TMD Physics at Electron-ion Collider in China

The 12th Workshop on Hadron Physics and Opportunities Worldwide August 5th-9th, 2024 @ Dalian, China

Tianbo Liu (对天博)

Key Laboratory of Particle Physics and Particle Irradiation (MOE) Institute of Frontier and Interdisciplinary Science, Shandong University Southern Center for Nuclear-Science Theory, IMP, CAS

In collaboration with: Y. Deng, H. Dong, Z.-t. Liang, B.-Q. Ma, P. Sun, K. Yang, C. Zeng, X. Zhao, Y. Zhao, Y.-j. Zhou and the EicC working group

Lepton-Hadron Deep Inelastic Scattering

Inclusive DIS at a large momentum transfer: $Q \gg \Lambda_{\text{OCD}}$

- dominated by the scattering of the lepton off an active quark/parton
- not sensitive to the dynamics at a hadronic scale ~ 1/fm
- collinear factorization:

 $\sigma \propto H(Q) \otimes f_{i/P}(x,\mu^2)$

- overall corrections suppressed by $1/Q^n$
- indirectly "see" quarks, gluons and their dynamics
- predictive power relies on
- precision of the probe
- universality of $f_{i/P}(x, \mu^2)$

Modern "Rutherford" experiment.

Lepton-Hadron Deep Inelastic Scattering

H. Abramowicz et al., EPJC 78, 580 (2015).

Lepton-Hadron Deep Inelastic Scattering

Nucleon Spin Structure

Proton spin puzzle

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s \sim 0.3$$

Spin decomposition

$$J = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

JAM17: $\Delta\Sigma=0.36\pm0.09$

JAM Collaboration, PRL 119, 132001 (2017).

Quark spin only contributes a small fraction to the nucleon spin.

J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989).

Gluon spin from LQCD: $S_g = 0.251(47)(16)$

50% of total proton spin Y.-B. Yang *et al.* (χQCD Collaboration), PRL 118, 102001 (2017).

Semi-inclusive Deep Inelastic Scattering

Semi-inclusive DIS: a final state hadron (P_h) is identified

- enable us to explore the emergence of color neutral hadrons from colored quarks/gluons
- flavor dependence by selecting different types of observed hadrons: pions, kaons, ...
- a large momentum transfer *Q* provides a short-distance probe
- an additional and adjustable momentum scale P_{h_T}
- multidimensional imaging of the nucleon

SIDIS Kinematic Regions

Sketch of kinematic regions of the produced hadron

レネスス(青岛)

Lepton Scattering: An Ideal Tool

[Figure from X.Y. Zhao]

[Figure credit: Weizhi Xiong]

Modern "Rutherford Scattering" Experiment

- Start from unpolarized fixed targets
- Extended unpolarized collider experiments
- and polarized fixed-target experiments

Need polarized electron-ion collider

- High luminosity: $10^2 \sim 10^3 \times \text{HERA}$ lumi.
- High polarization: both electron and ion beams
- Large acceptance: nearly full detector coverage

HIAF in Huizhou (惠州)

High Intensity heavy-ion Accelerator Facility

- a national facility on nuclear physics, atomic physics, heavy-ion applications ...
- open to scientists all over the world
- provide intense beams of primary and radioactive ions
- beam commissioning is planned in 2025

Electron-ion Collider in China

- energy in c.m.: $15 \sim 20 \text{ GeV}$
- luminosity: $\geq 2 \times 10^{33} \text{ cm}^{-2} \cdot \text{s}^{-1}$
- electron beam: 3.5 GeV, polarization $\sim 80\%$
- proton beam: 20 GeV, polarization $\sim 70\%$
- other available polarized ion beams: d, ³He⁺⁺
- available unpolarized ion beams: ⁷Li³⁺, ¹²C⁶⁺, ⁴⁰Ca²⁰⁺, ¹⁹⁷Au⁷⁹⁺, ²⁰⁸Pb⁸²⁺, ²³⁸U⁹²⁺

Complementary Kinematic Coverage

R.G. Milner and R. Ent, Visualizing the proton 2022

Structure Functions of SIDIS

SIDIS differential cross section

in terms of 18 structure functions

 $F_{ABC}(x_{B}, z, P_{hT}^{2}, Q^{2})$

B: nucleon polarization C: virtual photon polarization $\frac{\mathrm{d}\sigma}{\mathrm{d}x_B \,\mathrm{d}y \,\mathrm{d}z \,\mathrm{d}P_{hT}^2 \,\mathrm{d}\phi_h \,\mathrm{d}\phi_S}$ $= \frac{\alpha^2}{x_B y Q^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x_B}\right)$ $\times \left\{ F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda_e \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h \right\}$ $+S_{L}\left[\sqrt{2\epsilon(1+\epsilon)}F_{UL}^{\sin\phi_{h}}\sin\phi_{h}+\epsilon F_{UL}^{\sin2\phi_{h}}\sin2\phi_{h}\right]+\lambda_{e}S_{L}\left[\sqrt{1-\epsilon^{2}}F_{LL}+\sqrt{2\epsilon(1-\epsilon)}F_{LL}^{\cos\phi_{h}}\cos\phi_{h}\right]$ $+S_T \left[\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \sin(\phi_h - \phi_S) + \epsilon F_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) \right]$ $+\epsilon F_{UT}^{\sin(3\phi_h-\phi_S)}\sin\left(3\phi_h-\phi_S\right) + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin\phi_S}\sin\phi_S + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin(2\phi_h-\phi_S)}\sin\left(2\phi_h-\phi_S\right)$ $+ \lambda_e S_T \left[\sqrt{1 - \epsilon^2} F_{LT}^{\cos(\phi_h - \phi_S)} \cos\left(\phi_h - \phi_S\right) \right]$ $+\sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos\phi_{S}}\cos\phi_{S}+\sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\cos\left(2\phi_{h}-\phi_{S}\right)\right\}$

A: lepton polarization

Leading Twist TMDs

EicC Impact Studies

Baseline:

An independent global analysis of world SIDIS and e⁺e⁻ data within the TMD factorization and evolution Uncertainty estimation using MC replicas

EicC pseudo data:

50 fb⁻¹: 3.5 GeV e \times 20 GeV p 50 fb⁻¹: 3.5 GeV e \times 40 GeV ³He p and ³He pol.: 70% electron pol: 80%

Observables (examples):

Transverse single spin asymmetry $A_{UT}^{\sin(\phi_h - \phi_S)} \Rightarrow f_{1T}^{\perp}$ Transverse single spin asymmetry $A_{UT}^{\sin(\phi_h + \phi_S)} \Rightarrow h_1$ Longitudinal-transverse double spin asymmetry $A_{LT}^{\cos(\phi_h - \phi_S)} \Rightarrow g_{1T}^{\perp}$

TMD Evolution

Evolution equations

$$\mu^{2} \frac{dF(x,b;\mu^{2},\zeta)}{d\mu^{2}} = \frac{\gamma_{F}(\mu,\zeta)}{2} F(x,b;\mu^{2},\zeta) \qquad -\zeta \frac{d\gamma_{F}(\mu,\zeta)}{d\zeta} = \mu \frac{d\mathscr{D}(\mu,b)}{d\mu} = \Gamma_{\text{cusp}}(\mu)$$

$$\zeta \frac{dF(x,b;\mu^{2},\zeta)}{d\zeta} = -\mathscr{D}(\mu,b)F(x,b;\mu^{2},\zeta) \qquad \gamma_{F}(\mu,\zeta) = \Gamma_{\text{cusp}}(\mu) \ln \frac{\mu^{2}}{\zeta} - \gamma_{V}(\mu)$$

$$F\left(x,b;\mu_{f},\zeta_{f}\right) = \exp\left[\int_{P}\left(\gamma_{F}(\mu,\zeta)\frac{d\mu}{\mu} - \mathscr{D}(\mu,b)\frac{d\zeta}{\zeta}\right)\right] F\left(x,b;\mu_{i},\zeta_{i}\right)$$

 ζ -prescription

equipotential lines: $\frac{d \ln \zeta_{\mu}(\mu, b)}{d \ln \mu^{2}} = \frac{\gamma_{F}\left(\mu, \zeta_{\mu}(\mu, b)\right)}{2\mathscr{D}(\mu, b)}$ $\mathscr{D}\left(\mu_{0}, b\right) = 0, \quad \gamma_{F}\left(\mu_{0}, \zeta_{\mu}\left(\mu_{0}, b\right)\right) = 0$ $F\left(x, b; Q, Q^{2}\right) = \left(\frac{Q^{2}}{\zeta_{Q}(b)}\right)^{-\mathscr{D}(Q,b)} F(x, b), \quad \mu_{f}^{2} = \zeta_{f} = Q^{2}$

Tianbo Liu

The Sivers Function: Early Story

Transverse single spin asymmetry observed in experiments

Data: J. Antille et al., Phys. Lett B94 (1980) 523.

Data: 7th Symposium on High Energy Spin Physics (1986).

D. Sivers proposed to explain such SSA a new distribution function

Sivers function $\Delta^N G_{a/p(\uparrow)}(x, \mathbf{k}_T; \mu^2)$ D. Sivers, Phys. Rev. D 41 (1990) 83.

However it was soon shown this function was T-odd and prohibited by QCD

J. Collins, Nucl. Phys. B 396 (1993) 161.

For the next decade, the "Sivers effect" was thought to vanish.

The Sivers Function: Early Story

Tianbo Liu

The Sivers Function

Sivers TMD distribution function

$$\frac{\epsilon_{ij}k_T^i S_T^j}{M} f_{1T}^{\perp}(x, k_T^2) \quad \textcircled{\bullet} - \bigodot_{\bullet}$$

A naive T-odd distribution function

Transverse momentum distribution distorted by nucleon transverse spin

Effect in SIDIS:

transverse single spin asymmetry (Sivers asymmetry)

$$A_{UT}^{\sin(\phi_h - \phi_S)} \sim f_{1T}^{\perp} \otimes D_1$$

sizable Sivers asymmetry observed by HERMES, COMPASS, JLab

0

 x_F

Sign change prediction:

 $f_{1T}^{\perp}(x, k_T^2)|_{\text{SIDIS}} = -f_{1T}^{\perp}(x, k_T^2)|_{\text{DY}}$

0.5

EicC Impact: Sivers Function

C. Zeng, T. Liu, P. Sun, Y. Zhao, Phys. Rev. D 106 (2022) 094039.

EicC Impact: Sivers Function

C. Zeng, T. Liu, P. Sun, Y. Zhao, Phys. Rev. D 106 (2022) 094039.

レネスズ(青岛)

Sivers Asymmetry of ρ^{θ} Production

Data from COMPASS Collaboration, PLB 843 (2023) 137950.

Scenarios: different transverse momentum dependences of ρ^0 fragmentation functions

Y. Deng, TL, Y.-j. Zhou, 2024

ふまたる(青岛)

Sivers Asymmetry of ρ^{θ} Production

Predictions at EicC kinematics:

 $\sqrt{s} = 16.7 \,\mathrm{GeV}$

Different predictions to be tested at EicC kinematics

Y. Deng, TL, Y.-j. Zhou, 2024

レネズス(青岛)

Transversity Distribution

Transversity distribution

$$h_1$$
 (Collinear & TMD)

A transverse counter part to the longitudinal spin structure: helicity g_{1L} , but NOT the same.

Phenomenological extractions

Z.-B. Kang, A. Prokudin, P. Sun, F. Yuan, PRD 93, 014009 (2016).

Chiral-odd:

No mixing with gluons Valence dominant Couple to another chiral-odd function.

Effect in SIDIS:

transverse single spin asymmetry (Collins asymmetry)

 $h_1(x,{f k}_\perp^2)igodot H_1^\perp(z,{f p}_\perp^2)$

JAM Collaboration, PRD 104, 034014 (2022).

Sea Quark Transversity

First determination of sea quark transversity, including TMD evolution

ふまたる(青岛)

EicC Impact on Transversity

EicC can significantly improve the precision of transversity distributions, especially for sea quarks.

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao, PRD 109 (2024) 056002.

Tensor Charge

Tensor charge

$$\langle P, S | \bar{\psi}^q i \sigma^{\mu\nu} \gamma_5 \psi^q | P, S \rangle = g_T^q \bar{u}(P, S) i \sigma^{\mu\nu} \gamma_5 u(P, S)$$

$$g_T^q = \int_0^1 [h_1^q(x) - h_1^{\bar{q}}(x)] \, dx$$

- A fundamental QCD quantity: matrix element of local operators.
- Moment of the transversity distribution: valence quark dominant.
- Calculable in lattice QCD.

Tensor Charge

Larger uncertainties when including anti-quarks (less biased) Compatible with lattice QCD calculations

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao, PRD 109 (2024) 056002.

Double Spin Asymmetry and Worm-gear

Trans-helicity worm-gear distribution

$$\frac{k_T \cdot S_T}{M} g_{1T}^{\perp}(x, k_T^2) \qquad \textcircled{\bullet} - \underbrace{\bullet}$$

- Longitudinally polarized quark density in a transversely polarized nucleon
- Overlap between wave functions differing by one unit of orbital angular momentum

Phenomenological extraction

Effect in SIDIS: A longitudinal-transverse double spin asymmetry

$$A_{LT}^{\cos(\phi_h-\phi_S)} \sim g_{1T}^{\perp} \otimes D_1$$

ふまたる(青岛)

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, arXiv:2403.12795, PRD (2024).

EicC Impact on Trans-helicity Distributions

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, arXiv:2403.12795, PRD (2024).

ふまたる(青岛)

Summary

- Spin always surprises since its discovery nearly 100 years ago
- Nucleon spin structure is still not well understood
- Rich information is contained in TMDs
 - quark transverse momentum distorted by nucleon spin;
 - correlation between quark longitudinal/transverse spin and nucleon spin;

- ...

- ...

- SIDIS with polarized beam and target is a main process to study polarized TMDs
- Also an important approach to test/develop the theories/models
- EicC can significantly improve the precision of the determination of TMDs, especially for sea quarks, complementary to JLab12 and EIC-US.
- There are still challenges on the theoretical side (not covered in this talk)
 - power corrections, higher twist effects
 - radiative corrections
 - target fragmentation

Tianbo Liu

Small and Large Transverse Momentum

 $W(q_{\mathrm{T}},Q) = \mathrm{T}_{\mathrm{TMD}} \, d\sigma \qquad \qquad Y(q_{\mathrm{T}},Q) = X(q_{\mathrm{T}}/\lambda) \mathrm{T}_{\mathrm{coll}} \left(d\sigma - \mathrm{T}_{\mathrm{TMD}} d\sigma
ight) \ = X(q_{\mathrm{T}}/\lambda) [\mathrm{FO}(q_{\mathrm{T}},Q) - \mathrm{ASY}(q_{\mathrm{T}},Q)]$

しまえる(青岛)

Tensor Charge

Larger uncertainties when including anti-quarks (less biased) Compatible with lattice QCD calculations

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao, PRD 109 (2024) 056002.

Some More on Transversity

New data released by COMPASS

SIDIS on transversely polarized deuteron target

G.D. Alexeev et al., COMPASS Collaboration, arXiv:2401.00309

Some More on Transversity

An updated world data fit

The new COMPASS data have significant impact on d (anti-d) quark distributions

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao

ふまたる(青岛)

Result: Collins Fragmentation Function

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao, arXiv:2310.15532

Transversity TMDs

Tianbo Liu

37

Collins TMD FFs

Hadron transverse momentum p_T (GeV)

Hadron transverse momentum p_T (GeV)

Hadron transverse momentum p_T (GeV)

Trans-helicity Worm-gear Distributions

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, arXiv:2403.12795, PRD (2024).

ふまたる(青岛)

Trans-helicity Worm-gear Distributions

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, arXiv:2403.12795, PRD (2024).

ふまたる(青岛)