, in agreement with  Burkhardt–Cottingham sum rule.

•  agrees with Schwinger sum rule.  unclear, but no sign that anything is wrong.


•Generalized forward spin polarizability: , -map for proton, neutron,  and deuteron.

•Generalized Longitudinal-transverse spin polarizability . -map for neutron and proton.

Ip
TT(Q2 → 0)

In
TT(Q2 → 0) Id

TT(Q2 → 0)
I3He

TT (Q2) Q2 Q2 → 0
Γn

2(Q
2) = 0 Γ3He

2 (Q2) = 0
In
LT(Q2 → 0) I3He

LT (Q2 → 0)

γ0(Q2) Q2 p ± n
δLT Q2

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Testing χEFT
A: ~agree

X: ~disagree

- : No prediction available

X

State of χEFT affairs before the new JLab program:

A. Deur  Hadron24, Dalian, China, 08/07/2024 

😃 😃 😃 😃

😃

😃

😃

😃

😃
😃

Nucleon resonance Δ1232 contribution suppressed

(More robust χEFT calculations) 

More robust measurements (no significant 

missing low-x contribution. More on this later) 



~A
~AAlarcón 2020 A ~ X

X

Testing χEFT

Nucleon resonance Δ1232 contribution suppressed

(More robust χEFT calculations) 

state of the

art χEFT


More robust measurements (no significant 

missing low-x contribution. More on this later) 

A: agree over range 0<Q2≲0.1 GeV2

X: disagree over range 0<Q2≲0.1 GeV2

- : No prediction available

A. Deur  Hadron24, Dalian, China, 08/07/2024 

😃 😃 😃 😃

😃

😃

😃

😃

😃
😃



~A
~AAlarcón 2020 A ~ X

Testing χEFT

X

Improvement compared to the state of affaires of early 2000s.

 

Despite χEFT refinements (new expansion scheme, including the  d.o.f,…) 
and despite data now being well into the expected validity domain of χEFT, it 
remains challenged by results from dedicated polarized experiments at low Q2.

Δ1232

A: agree over range 0<Q2≲0.1 GeV2

X: disagree over range 0<Q2≲0.1 GeV2

- : No prediction available

A. Deur  Hadron24, Dalian, China, 08/07/2024 

😃 😃 😃 😃

😃

😃

😃

😃

😃
😃



JLab: wide nucleon spin structure program: pQCD & strong QCD. 


Preliminary  12 GeV data at large x: crucial test of pQCD. Sensitivity to quark OAM.


Preliminary  12 GeV data for : quark-gluon correlations/color forces.  


New high precision nucleon spin structure in the domain where χEFT is expected to be valid.


General good agreement between experiments. Marginal agreement for  for the lowest Q2 points


The data agree within uncertainties with the spin sum rules studied: GDH, BC, Schwinger.


Mix of agreement/disagreement with χEFT, depending on observable, Q2 range and calculations. 
“  puzzle”, remains and  disagrees with χEFT expectation.


⇒ χEFT, although successful in many instances, is challenged by polarized low Q2 data.


This is a problem in our endeavor for a complete 

description of Nature at all levels: χEFT is the 

leading approach to manage the first level of 

complexity arising above the Standard Model, in 

the strong force sector. Just as if atomic physics 

could not provide the theoretical foundations of 

chemistry. 

It would be helpful to see what other non-perturbative approaches to QCD would predict: Dyson-
Schwinger Eqs. , Lattice QCD, AdS/QCD…

A3He
1

g3He
2 dn

2

γ0

δn
LT(Q2) γp−n

0

Conclusion 
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JLab: wide nucleon spin structure program: pQCD & strong QCD. 


Preliminary  12 GeV data at large x: crucial test of pQCD. Sensitivity to quark OAM.


Preliminary  12 GeV data for : quark-gluon correlations/color forces.


New high precision nucleon spin structure data in the domain where χEFT is expected to be valid.


General good agreement between experiments.


The data agree within uncertainties with the spin sum rules studied: GDH, BC, Schwinger.


Mix of agreement/disagreement with χEFT, depending on observable, Q2 range and calculations.


⇒ χEFT, although successful in many instances, is challenged by polarized low Q2 data.


This is a problem in our endeavor for a complete 

description of Nature at all levels: χEFT is the 

leading approach to manage the first level of 

complexity arising above the Standard Model, in 

the strong force sector. Just as if atomic physics 

could not provide the theoretical foundations of 

chemistry. 

It would be helpful to see what other non-perturbative approaches to QCD would predict: Dyson-
Schwinger Eqs. , Lattice QCD, AdS/QCD…

A3He
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g3He
2 dn
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Conclusion 



JLab: wide nucleon spin structure program: pQCD & strong QCD. 


Preliminary  12 GeV data at large x: crucial test of pQCD. Sensitivity to quark OAM.


Preliminary  12 GeV data for : quark-gluon correlations/color forces.  


New high precision nucleon spin structure data in the domain where χEFT is expected to be valid.


General good agreement between experiments.


The data agree within uncertainties with the spin sum rules studied: GDH, BC, Schwinger.


Mix of agreement/disagreement with χEFT, depending on observable, Q2 range and calculations.


⇒ χEFT, although successful in many instances, is challenged by polarized low Q2 data.


This is a problem in our endeavor for a complete 

description of Nature at all levels: χEFT is the 

leading approach to manage the first level of 

complexity arising above the Standard Model, in 

the strong force sector. Just as if atomic physics 

could not provide the theoretical foundations of 

chemistry. 


It would be helpful to see what other non-perturbative approaches to QCD would predict: Dyson-
Schwinger Eqs., Lattice QCD, AdS/QCD…

A3He
1

g3He
2 dn

2

Nuclear physics

d.o.f: hadrons

Fundamental forces: electromagnetic, weak, strong, gravitation

Fundamental particles: quarks, electrons, neutrinos…

hadronic physics 

 d.o.f: hadrons

χEFT

A. Deur  Hadron24, Dalian, China, 08/07/2024 

Conclusion 
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Bjorken sum rule 

pQCD radiative 

corrections (  Scheme.)MS

Non-perturbative 1/Q2n 

power corrections. 


(+rad. corr.)

Nucleon axial

charge. (Value


of  in the 
 limit)

Γp−n
1 (Q2)

Q2 → ∞

Nucleon’s 
First spin 
structure 
function

Γp−n
1 ≡ ∫ gp−n

1 dx =
1
6

gA[1 −
αs

π
− 3.58( αs

π )
2

− 20.21( αs

π )
3

− 175.7( αs

π )
4

− . . . ] +
HT
Q2

+ . . .

Bjorken sum rule = Generalized GDH sum rule on proton - neutron

• Derived (1966) independently from GDH sum rule (1965/1966) and using different formalisms.

• Connection with generalized GDH sum rule occurred much later (Anselmino:1989 ….. Ji-Osborne:1999)

• Provided crucial test that QCD works also when spin d.o.f. are explicit.


	



Bjorken sum rule 

Valid in pQCD domain 
only (not at low Q2)

Γp−n
1 ≡ ∫ gp−n

1 dx =
1
6

gA[1 −
αs

π
− 3.58( αs

π )
2

− 20.21( αs

π )
3

− 175.7( αs

π )
4

− . . . ] +
HT
Q2

+ . . .

Bjorken sum rule = Generalized GDH sum rule on proton - neutron

• Derived (1966) independently from GDH sum rule (1965/1966) and using different formalisms.

• Connection with generalized GDH sum rule occurred much later (Anselmino:1989 ….. Ji-Osborne:1999)

• Provided crucial test that QCD works also when spin d.o.f. are explicit.


	



Spin structure function  data from EG4gp
1 (W, Q2)

EG4 data

“Model” (Fit to EG1b + other published data).
EG1b data

X. Zheng et al., 

Nature Physics, 17 736 (2021)



Spin structure function  data from EG4gd
1(W, Q2)

EG4 data

“Model” (Fit to EG1b + other published data).
EG1b data

K. Adhikari et al. 

PRL 120, 062501 (2018)



Spin structure function  data from EG4gn
1(W, Q2)

EG4 data

“Model” (Fit to EG1b + other published data).
EG1b data



Spin structure function  data from EG4gp−n
1 (W, Q2)

EG4 data

“Model” (Fit to EG1b + other published data).
EG1b data



Spin structure function  and  data from E97-110g3He
1 (W, Q2) g3He

2 (W, Q2)

1000 1200 1400 1600 1800 20001.5−

1−

0.5−

0

0.5

W [MeV]
1000 2000

1−

0

°E = 1147 MeV, 9.03

W [MeV]
1000 2000

1−

0

°E = 2135 MeV, 6.10

W [MeV]
1000 2000

1−

0

°E = 2234 MeV, 9.03

W [MeV]1000 2000

1−

0

°E = 3319 MeV, 9.03

W [MeV]
1000 1500 2000 2500

1−

0

°E = 2845 MeV, 6.10

W [MeV]
1000 1500 2000 2500

1−

0

°E = 4209 MeV, 6.10

W [MeV]1000 1500 2000 2500

1−

0

°E = 3775 MeV, 9.03

W [MeV]1000 1500 2000 2500

1−

0

°E = 4404 MeV, 9.03
1

  g

2
  g

 systematic
1

  g
 systematic

2
  g

 corelated systematic
1

  g
 corelated systematic

2
  g

We observe the expected  
symmetry near the .


: ~M1 transition ⇒ 

g1 ≃ − g2
Δ1232

Δ σLT ∝ g1 + g2 ≃ 0

Large W coverage to test sum 
rule convergency

We do not know how to reliably extract neutron information from 3He for non-integrated quantities (e.g., spin 
structure functions, polarized cross-section difference…)

V. Sulkosky et al. 

PLB 805 135428 (2020)



Polarized cross-section  data from E97-110σ3He
TT (ν, Q2)

We do not know how to reliably extract neutron information from 3He for non-integrated quantities (e.g., spin 
structure functions, polarized cross-section difference…)

σTT =
σA − σp

2
=

4π2α
MK

(g1 − γ2g2)
K: virtual photon flux

V. Sulkosky et al. 

PLB 805 135428 (2020)



Polarized cross-section  data from E97-110σ3He
LT (ν, Q2)

We do not know how to reliably extract neutron information from 3He for non-integrated quantities (e.g., spin 
structure functions, polarized cross-section difference…)

σLT =
4π2α
MK

γ(g1 + g2) V. Sulkosky et al. 

Nature Physics, 17 687 (2021)
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 and  with quasi-elastic, from E97-110g3He
1 (ν, Q2) g3He

2 (ν, Q2)



Γp
1 = ∫

1−

0
gp

1 (x, Q2)dx

X. Zheng et al., 

Nature Physics, 17 736 (2021)

First moments: generalized GDH sum  measurement from EG4Γp
1(Q2)

EG1b (full integral)

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Γp
1 = ∫

1−

0
gp

1 (x, Q2)dx

X. Zheng et al., 

Nature Physics, 17 736 (2021)

First moments: generalized GDH sum  measurement from EG4Γp
1(Q2)

To get to x=0 would demand 
infinite beam energy ⇒ Any 
measured moment has a low-x 
limit. For EG4 & E97-110, it is 

 typically.xmin ≃ 5 × 10−3 EG1b (full integral)

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Γp
1 = ∫

1−

0
gp

1 (x, Q2)dx

• Small unmeasured low-x contribution 

• Lowest Q2  decreased by factor of ~4  

• Much improved precision ⇒Clean test of χEFT

X. Zheng et al., 

Nature Physics, 17 736 (2021)

First moments: generalized GDH sum  measurement from EG4Γp
1(Q2)

EG1b (full integral)

A. Deur  Hadron24, Dalian, China, 08/07/2024 



Γp
1 = ∫

1−

0
gp

1 (x, Q2)dx

X. Zheng et al., 

Nature Physics, 17 736 (2021)

•Slight tension between EG4 and EG1b above Q2 ~0.1 GeV2. EG4: improved elastic radiative tail subtraction.  

•EG4 and χEFT agree up to Q2 ~0.04 GeV2 (Bernard et al) or Q2 >0.2 GeV2 (Alarcón et al.)

•Some phenomenological models (Burkert-Ioffe, MAID) agree with data, other (Pasechnik et al) not as much.

First moments: generalized GDH sum  measurement from EG4Γp
1(Q2)

EG1b (full integral)

A. Deur  Hadron24, Dalian, China, 08/07/2024 



First moments: generalized GDH sum  from E97-110 & EG4Γn
1(Q

2)

Γn
1 = ∫

1−

0
gn

1(x, Q2)dx

Γn
1 = 2Γd

1 /(1 − 1.5ωd) − Γp
1

X. Zheng et al., 

Nature Physics, 17 736 (2021)

V. Sulkosky et al. 

PLB 805 135428 (2020)

• Lowest Q2  decreased by factor of ~4 (EG4) and ~2 (E97-110)  

• Much improved precision, noticeably E97-110 ⇒Clean test of χEFT

A. Deur  Hadron24, Dalian, China, 08/07/2024 



First moments: generalized GDH sum  from E97-110 & EG4Γn
1(Q

2)

Γn
1 = ∫

1−

0
gn

1(x, Q2)dx

•E97-110 and EG4 agree well. They also agree with older data at larger Q2 (EG1b, E94-010).

•E97-110 and EG4  agree with χEFT  up to Q2 ~0.06 GeV2 (Bernard et al) or Q2 >0.4 GeV2 (Alarcón et al.)

•Some phenomenological models (Burkert-Ioffe) agree with data, others (MAID, Pasechnik et al) not as much.

Γn
1 = 2Γd

1 /(1 − 1.5ωd) − Γp
1

X. Zheng et al., 

Nature Physics, 17 736 (2021)

V. Sulkosky et al. 

PLB 805 135428 (2020)

A. Deur  Hadron24, Dalian, China, 08/07/2024 



First moments: Bjorken sum  from E97-110 and EG4Γp−n
1 (Q2)

Γp−n
1 = ∫

1−

0
gp

1 − gn
1dx

A.D. et al. PLB 825 136878 (2022)

Proton-neutron = Bjorken sum

∆-resonance contribution

suppressed for the Bjorken sum

E97-110 & EG4 somewhat above χEFT predictions and most phenom. models for Q2 <0.1 GeV2.



Γd
1 = ∫

1−

0
gd

1 (x, Q2)dx

First moments: generalized GDH sum  measurement from EG4Γd
1(Q

2)

•EG4 and EG1 agree well. 

•EG4 and χEFT agree up to Q2 ~0.04 GeV2 (Bernard et al) or Q2 >0.3 GeV2 (Alarcón et al.)

Deuteron photo-desintegration 

contribution excluded 

(so here, “d”~p+n)

K. Adhikari et al. 

PRL 120, 062501 (2018)



Γ3He
1 = ∫

1−

0
g3He

1 (x, Q2)dx

First moments: generalized GDH sum  from E97-110Γ3He
1 (Q2)

Include 3He quasi-elastic 
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First moments: Burkhardt–Cottingham sum rule on neutron from E97-110 

E97-110 verifies the B-C sum rule at low Q2. Older experiments at higher Q2 also verify it. 

V. Sulkosky et al. 

PLB 805 135428 (2020)

Γ2(Q2) ≡ ∫
1

0
g2 dx = 0

B-C sum rule



Include 3He quasi-elastic 

Γ2(Q2) ≡ ∫
1

0
g2 dx = 0

First moments: Burkhardt–Cottingham sum rule on 3He from E97-110 
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K: virtual photon flux

No suppressing  factor. 

Contains  (not measured by EG4)

Q2

g2

O
rig
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D
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 su
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ru
le

: -
0.

80
4

Extrapolating the (very low ) data to =0 provides an independent check of the GDH SR validity, with 
a different method (inclusive data) than photoproduction experiments (exclusive data). 

Q2 Q2

ITT(Q2) ≡
M2

8π2α ∫
∞

νthr

K
ν

σA − σP

ν
dν

X. Zheng et al., 

Nature Physics, 17 736 (2021)

Ip EG4
TT (0) = − 0.798 ± 0.042

Agrees with the GDH SR, with precision similar to photoproduction method: Ip MAMI
TT (0) = − 0.832 ± 0.023(stat)$ ± 0.063(syst)

Another generalization of GDH sum: .  EG4 Data Ip
TT(Q2)



K: virtual photon flux

No suppressing  factor. 

Contains  (measured by E97-110; 
not measured by EG4)

Q2

g2

Orig
ina

l G
DH su

m


ru
le:

 -0
.91

5

Extrapolation (EG4 data only) yields first direct 
experimental check of the original GDH sum on 
the neutron. 

ITT(Q2) ≡
M2

8π2α ∫
∞

νthr

K
ν

σA − σP

ν
dν

In EG4
TT (0) = − 1.084 ± 0.130

Another generalization of GDH sum: .  E97-110 & EG4 Data In
TT(Q2)

V. Sulkosky et al. 

PLB 805 135428 (2020)

•E97-110 and EG4 agree with each other and with older data at larger Q2.

•E97-110, EG4 and χEFT:


•Maid disagrees with the data.

•agree for lowest data point (Q2 ~0.04 GeV2) for Bernard et al. 

•disagree with Alarcón et al. except at the higher Q2.



K: virtual photon flux

No suppressing  factor. 

Contains  (not measured by EG4)
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Deuteron photo-desintegration 

contribution excluded 

(so here, “d”~p+n)

K. Adhikari et al. 

PRL 120, 062501 (2018)
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• Good agreement with older data at larger  and with χEFT & MAID there.


• Disagreement with χEFT & MAID at lower , although first moment  agrees with 
Schwinger sum rule. 


• ⇒“  puzzle” still remains. 
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Higher moments: Longitudinal-transverse spin polarizability  from E97-110δLT



Higher moments: Generalized forward spin polarizability  from EG4γp
0 (Q2)

•χEFT result of Alarcón et al agrees with data.

•Bernard et al. χPT calculation agrees for lowest  points. Large slope at low  supported by the MAMI+EG4 data

•Maid disagrees with the data.
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x2g2]dx

X. Zheng et al., 

Nature Physics, 17 736 (2021)

EG1b (full integral)



Higher moments: Generalized forward spin polarizability  from E97-110 and EG4γn
0

γ0(Q2) =
16αM2

Q6 ∫
1−

0
x2[g1 −

4M2

Q2
x2g2]dx

X. Zheng et al., 

Nature Physics, 17 736 (2021)
V. Sulkosky et al. 

Nature Physics, 17 687 (2021)

 [GeV2]Q2

•E97-110 and EG4 agree with older data at larger Q2 (EG1b, E94-010). 

•Marginal agreement between EG4 and E97-110 in the lower Q2  range. (Better agreement if the EG4 systematic errors are 
added linearly rather than in quadratures)

•χEFT result of Alarcón et al disagrees with data. Bernard et al. agrees for lowest  points.

•Maid disagrees with the data.

Q2



Higher moments: Generalized forward spin polarizability  from EG4γd
0(Q2)

γ0(Q2) =
16αM2
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1−

0
x2[g1 −

4M2

Q2
x2g2]dx

K. Adhikari et al. 

PRL 120, 062501 (2018)

•EG4 agree with older EG1b data at larger Q2. 

•χEFT result of Alarcón et al disagrees with data. Bernard et al. calculation agrees for lowest  points.

•Maid disagrees with the data.

Q2



Isospin decomposition of γ0(Q2)

•Agreement with older (larger ) experiment, EG1b, E94010.

•Tension between EG4 (p from H and D, n from D) and EG4/E97110 (p from H and n from 3He). 

•χEFT result of Alarcón et al disagrees with data.

•Bernard et al. χEFT calculation agrees for  and for  for lowest  points.


•Both new and old data (from 5 different experiments) indicate that  is positive.
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•Agreement with older (larger ) experiment, EG1b, E94010.

•Tension between EG4 (p from H and D, n from D) and EG4/E97110 (p from H and n from 3He). 

•χEFT result of Alarcón et al disagrees with data.

•Bernard et al. χEFT calculation agrees for  and for  for lowest  points.


•Both new and old data (from 5 different experiments) indicate that  is positive.
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Isospin decomposition of γ0(Q2)

Tension may come from adding systematic uncertainties from E03006, E05111 or E97110 quadratically. If we combine linearly 
the total systematic uncertainties of each experiments, there is not tension. 
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1990s-2000s χEFT predictions in tension with spin observable data more often than not.

A: ~agree

X: ~disagree

- : No prediction available
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JLab Hall A experiment E97-110

Spokespeople: J.P. Chen, A.D., F. Garibaldi.

Students: C. Peng (Duke U), V. Laine (Clermont U), J. Singh (UVa), V. Sulkosky (W&M), N. Ton  (UVa),  

J. Yuan (Rutgers U).  

V. Sulkosky et al. 

Nature Physics, 17 687 (2021);

Phys.Lett.B 805 135428 (2020)

Main goal: measurement of the generalized GDH sum for the neutron at very low Q2.
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Nature Physics, 17 687 (2021);

Phys.Lett.B 805 135428 (2020)

Main goal: measurement of the generalized GDH sum for the neutron at very low Q2.

Motivations for E97-110:

Provide very low  nucleon spin data to test χEFT, 

Test original GDH sum rule with inclusive data.

Observables of interest: spin sum rules, generalized spin polarizabilities.


E97-110 aimed at precision measurement of neutron spin structure (polarized 3He target).

E97-110 in Hall A: high resolution, small solid angle detectors. (EG4: Hall B, lower resolution, large solid angle).


3He target has transverse polarization capability:

No need to model  for  and ,


 data and associated sum rules,

 data.
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g2(x, Q2)
δn

LT(Q2)



JLab Hall A experiment E97-110

Spokespeople: J.P. Chen, A.D., F. Garibaldi.

Students: C. Peng (Duke U), V. Laine (Clermont U), J. Singh (UVa), V. Sulkosky (W&M), N. Ton  (UVa),  

J. Yuan (Rutgers U).  

V. Sulkosky et al. 

Nature Physics, 17 687 (2021);

Phys.Lett.B 805 135428 (2020)

Main goal: measurement of the generalized GDH sum for the neutron at very low Q2.
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Observables of interest: spin sum rules, generalized spin polarizabilities.


E97-110 aimed at precision measurement of neutron spin structure (polarized 3He target).
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The EG4 experiment Group

Main goal: generalized GDH sum for the proton, neutron & deuteron at very low Q2.


E03-006 (NH3):


Spokespeople: M. Ripani, M. Battaglieri, A.D., R. de Vita

Students: H. Kang (Seoul U.), K. Kovacs (UVa)


E05-111 (ND3)


Spokespeople: A.D., G. Dodge, M. Ripani, K. Slifer

Students: K. Adhikari (ODU)


Focus on inclusive analyses, but exclusive analysis ( ) also available.
⃗e ⃗p → eπ+(n)
X. Zheng et al., PRC 94, 045206 (2016)

K.P. Adhikari et al. (CLAS Collaboration), 

PRL 120, 062501 (2018)

X. Zheng et al., 

Nature Physics, 17 736 (2021)
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E12-06-110 (Hall C)
Large x at JLab: 12 GeV preliminary results
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E12-06-110 (Hall C)
↔Compare (           ) with latest pQCD prediction
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