

Polarized ³He Target

Xiaqing Li (李夏卿) Shandong University, Qingdao

The 12th Workshop on Hadron Physics and Opportunities Worldwide Dalian University of Technology, Dalian August 5th, 2024

Outline

- Introduction
- Two optical pumping techniques and polarimetry methods
 - Spin exchange optical pumping (SEOP)
 - Metastability exchange optical pumping (MEOP)
- Polarized ³He in high magnetic fields using MEOP
- Summary

The Spin of the Nucleon Remains Puzzling

- Proton spin crisis since the EMC experiment in 1987
- One of the major tasks of hadron physics studies is to understand the nucleon spin structures

			Quark Polarization	
		U	L	Т
Nucleon Polarization	υ	f ₁		h_1^{\perp} (1) $ (1)$
		unporarizeu	\sim	
	L		g_{1L} $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$	h _{1L} → - ↔ longi-transversity (worm-gear)
	т	$f_{1T}^{\perp} \underbrace{\bullet}_{IT} - \underbrace{\bullet}_{IT} \underbrace{\bullet}_{IT} \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $	g _{1T} $\stackrel{\bigstar}{\longleftrightarrow}$ - $\stackrel{\bigstar}{\longleftrightarrow}$ trans-helicity (worm-gear)	$h_1 \qquad \stackrel{\bigstar}{\underset{\text{transversity}}{\overset{\bigstar}{\overset{\bigstar}}} - \stackrel{\bigstar}{\underset{\text{transversity}}{\overset{\bigstar}{\overset{\bigstar}}} - \stackrel{\bigstar}{\underset{\text{pretzelosity}}{\overset{\bigstar}{\overset{\bigstar}}} - \stackrel{\bigstar}{\underset{\text{transversity}}{\overset{\bigstar}{\overset{\bigstar}}} - \stackrel{\bigstar}{\underset{\text{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\bigstar}{\underset{\text{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\bigstar}{\underset{\text{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\bigstar}{\underset{\text{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\bigstar}{\underset{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\bigstar}{\underset{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\bigstar}{\underset{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\bigstar}{\underset{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bigstar}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bullet}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bullet}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bullet}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bullet}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\bullet}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\overset}{\overset{\bullet}{\overset{\bullet}}} - \stackrel{\overset}{\underset{transversity}}{\overset{\overset}{\overset}{\overset}{\overset}} - \stackrel{\overset}{\underset{transversity}}{\overset{\overset}{\overset}{\overset}} - \stackrel{\overset}{\underset{transversity}}{\overset{\overset}{\overset}{\overset}{\overset}} - \stackrel{\overset}{\underset{transversity}}{\overset{\overset}{\overset}{\overset}} - \overset{\overset}{\overset}{\overset} - \overset{\overset}{\overset}{\overset}{\overset}{\overset}} - \overset{\overset}{\overset} - \overset{\overset}{\overset}{\overset} } - \overset{\overset}{\overset}{\overset} } - \overset{\overset}{\overset} - \overset{\overset}{\overset} - \overset{\overset}{\overset} - \overset{\overset}{\overset} } - \overset{\overset}{\overset} - \overset{\overset}{\overset} - \overset{\overset}{\overset} } - \overset{\overset}{\overset} - \overset{\overset}{\overset} } - \overset{\overset}{\overset} } - \overset{\overset}{\overset} - \overset{\overset}{$

Leading twist TMDs

Spin decomposition

- Requires polarized nucleon targets
 - Polarized proton: H, NH₃, proton beam
 - Polarized neutron: D, ³He ...

Polarized ³He: Effective Polarized Neutron

- ³He nucleus: S state ~90%
 - 2 proton spins anti-parallel
 - nucleus spin carried by the neutron

Probability	
88.6%	
1.5%	
8.4%	

• Polarized ³He targets for lepton scattering experiments

1990 1980 2000 2010 2020 Electron-Ion Collider -> SLAC Bjorken scaling (unpol.) Electron-fixed target **FNAL E665** Muon-fixed target **CERN BCDMS** Muon-fixed target "Spin crisis" (pol.) **CERN EMC** NMC Muon-fixed target **CERN CDHSW** Neutrino-fixed target "HERA Legacy" (unpol.) **FNAL CCFRW** NuTev Neutrino-fixed target **HERA H1 & ZEUS** Unpol. Electron-proton collision SLAC Polarized targets Pol. Electron-fixed target **CERN SMC** COMPASS Pol. Muon-fixed target 3-D structure MIT-Bates HERA HERMES Pol. Electron-fixed target JLAB 6GeV and 12 GeV **Pol.** Electron-fixed target **RHIC** spin program Pol. Proton-proton collisio

Two **optical pumping** techniques to polarize ³He

Metastability exchange

- MIT-Bates
- HERMES
- MAMI
- (JLab)
- (RHIC)

Spin exchange

- SLAC
- JLab
- TUNL

Metastability Exchange Optical Pumping (MEOP)

- Optical pumping of metastable-state (2³S₁) ³He
- Spin transferred to ground-state ³He nuclei via metastability exchange collision and hyperfine coupling
- Room temperature
- Pro: high pumping rate
- Con: limited pressure range (~1 mbar)

Applications:

- ✓ MIT-Bates (external target, cryogenic target cell)
- ✓ **HERMES** (internal target, cryogenic storage cell)
- ✓ MAMI (external target, piston compression)
- JLab CLAS12 (external target in high field, cryogenic, under development)
- RHIC EIC (polarized ion source in high field, under development)

Colegrove, Schearer, Walters, PRL 132, 2561 (1963)

Polarimetry Method for MEOP

- Measure the degree of circular polarization of the 668 nm discharge light emitted by the metastable-state ³He atoms
- Obtain the electron polarization P
- Nuclear polarization P_n determined by applying NMR calibration
- Only work well in low magnetic field

Polarized ³He for MIT-Bates 88-02 Experiment

Fig. 3. The target apparatus of the double cell prototype.

R.G. Milner et al., Nucl. Instr. and Meth. A 274, 56 (1989)

- Double-cell design
 - Pumping cell: room temperature, 2 mbar
 - Target cell: 17 K, 2 mbar

Polarized ³He for MIT-Bates 88-02 Experiment

- Double-cell design
 - Pumping cell: room temperature, 2 mbar
 - Target cell: 17 K, 2 mbar
- Polarimetry of ³He
 - Polarization measured from pumping cell
 - Well inferred for target cell

C.E. Jones et al., Phys. Rev. C 47 (1993) 110-130

Pumping Cell

Transfer Tube

Target Cell

Polarized ³He for MIT-Bates 88-02 Experiment

- Double-cell design
 - Pumping cell: room temperature, 2 mbar
 - Target cell: 17 K, 2 mbar
- Polarimetry of ³He
 - Polarization measured from pumping cell
 - Well inferred for target cell
- Target performance:
 - Up to ~40% in-beam polarization
 - 10^2 to 1×10^3 seconds relaxation time

C.E. Jones et al., Phys. Rev. C 47 (1993) 110–130

Spin Exchange Optical Pumping (SEOP)

- Optically pump alkali-metal atoms in ³He gas mixture
- Spin exchange between alkali electrons and ³He nuclei
- Need oven (~475 K)
- Pro: large pressure range (1 to 13 bar)
- Con: low pumping rate
- Application:
- ✓ MIT-Bates
- ✓ TRIUMF
- ✓ SLAC
- ✓ TUNL
- ✓ JLab Hall A/C
 - 13 experiments for 6 GeV
 - 7 experiments approved for 12 GeV

Bouchiat, Carver, and Varnum, PRL 5, 373 (1960)

Polarimetry Methods for SEOP

- Nuclear Magnetic Resonance
 - Adiabatic fast passage
 - transverse RF signal with swept frequency
 - ³He spin flipped at Larmar frequency
 - pick up the spin precessing signal
 - ➢ Free induction decay
 - transverse RF pulse at Larmar frequency
 - ³He spin tilted by a small angle
 - measure the transverse relaxation time of FID
- Electron Paramagnetic Resonance

T.R. Gentile et al., Rev. Modern Phys. 89, 045004 (2017)

Polarized ³He Targets at JLab Hall A

³He nuclear polarization: 40-50%

J. Alcorn et al., Nucl. Instr. and Meth. A 522, 294 (2004)

40 cm Target Chamber

Path to Polarized ³He in High Magnetic Field

- Historically, ³He could not be polarized in high field...
 - SEOP: increasing wall relaxation
 - MEOP: weak hyperfine coupling
- Until recent high-field MEOP development
 - Motivated by NMR medical imaging demand (Kastler Brossel Lab, Paris)
 - Found MEOP effective at higher pressures
 - Successfully produced nearly 60% polarization at 100 mbar and 4.7 T

Nikiel-Osuchowska *et al.*, Eur. Phys. J. D **67**, 200 (2013) T.R. Gentile *et al.*, Rev. Modern Phys. **89**, 045004 (2017)

Filled symbols: high field (1.5 – 4.7 T)

³He Transitions at Low Field

³He Transitions at High Field

Figures based on Courtade (2002), Nikiel (2013), from calculation by Nacher.

Figures based on Courtade (2002), Nikiel (2013), from calculation by Nacher.

BNL-MIT Development of High Magnetic Field MEOP for the future EIC 1083nm laser ³He reservoir Pneumatic valve ³He polarizing cell Migh speed pulsed valve ^{Mirror} ^{Gas in}

- Polarized ³He ion source for the EIC at RHIC at Brookhaven National Lab
- Electron Beam Ion Source (EBIS) operates at 5 T
- MEOP within 5 T field, transfer into EBIS for ionization and extraction
- Motivated development of EBIS configuration which also benefits other ions

J.D. Maxwell et al., Nucl. Instr. and Meth. A 959, 161892 (2020)

Xiaging Li (Shandong Univ.)

Hadron Workshop, Dalian, August 5, 2024

BNL-MIT Development of High Magnetic Field MEOP for the future EIC

A. Zelenski et al., Nucl. Instr. and Meth. A 1055, 168494 (2023)

Extraction and measurement of ³He nuclear polarization anticipated in 2025.

Courtesy of R. Milner

³He-⁴He Scattering Polarimeter at 6 MeV

- By a measuring, the spin correlated asymmetry of ³He (beam ions) scattering on the ⁴He (gas target) to determine the polarization of ³He beam.
- The asymmetry *a* could be found from the number of detected scattered particles N^{↑↓}_{LR} in left/right (L/R) detectors depending on the beam spin (↑↓):

$$a = A_N P = \frac{\sqrt{N_R^{\uparrow} N_L^{\downarrow}} - \sqrt{N_R^{\downarrow} N_L^{\uparrow}}}{\sqrt{N_R^{\uparrow} N_L^{\downarrow}} + \sqrt{N_R^{\downarrow} N_L^{\uparrow}}}$$

and $\sigma_a = \sqrt{\frac{1-a^2}{N_R^{\uparrow} + N_R^{\downarrow} + N_L^{\uparrow} + N_L^{\downarrow}}} = \sqrt{\frac{1-a^2}{N_{tot}}},$
where P is the beam polarization, A_N -

analyzing power and σ_a - statistical accuracy.

Courtesy of D. Raparia

A. Zelenski et al., Nucl. Instr. and Meth. A 1055, 168494 (2023)

Proposed Experiment Using Polarized ³He at CLAS12 at JLab

CLAS12: CEBAF Large Acceptance Spectrometer for operation at 12 GeV

- ✓ High luminosity electron scattering
- \checkmark Multi-particle final-state response

C12-20-002: A program of spin-dependent electron scattering using a polarized ³He target at CLAS12

• Scientific opportunities

SIDIS and nucleon spin structure

- Tagged DIS (deuteron tagging)
- ➢ Quasi-elastic scattering
- Nuclear corrections to SIDIS
- Deeply virtual exclusive processes
- 30 days of running at 10.6 GeV

Xiaqing Li (Shandong Univ.)

5 T solenoid in interaction region

CLAS12 Polarized ³He Target Conceptual Design

J.D. Maxwell and R.G. Milner, Nucl. Instr. and Meth. A 1012, 165590 (2021)

Pumping cell (293K)

- Borosilicate glass cell
- MEOP to 60% polarization
- Annular cylindrical volume

Target cell (5K)

- 100 cm³, 20-cm aluminum cell coated with cryogenic layer
- Cooled by LHe heat exchanger
- Luminosity: 2.7×10³⁴ nucleons/cm²/s at 0.5-µA beam current

CLAS12 Polarized ³He Target Development

November 2021

First ³He polarization using MEOP at JLab in low field (30 Gauss) Xiaging Li (Shandong Univ.)

March 2022

December 2023

First ³He polarization in high field (2 T) at JLab

Now Varied pressure tests

Hadron Workshop, Dalian, August 5, 2024

CLAS12 Polarized ³He Target Development

March 2023

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 1057, December 2023, 168792

Full Length Article

Metastability exchange optical pumping of ³He at low pressure and high magnetic field

<u>X. Li</u>^a <u>A</u> <u>B</u>, <u>J.D. Maxwell</u>^b, <u>D. Nguyen</u>^b, <u>J. Brock</u>^b, <u>C.D. Keith</u>^b, <u>R.G. Milner</u>^a, <u>X. Wei</u>^b

Systematic studies of high-field MEOP on pumping rate and max polarization

Summary

- Nucleons are building blocks of the visible universe, knowledge of the spin structure of the nucleon is still incomplete
- Spin polarized ³He is a powerful effective polarized neutron target
- New techniques for polarized ³He in high magnetic fields will provide new opportunities for spin studies at the state-of-the-art QCD facilities
- Development on novel polarized ³He target and ion source is underway and expected to provide unprecedented improvement in understanding nucleon spin structures

Thanks for your attention!