Proposed High Energy Spectrometer at HIAF & potential η meson physics studies

Hao Qiu

Institute of Modern Physics, CAS

Huizhou, Guangdong

To be finished with construction in 2025

In party part

HIAF & HIAF-U

- HIAF can provide high-intensity proton beam up to 9.3GeV
 - η meson physics, light hadron physics...
- HIAF / HIAF-U can provide high-intensity U beam with energy up to 2.45 / 9.1 GeV/u
 - nuclear matter phase structure, equation of state & hypernucleus researches...

η meson physics

- The standard model of particle physics confronts several problems, calling for new physics beyond the current standard model
- High-luminosity / high-precision is an important frontier for the discovery of new physics
 - e.g. abnormal magnet moment of µ (g-2), W mass

η meson physics

- In the search for dark matter particles, the parameter space for traditional WIMP (GeV~100TeV) is gradually being excluded by experiments
- Light dark matter particles (MeV~GeV) are currented less constrained by experiments
- High-intensity accelerators are powerful tools for light dark matter particle search

η meson physics

- η / η' & Higgs are the only known particles with all-zero quantum numbers
 - Q = I = J = S = B = L = 0
- ⇒ Standard-model decays are suppressed
- ⇒ BR with new physics are relatively enhanced

 η / η' decays can be used to explore various portals to the dark sector and fundamental symmetries

Light hadron physics

 HIAF provides beam with good energy range and luminosity for light hadron physics studies

Nuclear matter phase structure

- The nuclear matter phase diagram can be scanned by heavy ion collisions at different energies.
- The 1st order phase transition and the critical point can be searched.

Nuclear matter equation of state

- nuclear matter equation of state
- \Rightarrow structure and properties of neutron stars

Hypernuclei

- hypernucleus properties & discovery of new (multi-strange) hypernuclei
- ⇒ hyperon-nucleon & hyperon-hyperon interactions
- ⇒ structure and properties of neutron stars

Spectrometer requirements

 $\eta \to \pi^+\pi^-\pi^0(\gamma\gamma)$

- Identification of e^{+-} , γ , π^{+-} , K⁺⁻, p, d, t, He³, He⁴
 - $\pi^{+-}/e^{+-}\sim 100$, $n/\gamma\sim 8 \Rightarrow$ important to identify e^{+-} over $\pi^{+-} \& \gamma$ over n backgrounds
- Charged particles transverse momentum: 50MeV-500MeV
- γ energy: 50MeV-1GeV
- Large acceptance (θ:10°~100°, φ:0~2π)
 - cover center-of-mass rapidity for heavy-ion collisions
- Precise vertex reconstruction ⇒ reducing hypernucleus background
- High event rate, far beyond existing experiments at similar energy ranges

Conceptual design

Pixel tracker

- acceptable momentum resolution even with short track length
- good vertex resolution for decay particle reconstruction
- Energy & time dual readout

~100µm pixel size

- Distinguish hits from different events by time: $\Delta t < 10$ ns (1/100MHz)
- dE/dx to identify light nuclei with different Z
- Single pixel dead time ~1µs (1/1MHz)
 - occupancy~10⁻⁴ even with 100MHz event rate×4 tracks/event

LGAD TOF

- Inner barrel (start time) + outer barrel & end cap (end time)
- Δt~30ps
- Good particle identification
 - e / π separation at high momentum to be complemented by EMC

Dual-readout calorimeter

- "ADRIANO2" type of calorimeter developed by the REDTOP collaboration
- Pb glass + scintillator dual-readout \Rightarrow very good e⁺⁻ vs. π^{+-} & γ vs. n PID
 - Pb glass: Cherenkov light, signal only for EM showers
 - scintillator: signal for both EM and hadronic showers
- ΔE/E~3% @1GeV
- Δt~200ps to distinguish signals from different events
- shaping time (module dead time) < µs
 - ⇒ occupancy < 10% even with 100MHz event rate × 4 tracks/event

Radiation hardness

	simulation with FLUKA		refer	rence radiation hardness	
	Dose (Gy)	Si1MeV fluence (neq/cm2)	detector/material	Dose (Gy)	Si1MeV fluence (neq/cm2)
innormost Si	2000	2×10^{12}	pixel	2×10 ⁴	1.7×10 ¹³
IIIIIeIIII0st SI	5000	3~10	LGAD		1×10 ¹⁵
innermost	50	2×10^{11}	lead glass	20	
EMC	50	3 ~ 1011	SiPM		1×10 ¹⁴

- Most detector components can sustain the radiation
- Lead glass will receive a dose that is close to its limit (TF101: 1% transmittance loss after a radiation dose of 20 Gy)

Data rate

- Heavy ion physics:
 - 1MHz
 - ~100 track
 - 7 hits / track
 - 1M*100*6 = 700M hits / s
- η meson physics:
 - ~>100MHz
 - ~4 track
 - 6 hits / track
 - 100M*4*6 = 2400M hits / s
- Data rate on the same order of magnitude as CEE

- CEE for reference:
 - 10kHz
 - ~100 track
 - ~30 hits / track
 - ~20 digi / hit
 - 10k*100*30*20 = 600M digi / s

- 1.8 GeV p + ⁷Li
- 1 month running at 100MHz, average / peak beam intensity = 30%
- 6×10^{11} n produced

C & CP violation

- 1.8 GeV p + ⁷Li
- 1 month running at 100MHz, average / peak beam intensity = 30%
- $\Delta c \sim 5 \times 10^{-5}$
 - ~2 orders of magnitude smaller than COSY and KLOE-II results

Name of the spectrometer

- China HyperNuclei Spectrometer (CHNS)
- Solenoidal Silicon Spectrometer (SSS)
- GeV-Energy Silicon Tracker (GEST)

Noun [edit]

gest (countable and uncountable, plural gests)

- 1. (*archaic*) A story or adventure; a verse or prose romance. [quotations ▼]
- 2. (archaic) An action represented in sports, plays, or on the stage; show; ceremony. [quotations ▼]
- 3. (archaic) bearing; deportment [quotations ▼]
- 4. (obsolete) A gesture or action. [quotations ▼]
- Silicon Tracker At Huizhou (STAH)
- ... more ideas welcome

Summary

- We propose to build a solenoidal spectrometer at HIAF, with
 - energy-time dual-readout all-pixel tracking
 - ~100µm pixel size
 - compact spectrometer ⇒ low cost
 - ~0 background for hypernuclei
 - Cherenkov-scintillation dual-readout calorimeter
 - good e⁺⁻ vs. π^{+-} & γ vs. n PID
 - ultra-high event rate
 - >100MHz for proton beam
 - >MHz for heavy-ion collisions
- Potential physics:
 - $\eta \text{ meson} \Rightarrow$ beyond standard model, light hadron
 - nuclear matter phase structure, equation of state, hypernuclei

P.S. I: versatile, too good to be true?

- A specific experiment for one goal may work; a versatile experiment may also work
- Serious considerations, simulations, discussions & hardware R+D are needed
 - ideas & contributions always welcome
- When considering HIAF's 1st high-energy experiment, it does not hurt to be openminded at first – if some goals do conflict, we can discuss and give up some aspects

P.S. II: future's future

Thanks 🙂

polarized beam & target?

• spin physics

muon detector: plastic dead layer + MRPC?

+2 times of decay channels for η meson physics

projectile endoscope?

- projectile-like hypernuclei
- short-range correlation

liquid target?

- η meson physics with ³He tagging
- short-range correlation
- ideas & contributions always welcome

neutron wall: liquid scintillator?

- light hadron physics
- 3-body short-range correlation

Comparison - CBM

- ~55M euro, ~400M yuan
- Planed to finish with construction in 2028
- µ mode operating alone
- E_k : 2.5-11 AGeV, close to HIAF + HIAF-U (0.8-9.1 AGeV)
- event rate <10MHz, our proposed spectrometer at HIAF >1MHz

Comparison - REDTOP

- 82-152M USD, 560-1000M yuan
- In the stage of proposal
- Event rate 500MHz, our proposed spectrometer at HIAF >100MHz
- No dE/dx measurement, can not meet the requirements of nuclear matter phase structure and hypernuclei studies
- Calorimeter with Cherenkov light & scintillation light dual read out (EM + hadron)
 - good e & γ PID (suppression of π & neutron background)
 - can measure neutrons

µ detector

- With 25cm CsI + 30cm Fe stopping material, μ⁺⁻ with p>0.7GeV/c can be chosen, π⁺⁻ suppressed by 1 order of magnitude, other hadrons fully stopped
- Less stopping material, μ^{+-} with lower p can be detected, but lower π^{+-} suppression
- Read out strip pitch 25mm; 2-side readout provides position information along the strip: 100ps*c=30mm ⇒ 2D cm-level position resolution
- Time resolution ~70ps, 4D match to track
- Inside & outside the magnet yoke in the current design, can add more layers for different stopping material thicknesses
- Area ~11 m² cost: 5M yuan

Pixel tracker

5 hits, R=20cm, L=90cm, 0.05mm hit error, 0.8T, 90°

- With a magnetic field of 0.8 T, momentum resolution of 4-7% for most particles
- Particles with p_T as low as 50MeV can reach the outermost LGAD TOF layer, to ensure good efficiency at low p_T
- dE/dx measurement precise enough to identify light nuclei with different Z

0.5

1.5

0

-0.5

5 hits, R=20cm, L=90cm, 0.05mm hit error, 0.8T

10²

10

1

2.5

a p (GeV)

- Various techniques under consideration, detailed simulation going on to choose the best technique
- Pb glass: low energy hadrons in hadronic showers do not generate Cherenkov light. So n & π backgrounds will be suppressed comparing with γ & e. ²⁹

Calorimeter

- ADRIANO2: Cherenkov light & scintillation light dual read out for PID
 - The 167M yuan cost include 40cm-thick EMC (high granularity) + 40cm-thick hadronic calorimeter (with stopping layers), EMC alone will be cheaper
- Sub-µs level module dead time (electronics shaping time) required, all the currently considered techniques should be OK
 - Event rate >100MHz, ~10 modules hit / event (4p+4n), ~1000 modules
 - Contributions from pile-up events can be obtained by fitting the signal shape
- The angle between 2 γ from π^0 is usually large, no high requirement for granularity
- Radiation dose (both ionization and neutron) are being estimated with simulation

γ -n & e- π identification

- Whether the shower happens
 - Pb glass radiation length 1.27cm, nuclear interaction length 24.5cm
 - For 12 radiation lengths, the chance that a neutron does not interact ~54%
- Dimension and shape of the shower
 - signal concentrated in 1 module vs. spread over many modules

v-n & e-π identification

- Electron E/p~1 (only appliable to $e-\pi$)
- Low energy hadrons in hadronic showers do not generate Cherenkov light:
 - Pb glass: lower signal for hadrons
 - ADRIANO2: dual read out
- Time of flight
 - ~200ps time resolution will provide some γ-n separation
 - However, time resolution usually get worse for lower signals
- GEANT simulation on-going to study γ -n & e- π separation for different techniques

γ/n velocity

Cost

Sub-system	cost (M Chinese yuan)
Target	0.5
pixel tracker	14 + 12 (R&D)
LGAD TOF	33
EMC (Pb glass)	10
MRPC MTD	5
Solenoid	6
Supporting structure	1
DAQ	16
Total	85.5 + 12 (R&D)

- In China, 100M yuan is an important threshold for scientific project budgets.
 - Below 100M, there is chance for application every year.
 - Above 100M, there is one chance every 5 years, and it's much more difficult.

(Very preliminary) $\eta \rightarrow \pi^+ \pi^- \pi^0 (\gamma \gamma)$ fast simulation

 $c = -0.007 \pm 0.009$ (stat),

 $e = -0.020 \pm 0.023(\text{stat}) \pm 0.029(\text{syst})$

- Assuming constant beam intensity
- ~6.4*10¹³ η with 1 month running
- 4 orders of magnitude more precise than COSY result

WASA@COSY

慢引出束流时间结构

图 5.13(a)RKO双频调制时频率随时间变化,(b)RKO双频调制对spill时间结构的影响

Figure 5.13 (a) the frequency variation with time in the dual FM process of RKO, (b) the influence of dual frequency modulation of RKO on the spill structure

- BRing出来的spill的时间结构
- 红色是双频扫描的,1个峰和1个峰的重复频率在10~30kHz之间,峰与峰之间的束流
 较少
- BRing引出平台一个周期大约2us,按照3s的引出平顶,总共1.5e6圈,1e11ppp的 流强,平均一圈才6.7e4个离子,估计涨落会比较大,也会有时间结构,需要模拟55

An Introduction to Charged Particles Tracking – Francesco Ragusa

• 多次库伦散射MCS部分贡献:

 $\theta_0 = \frac{13.6}{\beta c p} z \sqrt{x/X_0} \left[1 + 0.038 \ln(x/X_0) \right]$

- 先计算长度I/2的径迹的散射角度θ₀
- 再计算长度I/2的径迹两端 θ_0 的角度对应的曲率1/R = θ_0 /(I/2)
- 最后导出MCS动量分辨率贡献 $R = \frac{p}{0.3B}$
- 这一部分贡献只是一个大概估算,实际情况取决于hit误差与MCS相对贡献大 小等

Dhananjaya

• CEE 1-box TPC与模拟结果(pion)比较

径迹探测器动量分辨率

Nuclear Instruments and Methods in Physics Research A 499 (2003) 659–678

• STAR TPC 0.5T磁场下结果,与发表文章的比较

- 造价
 - 400元/cm² (芯片100 + FPCB电子学100 + 支撑结构等200) + 1200万研发费
 用 + 300万劳务费
 - 总面积28000 cm² ⇒ 400 * 28000 = 1100万
 - 桶部:最外层25cm半径,30cm长,最外层面积3.14*25*2*30 = 4700 cm^2,5层,总面积4700*6/2 = 14000 cm^2
 - 前端: 30cm半径, 5层, 3.14*30*30*5 = 14000 cm^2
 - 总造价1100万 + 1200万 + 300万 = 2600万

LGAD飞行时间探测器

- 造价
 - LGAD传感器(高能所-微电子所,2平方米)面积: 900万
 - ASIC (TSMC芯片, 有不确定性): 600万
 - 模块组装(倒装焊等): 400万
 - 电子学读出板: 500万
 - 高压系统(假设每个模块单独供高压): 300万
 - 低压系统: 100万
 - 冷却系统: 300万
 - 电缆等: 200万

- 能量分辨率~6%@1GeV,~25%@50MeV
- 时间分辨~215ps (0.8 GeV电子)
- 成型时间~0.5 µs
- 强子簇射切伦科夫光产额低于电子簇射,有利于压低中子、 m本底
- 造价:~<1000万

纯Csl

S8664-1010APD LED Test With Leading Edge Timing 800 成型前 700 TDC Time Resolution /ps 00 00 000 equivalent energy 1 GeV 200 100 100 200 300 400 Charge /fC Time resolution Amp 80000 **Output Waveform** 70000 60000 Fit Result 50000 40000 30000 1000MeV 20000 10000 200 400 600 800 1000 1200 1400 1600 1800 2000 20 15 E/MeV -400 -200 0 200 400 600 800

- 科大STCF预研
- 能量分辨率~2%@1GeV,~7%@50MeV
- 时间分辨
 - 成型前:~150ps@1GeV,小信号~1ns
 - 成型后: 600ps @ 1GeV, <u>小信号几个ns</u>
- 成型时间~1 µs
- 造价: 5800万(θ=10-100度)/4000万(θ=10-60度)

- 0.3mm铅 + 1.5mm塑闪(铅辐射长度0.56cm)
- 能量分辨率~6%@1GeV,~20%@50MeV(公式推算)
- 阈值可设在25MeV
- 时间分辨~100ps @ 1GeV, ~500ps @ 50MeV
- Micro-Pixel Avalanche Diodes (MAPD)死时间~50ns
 - 还有没有另外的电子学成型时间?
- 造价~<1千万
 - MPD ECAL 4.5m直径, 6m长, 第一期造价~3千万

纯Csl电磁量能器

Module	角度	数量	短边(cm)	长边(cm)
Shape 1	6.5	10	4.23	6.5
Shape 2	3	4	5.45	6.5
Shape 3	3	3	5.45	6.5

- 纯Csl晶体
 - 光衰减时间: 6ns / 35ns快慢成分
 - 光产额: 2.3 / 5.6% Nal
- 共~800块晶体,每块长20cm,尾端面6.5cm×6.5cm
- 每块晶体4片APD读出
- 能量分辨率~3%@1GeV
- 时间分辨好于1ns, 可在100MHz事例率下区分不同事例
- 耐辐射性: 100krad未见性能变化, 10¹²中子/cm²辐射后光产额降低0-20%
- 中科大、近物所等(STCF EMC预研)
- 造价: 5800万(θ=10-100度)/4000万(θ=10-60度)

纯Csl电磁量能器

纯Csl电磁量能器

- 电子学输出信号波形可长达1000ns
- 考虑100MHz事例率
- 每事例4个带电粒子+4中子可能簇射
- 每个晶体堆积事例概率~1
- 可用波形采样、拟合处理事例堆积
- 衰变双光子夹角较大,晶体尺寸满足分辨 要求

 $\eta \rightarrow \pi^+ \pi^- \pi^0 \rightarrow \pi^+ \pi^- \gamma \gamma$

EMC抗辐照性能要求估计

- 电离辐射剂量
 - 100MHz事例率,每个事例1.8GeV能量,一半能量均匀沉积在前角40cm半径, 25cm厚的晶体里,则一个月的辐射剂量为
 - 100e6*1.8*3600*24*30*1.60218e-10*0.5 / (3.14*40*40*25*4.51/1000) = 66 Gy
- 中子辐射剂量:
 - 100MHz事例率,每个事例4个中子,一半均匀射向前角40cm半径晶体,则一个 月的总中子通量量为
 - 100e6*4*3600*24*30*0.5 / (3.14*40*40) = 1e11 n / cm^2
- 与mu2e实验测试使用剂量(900 Gy、 9e11 n / cm^2)在一个量级 J. Phys.: Conf. Ser. 928 012041
- 可以通过150°C高温退火去除辐射影响Nuclear Instruments and Methods in Physics Research A 432 (1999) 138

图 10 eTOF MRPC 结构示意图。

- MRPC, 类似CEE ETOF
- 读出条pitch 25mm;双端读出时间差得到沿读出条方向位置信息: 100ps*c=30mm
- 两个维度均可得到cm量级的位置分辨率,与几十ps的时间分辨配合,可以与径迹 进行4维配对,压低强子簇射本底
- 面积: 3.14*0.55*0.55 + 3.14*0.8*0.8 + 2*3.14*0.55*1 + 2*3.14*0.8*1 = 11 m²
- 造价: CEE ETOF 8m², 350万 ⇒ 11 m², 500万

Beam dump

e & muon

C, T, CP-violation	New particles and forces searches				
^{\Box} <i>CP Violation via Dalitz plot mirror asymmetry:</i> $\eta \rightarrow \pi^{\circ} \pi^{*} \pi$	Scalar meson searches (charged channel): $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and $H \to \mu^+\mu^-$				
\Box <i>CP Violation (Type I – P and T odd , C even):</i> η <i>–></i> $4\pi^{\circ} \rightarrow 8\gamma$					
\Box CP Violation (Type II - C and T odd , P even): $\eta \rightarrow \pi^{\circ} \ell^{*} \ell$ and $\eta \rightarrow 3\gamma$	■ Dark photon searches: $\eta \to \gamma A'$ with $A' \to \ell^* \ell$ ■ Protophobic fifth force searches : $\eta \to \gamma X_{17}$ with $X_{17} \to \pi^* \pi^-$ ■ QCD axion searches : $\eta \to \pi \pi a_{17}$ with $a_{17} \to e^+e^-$ ■ New leptophobic baryonic force searches : $\eta \to \gamma B$ with $B \to e^+e^-$ or $B \to \gamma \pi^\circ$				
□ <i>Test of CP invariance via</i> μ <i>longitudinal polarization:</i> $\eta \rightarrow \mu^{+}\mu^{-}$					
$\Box CP$ inv. via $\gamma *$ polarization studies: $\eta \rightarrow \pi^* \pi^- e^+ e^- \& \eta \rightarrow \pi^* \pi^- \mu^+ \mu^-$					
□ <i>CP</i> invariance in angular correlation studies: $\eta \rightarrow \mu^+\mu^-e^+e^-$					
$\Box CP$ invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- \pi^+ \pi^-$	Indirect searches for dark photons new gauge bosons and leptoquark: η				
CP invariance in μ polar. in studies: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$	$\rightarrow \mu^{+}\mu$ and $\eta \rightarrow e^{+}e^{-}$				
$\Box T$ invar. via μ transverse polarization: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$ and $\eta \rightarrow \gamma \mu^{+} \mu^{-}$	□ <i>Search for true muonium:</i> $\eta \rightarrow \gamma(\mu^+\mu^-) _{2M_{\mu}} \rightarrow \gamma e^+e^-$				
$\Box CPT \ violation: \mu \ polar. \ in \ \eta \to \pi^{*}\mu \lor v \ vs \ \eta \to \pi\mu^{*}\nu \ - \gamma \ polar. \ in \ \eta \to \gamma \ \gamma$	□Lepton Universality □ $\eta \rightarrow \pi^{\circ} H$ with $H \rightarrow \nu N_2$, $N_2 \rightarrow h' N_1$, $h' \rightarrow e^+e^-$				
Other discrete symmetry violations					
Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$	Other Precision Physics measurements				
Radiative Lepton Flavor Violation: $\eta \rightarrow \gamma (\mu^+ e^- + c.c.)$	Proton radius anomaly: $\eta \rightarrow \gamma \mu^+ \mu^- vs \eta \rightarrow \gamma e^+ e^-$				
Double lepton Flavor Violation: $\eta \rightarrow \mu^+ \mu^+ e^- e^- + c.c.$	\Box All unseen leptonic decay mode of η / η ' (SM predicts 10 ⁻⁶ -10 ⁻⁹)				
Non- η/η' based BSM Physics	High precision studies on medium energy physics				
$\Box Neutral pion decay: \pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^+ e^-$	□Nuclear models				
$\Box ALP's \ searches \ in \ Primakoff \ processes: p \ Z \to p \ Z \ a \to l^+l^- \qquad (F.$	Chiral perturbation theory				
Kahlhoefer)	□Non-perturbative QCD				
Charged pion and kaon decays: $\pi + \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+e^-$ and $K + \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+e^-$	[□] Isospin breaking due to the u-d quark mass difference				
□ Dark photon and ALP searches in Drell-Yan processes: aabar $\rightarrow A'/a$	Octet-singlet mixing angle				
$\rightarrow l^+l^-$	[•] <i>Electromagnetic transition form-factors (important input for g-2)</i>				

• 绝大部分eta衰变道研究需要电子 & / 缪子

- 低动量下鉴别缪子、高效排除pi+-, 很困难 ⇒ 可能只需要覆盖前角10-60度范围
- 可以调节EMC+铁的厚度,选取一定动量以上的缪子进行鉴别
- 例如,选取25cm Csl + 20cm铁,可以选择0.6GeV/c以上缪子, pi+-排除在7倍左右
- 选取25cm Csl + 40cm铁,可以选择0.8GeV/c以上缪子, pi+-排除在30倍左右
- 需要结合真实物理eta、本底产额、衰变运动学进行模拟,决定最佳铁厚度

	NAI(Tl)	CsI(Tl)	CsI	BaF ₂	CeF ₃	BGO	PbWO ₄	LYSO
Density [g cm ⁻³]	3.67	4.51	4.51	4.89	6.16	7.13	8.3	7.1
Radiation length [cm]	2.59	1.85	1.85	2.06	1.68	1.12	0.89	1.16
Molière radius [cm]	4.8	3.5	3.5	3.4	2.6	2.3	2.0	2.07
Interaction length [cm]	41.4	37.0	37.0	29.9	26.2	21.8	18.0	20.3
dE/dx)mip [MeV cm ⁻¹]	4.79	5.61	5.61	6.37	8.0	8.92	9.4	9.2
Refractive index [at λ_{peak}]	1.85	1.79	1.95	1.50	1.62	2.15	2.2	1.8
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Emission spectrum, λ_{peak}								
Slow component [nm]	410	560	420	300	340	480	510	
Fast component [nm]			310	220	300		510	420
Light yield rel. to NaI								
Slow component	100	45	5.6	21	6.6	9	0.3	
Fast component			2.3	2.7	2.0		0.4	75
Decay time [ns]								
Slow component	230	1300	35	630	30	300	50	
Fast component			6	0.9	9		10	35

 Table 6.2 Properties of scintillating crystals applied in particle physics experiments

- 考虑到几百MHz的事例率,需要光衰减时间~ns量级
- 初步考虑纯Csl,紫外扩展的SiPM,只对6ns快成分敏感~3个事件堆积,可以接受
 - 能量分辨率~2.3%@1GeV,总造价约1亿,科大STCF正在进行相关预研
- BaF2快成分光衰减时间0.9ns,但比Csl贵2-3倍 ⇒ ~2亿量能器造价,可能太贵了3

切伦科夫探测器(待定)

- 是否需要,取决于TOF和EMC能否在 整个动量范围衔接电子鉴别
 - TOF: e / pi 鉴别 @ p<0.3 GeV/c
 - EMC: ?
- 与REDTOP的CTOF类似
- 气凝胶介质,选择折射率1.02
- 只有粒子beta > 1/1.02 = 0.98, 才会发出切伦科夫光
 - e: p > 2.5 MeV ⇒ 几乎所有电子可见
 - pi: p > 685 MeV ⇒ 排除绝大部分强子,更高动量e pi鉴别依靠电磁量能器
- 只探测有无切伦科夫光,不成像
 - 制作成简单、统一的模块:暗盒、白膜、SiPM读出
 - 无需成像系统、无需高精度的平面 ⇒ 低成本、低风险
- REDTOP CTOF造价(最便宜版本): 0.6 M USD ⇒ 400万元

