Pseudoscalar Mesons

Liping Gan University of North Carolina Wilmington

Outline

- Introduction
- PrimEx Primakoff program
- JLab Eta Factory (JEF)
- Summary

Thanks for support by NSF PHY-1812396 and PHY-2111181.

Some Open Questions in Modern Physics

- What is the origin of QCD confinement?
- How did the visible mass emerge in the early universe?
- What is the cause of the matter-antimatter asymmetry in the universe?
- What is the nature of dark matter?

Light pseudoscalar mesons offer a sensitive tool to explore these fundamental questions.

Low-Energy QCD Symmetries and Light Mesons

q **QCD Lagrangian in Chiral limit (mq→0) is invariant under:**

$SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$ Chiral symmetry $SU_{L}(3)xSU_{R}(3)$ **Chiral symmetry spontaneously breaks to SU(3)** spontaneously **broken** \triangleright 8 Goldstone Bosons (GB) q **UA(1) is explicitly broken: (Chiral anomalies) Goldstone bosons** \triangleright Non-zero mass of η_0 \triangleright Γ(π⁰→γγ), Γ(η→γγ), Γ(η′→γγ) q **SUL(3)xSUR(3) and SU(3) are** π_s^0 η_{0} $\eta_{\rm s}$ **explicitly broken:**

- \triangleright GB are massive
- \triangleright Mixing of π^0 , η , η'

What is the origin of visible mass?

Mass-generating mechanisms:

- Higgs boson, alone is responsible for $\langle 2\%$ of the visible mass in the universe.
- Emergent Hadron Mass (EHM) and its constructive interference with Higgs-boson account for >98% of the visible mass.

Complementary to proton, pseudoscalar mesons offer a unique opportunity to study the interference between two known mass generating mechanisms.

Discrete Symmetries

- class II: P_z , CP_z violation
	- \triangleright QCD θ -term; in general: electric dipole moments
	- $p \rightarrow \eta^{(1)}$ decay examples: $\eta^{(1)} \rightarrow 2\pi$, $\eta^{(1)} \rightarrow \pi^+ \pi^- \gamma^{(*)}$
- class III: C-, CP-violation
	- \triangleright far less discussed; in SMEFT, start at dimension 8 only
	- $p \colon \eta^{(1)}$ decay examples: $\eta^{(1)} \to 3\gamma$, $\eta^{(1)} \to \pi^0 \gamma^*$...
	- ❖ A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, Feinberg and Lee Phys. Rev.,139, B1650 (1965)

Class III has much weaker experimental constraint, offer an opportunity for new physics search. and Lee

Class III: C- and CP-Violation

• $\eta^{(l)}$ are $C = +1$ eigenstates: opportunity to test C-violation!

• example ops.: Khriplovich 1991; Ramsey-Musolf 1999; Kurylov et al. 2001

$$
\frac{1}{\Lambda^3} \bar{\psi}_f \gamma_5 D_\mu \psi_f \bar{\psi}_{f'} \gamma^\mu \gamma_5 \psi_{f'} + \text{h.c.}, \qquad \frac{1}{\Lambda^3} \bar{\psi}_f \sigma_{\mu\nu} \lambda_a \psi_f G^{\mu\lambda}_a F^\nu_\lambda
$$

 \longrightarrow require helicity flip, actually dimension-8 in SMEFT

• electroweak radiative corrections mix class II and class III still weaker EDM constraints

Class III: C- and CP-Violation in $\eta^{(1)} \to \pi^+ \pi^- \pi^0$, $\eta' \to \pi^+ \pi^- \eta$

Dalitz plot decomposition (central fit result)

• M_0^{\varnothing} and M_2^{\varnothing} lead to different interference patterns

- CP-violation from these processes is not bounded by EDM.
- Complementary to nEDM searches even in the case of T and P odd observables, since the flavor structure of the η is different from the nucleus

BSM Physics in Dark Sector

How to LOOK FAR COUPHAGES IN and Dark Sector

Axion-Like Particles (ALP): $\eta, \eta' \to \pi \pi a \to \pi \pi \gamma \gamma$, $\pi \pi e^+ e^-$

Phys. Rept. 945 (2022) 1-105, arXiv:2207.06905, arXiv:2203.07651

Landscape of BSM Physics Search

Complementary to other types of experiments, pseudoscalar mesons offer unique sensitivity for sub-GeV new physics that are flavor-conserving, light quark-coupling, PC-conserving.

Primakoff Effect

Beam energy sensitive:

$$
\frac{\left<\frac{d\sigma_{Pr}}{d\Omega}\right>_{peak} \propto \frac{E^4}{m^3}, \int d\sigma_{Pr} \propto \frac{Z^2}{m^3} \log E}{\left<\theta_{Pr}\right>_{peak} \propto \frac{m^2}{2E^2} \quad \left<\theta_{NC}\right>_{peak} \propto \frac{2}{E \cdot A^{1/3}}}
$$

Coherent process

- The higher beam energy is, the higher Primakoff cross section and the better separation of Primakoff from the nuclear backgrounds.
- A higher beam energy is more important for more massive particle

PrimEx Primakoff Program at JLab 6 & 12 GeV

Precision measurements of electromagnetic properties of π^0 , η, η' via Primakoff effect

- **a) Two-Photon Decay Widths:**
	- 1) $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ @ 6 GeV
	- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
	- 3) $\Gamma(\eta' \rightarrow \gamma \gamma)$

Input to Physics:

- \triangleright precision tests of chiral symmetry and anomalies
- \triangleright light quark mass ratio
- \triangleright n-n' mixing angle
- \triangleright input to calculate HLbL in (g-2)_μ
- \triangleright origin of the visible mass

b) Transition Form Factors at Q2 of 0.001-0.3 GeV2/c2: $\mathsf{F}(\gamma\gamma^*\!\rightarrow \pi^0)$, $\mathsf{F}(\gamma\gamma^*\rightarrow\!\eta)$, $\mathsf{F}(\gamma\gamma^*\rightarrow\!\eta')$

Input to Physics:

- $\triangleright \pi^0, \eta$ and η' electromagnetic interaction radii
- \triangleright is the η' an approximate Goldstone boson?
- \triangleright input to calculate HLbL in (g-2)_u
- \triangleright origin of the visible mass

Status of Primakoff Program at JLab 6 & 12 GeV

Precision measurements of electromagnetic properties of π^0 , η, η' via Primakoff effect

- **a) Two-Photon Decay Widths:**
	- 1) $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ @ 6 GeV
	- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
	- 3) $\Gamma(\eta' \rightarrow \gamma \gamma)$

Input to Physics:

 γ

- \triangleright precision tests of chiral symmetry and anomalies
- \triangleright determination of light quark mass ratio
- \triangleright n-n' mixing angle
- \triangleright input to calculate HLbL in (g-2)_u

The chiral anomaly prediction is exact for massless quarks:

$$
\Gamma(\pi^0\to\gamma\gamma) = \frac{m_{\pi^0}^3 \alpha^2 N_c^2}{576 \pi^3 F_{\pi^0}^2} = 7.750 \pm 0.016\, eV
$$

 $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ is one of the few quantities in confinement region that QCD can calculate precisely at ~1% level to higher orders!

Status of Primakoff Program at JLab 6 & 12 GeV (cont.)

Precision measurements of electromagnetic properties of π^0 , η, η' via Primakoff effect

a) Two-Photon Decay Widths:

- 1) $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
-

Input to Physics:

- \triangleright precision tests of chiral symmetry and anomalies
- \triangleright determination of light quark mass ratio
- \triangleright η - η' mixing angle
- \triangleright input to calculate HLbL in (g-2)_u

$$
\frac{d\sigma_{Pr}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2 \beta^3 E^4}{m_{\eta}^3 Q^4} |F_{e.m.}(Q^2)|^2 \sin^2 \theta_{\eta}
$$

b C_n^{→γγ}) **C C**_n^{→γγ}) On-Going PrimEx-eta *<u>at a compariment</u>* experiment

- Three data sets were collected in 2019, 2021 and 2022.
- Δ is the h Δ and approximately denote the h Δ • Data analysis is in progress.

Physics for $\Gamma(\eta \rightarrow \gamma \gamma)$ Measurement

Resolve long standing discrepancy between previous collider and Primakoff measurements:

- **Extract** h**-**h¢**mixing angle**
- **Improve calculation of the** h**pole contribution to Hadronic Light-by-Light (HLbL) scattering in (g-2)^μ**
- **Improve all partial decay widths in the** h**-sector**

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^2 = \frac{m_s - m}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2}(m_u + m_d)$ $\frac{2}{s} - \widehat{m}^2$, where $\hat{m} = \frac{1}{2}$ 2 $u + m_d$ $_d$ $-m_u$ $\frac{s}{2} - m$, where $\hat{m} = \frac{1}{2}(m_u + m_u)$ $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2} (m_u +$ |
2

- ρ η →3π decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
- $\triangleright \ \alpha_{_{em}}$ is small

$$
\triangleright \text{ Amplitude:} \quad A(\eta \to 3\pi) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F_\pi^2}
$$

Phys. Rept. 945 (2022) 1-105

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^2 = \frac{m_s - m}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2}(m_u + m_d)$ $\frac{2}{s} - \widehat{m}^2$, where $\hat{m} = \frac{1}{2}$ 2 $u + m_d$ $_d$ $-m_u$ $\frac{s}{2} - m$, where $\hat{m} = \frac{1}{2}(m_u + m_u)$ $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2} (m_u +$ |
2

- ρ η →3π decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
- $\triangleright \ \alpha_{_{em}}$ is small

$$
\triangleright \text{ Amplitude:} \quad A(\eta \to 3\pi) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F_\pi^2}
$$

- Critical input to extract Cabibbo Angle, $V_{us} = \sin(\theta_c)$
from kaon or hyperon decays.
- V_{us} is a cornerstone for test of CKM unitarity:

$$
|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1
$$

Space-Like Transition Form Factors (Q2 : 0.001-0.3 GeV2/c2)

 π^0 , η, η $^\prime$

- Direct measurement of slopes
	- Interaction radii: $F_{yy^*P}(Q^2) \approx 1 - 1/6 \cdot \langle r^2 \rangle_P Q^2$
	- ChPT for large N_c predicts relation between the three slopes. Extraction of Ο(p6) low-energy constant in the chiral Lagrangian
- Input for hadronic light-by-light calculations in muon (g-2)

Phys.Rev.D65,073034

New opportunities with JLab 22 GeV Upgrade

- 1. The first π^0 Primakoff production off an electron target to measure $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ and $F(\gamma \gamma^* \rightarrow \pi^0)$.
- 2. Improve the precisions of η/η' Promakoff production off nuclear targets.
- 3. Search for new sub-GeV gauge bosons (scalars and pseudoscalars) via the Primakoff production:
	- Strong CP and Hierarchy problems
	- $(g 2)_\mu$ and puzzle of proton charge radius
	- Portals coupling SM to the dark sector:

$$
H^+H(\varepsilon S + \lambda S^2) \qquad c_{\gamma\gamma}\frac{\alpha}{4\pi} \frac{a}{f} F_{\mu\nu}\widetilde{F}^{\mu\nu} + c_{GG}\frac{\alpha_s}{4\pi} \frac{a}{f} G^a_{\mu\nu}\widetilde{G}^{a,\mu\nu}
$$

Advantages of the π^0 Primakoff Production off an Electron

Main challenges for the nuclear target:

- Nuclear backgrounds
- Nuclear effects
- No recoil detection

Advantages of an electron target:

- Eliminate all nuclear backgrounds
- A point-like electron target to eliminate nuclear effects
- Recoiled electron detection

Projected $\Gamma(\pi^0 \to \gamma \gamma)$ at JLab 22 GeV with an Electron Target

Theory and Experiments

Improve Primakoff Measurements of η/η' with nuclear targets

 $E_{\gamma} = 10$ GeV $E_{\gamma} = 20$ GeV Total [µb/rad] [µb/rad] Primakoff $0.7\frac{5}{5}$ Coherent Incoherent Interference 0.6 0.8 $d\sigma/d\theta$ $0.5\frac{1}{4}$ $d\sigma/d\theta$ 0.6 0.4 0.3 0.4 0.2 0.2 0.1 $0\frac{1}{2}$ 0.5 1.5 $\overline{2}$ 2.5 0.5 1.5 $\overline{2}$ 2.5 3 η' angle (deg) η' angle (deg)

 $\gamma + {}^{4}He \rightarrow \eta' + {}^{4}He$

Search for sub-GeV Scalar and Pseudoscalar via Primakoff Effect

 $\frac{d\sigma_{Pr}}{d\Omega} \sim \frac{c^2_{\gamma}\alpha Z^2}{8\pi\Lambda^2}$ $\overline{8\pi\Lambda^2}$. $\beta^3 E^4$ $\frac{E}{Q^4} \cdot |F_{e.m.}(Q)|^2 sin^2\theta_a$

The Primakoff signal dominates in the forward angles

Minimizing the QCD backgrounds PrimEx I

Favorable experimental condition:

- A high energy beam
- A high Z nuclear target

Projected Reach for a ALP at JLab 22 GeV

$$
\gamma + Pb \to a + Pb
$$

 $a \rightarrow \gamma \gamma$

JLab Eta Factory (JEF) Experiment

- Simultaneously produce η/η' on LH₂ target with 8.4-11.7 GeV tagged photon beam via $γ+p \rightarrow η/η'+p$
- Reduce non-coplanar backgrounds by detecting recoil protons with GlueX detector
- ◆ Upgraded Forward Calorimeter with High resolution, high granularity PbWO₄ insertion (FCAL-II) to detect multi-photons from the η/η' decays
- \blacklozenge The GlueX detector will detect the charged products from the η/η' decays

Uniqueness of JEF Experiment

JEF: γp→ηp (E_v=8.4-11.7 GeV)

1. Two-orders of magnitude background suppression comparing to the 2 other experiments in rare neutral decays:

a) <mark>η/η' energy boost</mark>; b) FCAL-II; c) recoil detections

(P.R. C90, 025206) N (PWO) > 2 Events / 5 MeV Signal+backgrounds 5 Me 4 (c) ₋η→π⁰γγ signal $\mathbf{\hat{B}}.\mathbf{5}$ other backgrounds $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{array}{c} \cdots \cdots \cdot \eta \longrightarrow \pi^0 \pi^0 \pi^0 \end{array}$ background 3 $\eta\rightarrow$ π 0 π 0 π 0 2.5 40 1 day's running $\overline{2}$ 1.5 20 1 0.5 0.5 0.4 0.6 0 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 m(π^0 $\gamma\gamma$) [GeV/c²] 0.62 0.64
M(4γ) (GeV)

A2 at MAMI: γp→ηp (E_γ=1.5 GeV) and **JEF:** γp→ηp (E_γ=8.4-11.7 GeV)

- 2. Capability of running in parallel with GlueX and other experiments in Hall D potential for a high-statistics data set Fig. 12: Four photon in the signal mass of the signal signal mass distributions in the signal solid solid soli
What is distributed solid solid
- 3. Simultaneously produce tagged η and η' with similar rates $(-5x10⁵$ per day) backgrounds. All yields are normalized to 1 day of taking data with GlueX at high luminosity.

Main JEF Physics Objectives

1. **Search for sub-GeV hidden bosons**

vector:

• Leptophobic vector *B'*

 $\eta, \eta' \rightarrow B' \gamma \rightarrow \pi^0 \gamma \gamma$, $(0.14 < m_{B'} < 0.62 \text{ GeV})$; $\eta' \to B' \gamma \to \pi^+ \pi^- \pi^0 \gamma$, $(0.62 < m_{B'} < 1 \text{ GeV}).$

• Hidden or dark photon: $\eta, \eta' \to X\gamma \to e^+e^-\gamma$.

$$
\text{scalar } S: \quad \eta \to \pi^0 S \to \pi^0 \gamma \gamma, \ \pi^0 e^+ e^-, \ (10 \text{ MeV} < m_S < 2m_\pi);
$$
\n
$$
\eta, \eta' \to \pi^0 S \to 3\pi, \ \eta' \to \eta S \to \eta \pi \pi, \ (m_S > 2m_\pi).
$$

Axion-Like Particles (ALP): $\eta, \eta' \to \pi \pi a \to \pi \pi \gamma \gamma$, $\pi \pi e^+ e^-$

- 2. Directly constrain CVPC new physics: $η^{(\prime)} \rightarrow 3\gamma, η^{(\prime)} \rightarrow 2\pi^0\gamma, η^{(\prime)} \rightarrow \pi^+\pi^-\pi^0$
- 3. **Precision tests of low-energy QCD:**
	- Interplay of VMD & scalar dynamics in ChPT: $\eta \to \pi^0 \gamma \gamma$ $\eta' \to \pi^0 \gamma \gamma$
	- Transition Form Factors of $\eta^{(1)}$: ꞌ

4. **Improve the light quark mass ratio via Dalitz distributions of** $\eta \rightarrow 3\pi$

Example of a Key Channel: $\eta \rightarrow \pi^0 \gamma \gamma$

-
- 2. Confinement QCD: \cdot **A** rare window to probe interplay **of VMD & scalar resonance in ChPT**

JEF Experimental Reach for B'

A search for a leptophobic dark B' boson coupled to baryon number is complementary to ongoing searches for a dark photon

Projected JEF on SM Allowed $\eta \rightarrow \pi^0 \gamma \gamma$

We measure both BR and Dalitz distribution

 \blacklozenge model-independent determination of two LEC's of the O(p^6) counter- terms \blacklozenge probe the role of scalar resonances to calculate other unknown $O(p^6)$ L J. Bijnens, talk at AFCI workshop

Test Charge Conjugation Invariance

C Violating η neutral decays

- \bullet C is maximally violated in the weak force and is well tested.
- \triangleleft Assumed in SM for electromagnetic and strong forces, but it is not experimentally well tested (current direct constraint: $\Lambda \geq 1$ GeV)

Experimental Improvement on C-violating $\eta \rightarrow 3\gamma$

- SM contribution: BR($η \rightarrow 3γ$) <10⁻¹⁹ via P-violating weak interaction.
- A calculation due to new physics by Tarasov suggests: $BR(n \rightarrow 3\gamma)$ < 10⁻²

```
 Sov.J.Nucl.Phys.,5,445 (1967)
```


Improve BR upper limit by one order of magnitude to directly tighten the constraint on CVPC new physics

Status of the JEF Experiment

- 1. Development of an upgraded FCAL-II with a $PbWO₄$ insert.
	- 1596 $PbWO_4$ modules are developed to replace ~400 Pbglass modules.
	- Installation of the upgraded FCAL-II has been on-going since Mar 2023 and will be completed by the end of 2024.
	- Over 40 undergraduate students from 11 institutes were trained by involving in this project.

2. Commissioning of FCAL-II and data taking with FCAL-II are scheduled to start in Jan 2025.

Undergraduate workforce

Summer 2023 Oct 6, 2023

Summary

- \blacklozenge Light pseudoscalar mesons offer a sensitive probe to test fundamental symmetries and to search for new physics beyond the standard model.
- \blacklozenge PrimEx Primakoff program

has been in progress @ 6&12 GeV

- \checkmark The published PrimEx result on the π^0 lifetime provides a stringent test of low-energy QCD.
- \checkmark Data collection on $\Gamma(\eta \to \gamma \gamma)$ was completed in 2022 and data analysis is in progress.
- \checkmark A new experiment on $F(\pi^0 \to \gamma^* \gamma)$ off a nuclear target is on the way.

Future JLab 22 GeV upgrade will offer new opportunities

- \checkmark New generation of Primakoff experiments on $\Gamma(\pi^0 \to \gamma \gamma)$ and $F(\gamma^* \gamma \to \pi^0)$ off an atomic electron target.
- \checkmark Improve measurements of more massive particles, such as η and η', off nuclear targets.
- \checkmark Search for new sub-GeV gauge bosons (scalars and pseudoscalars).
- The JEF experiment will start data collection in Jan 2025 using newly upgraded FCAL-II calorimeter with a PbWO4 insert.
	- \checkmark Search for sub-GeV hidden bosons: vector, scalar, and ALP
	- \checkmark Directly constrain CVPC new physics
	- \checkmark Precision tests of low-energy QCD: the role of scalar dynamics in ChPT; transition form factors of η/η' to calculate HLbL contributions in (g-2)_u