

Compton Scattering at the High ila-nay
' **Intensity Gamma-Ray Source (HIGS)**

Xiaqing Li (on behalf of the HIGS Compton Collaboration) Shandong University

The 12th Workshop on Hadron Physics and Opportunities Worldwide Dalian, August 5-9, 2024

Outline

- **Nucleon polarizabilities**
- **Compton scattering experiments at HIGS**
The LUCS facility
	- The HIGS facility
	- Experimental apparatus
- **Results for nuclear Compton scattering**
	- from the proton, deuteron, $4He$, and $3He$

l I z I

• **Outlook**

TUI

Nucleon Electromagnetic Dipole Polarizabilities

- Nucleon **electromagnetic (EM) structure constants**
- **Click to edit Master title** • Characterize the **response of the charged constituents of a nucleon to an external EM field**
	- *αE1* : charged pion-cloud dynamics
	- www.
mics (diamaga
paramagnetia) - *βM1* : pion charge current dynamics (diamaganetic) + constituent quarks dynamics (paramagnetic)
- Primarily accessed via **Compton Scattering**

NC STATE UNIVERSIT

- Theoretical approaches: **χEFT, LQCD**, DR, models
- Balding sum rule

$$
\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi} \int_{\omega_0}^{\infty} \frac{\sigma_{tot}(\omega')}{\omega'^2 - \omega^2} d\omega'
$$

(a) Electric field off

(b) Electric field on

Compton Scattering from the Nucleon

Effective probe for nucleon polarizabilities

• Low-energy expansion of the differential cross section:

NC STATE UNIVERSITY

llıl

APEL HILL

$$
\frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{e^2 Z^2}{M_N} \right)^2 \left(\frac{\omega'}{\omega} \right)^2 [1 + g(\omega^2, \kappa)]
$$
\n
$$
- \left(\frac{e^2 Z^2}{4\pi M_N} \right) \left(\frac{\omega'}{\omega} \right)^2 (\omega \omega') \left[\frac{1}{2} (\alpha + \beta)(1 + \cos \theta)^2 + \frac{1}{2} (\alpha - \beta)(1 - \cos \theta)^2 \right]
$$
\n
$$
+ f(\omega^3, \gamma_1, \gamma_2, \gamma_3, \gamma_4)
$$
\n
$$
+ \mathcal{O}(\omega^4)
$$

eZ : nucleon charge M_N : nucleon mass *κ*: anomalous magnetic moment $\vec{P} = a_{E1}(\omega)\vec{E}(\omega)$

 $k(\omega, \vec{k})$ $k'(\omega', \vec{k}')$

TUN

 p^{\prime}

 $\vec{M} = \beta_{M1}(\omega)\vec{H}(\omega)$

Compton Scattering from the Nucleon

Effective probe for nucleon polarizabilities

• Low-energy expansion of the differential cross section:

$$
\frac{d\sigma}{d\Omega} = \left(\frac{1}{2}\left(\frac{e^2 Z^2}{M_N}\right)^2 \left(\frac{\omega'}{\omega}\right)^2 [1 + g(\omega^2, \kappa)]\right)
$$
Born term (nucleons are assumed as
as point-like particles)

$$
-\Big(\frac{e^{2}Z^{2}}{4\pi M_{N}}\Big)\Big(\frac{\omega'}{\omega}\Big)^{2}(\omega\omega')\Big[\frac{1}{2}(\alpha+\beta)(1+\cos\theta)^{2}+\frac{1}{2}(\alpha-\beta)(1-\cos\theta)^{2}\Big]
$$

 $+f(\omega^3,\gamma_1,\gamma_2,\gamma_3,\gamma_4)$

Electromagnetic dipole polarizabilities

Spin polarizabilities $+{\cal O}(\omega^4)$

eZ : nucleon charge M_N : nucleon mass *κ*: anomalous magnetic moment

To extract *α* and *β*

 \checkmark Measure the forward and backward Compton scattering cross sections

 $\overrightarrow{M} = \beta_{M1}(\omega)\overrightarrow{H}(\omega)$

APEL HILI

llzil

Global Extraction of a_{E1} **and** β_{M1} **. TUNL** \blacktriangledown

- Proton EM polarizabilities relatively well determined using liquid hydrogen targets
- Neutron measurements always harder
	- Charge neutral
		-
	- No stable free neutron target
		- use light nuclear targets (D, He, Li,...)

NC STATE UNIVERSIT

model dependent

*χ*EFTvariant 1 [182] *−* 1*.*1 *±* 1*.*9th 2*.*2 *±* 0*.*5stat *±* 0*.*6th *−* 0*.*4 *±* 0*.*6th 1*.*9 *±* 0*.*5th

THE UNIVERSITY

at CHAPEL HILL

CAROLINA

From *US 2023 Long Range Plan for Nuclear Science:*

A consortium of 13 university-based accelerator laboratories, known collectively as the **Association for Research at University Nuclear Accelerators (ARUNA)**

Figure 9.7. The unique ARUNA facilities are distributed throughout the country in 11 states: Florida, Kentucky, Indiana, Massachusetts, Michigan, New York, North Carolina, Ohio, Texas, Virginia, and Washington [44].

llzil

NC STATE

UNIVERSITY

University (Figure 9.7). In addition to providing a high level of hands-on training in every aspect of an experiment, the accelerator facilities at these institutions provide unique beam and research capabilities that **Confidence to the Cliential Confidence of the Client Confidence of the Client Confidence of a structure of the client of a structure of the client** challenges. Importantly, ARUNA facilities are cost-effective to operate, enabling beam time to be devoted to a project for a long duration as is often required in nuclear astrophysics, where cross sections are low, and in fundamental symmetries, where high statistics and extensive studies of systematics are required. The diversity of approaches provided by these laboratories is a critical asset of the field, and ARUNA laboratories provide a highly creative, flexible, stimulating, and supportive scientific environment with many opportunities for students to acquire the essential skills necessary for them to become a well-trained nuclear workforce. Scientists at ARUNA facilities pursue research in nuclear astrophysics, low-energy nuclear physics, fundamental symmetries, and a rapidly growing number of nuclear physics applications that build bridges to other research communities.

High Intensity Gamma-Ray Source (HIGS)

Most intense Compton γ-ray source in the world Gamma • Energy range: 1-120 MeV Vault Energy resolution: $\Delta E/E \sim 5\%$ (selectable by collimation) Intensity: $>10^7$ y/s on target **Constant of the Constant of C** γ γ β on target TUNI
TUNI • Polarization: >95% linear and circ. Two electron bunches + two FEL pulses + two collision point FEL mirror 4-paddle flux monitor**Energy resolution by collimation** mirror Precollimator Primary Collimator $(x, y) = (32, 20)$ mm e-beam 53 m **RUBBO** 2500 $E_0 = 2032$ keV ntensity photon 1500 - $\overline{ }$ $DE_q = 26 \text{ keV}$ $DE/E = 1.3\%$ electron **FEL mirror** 500 1950 2000 2050 **Compton backscattering to produce γ-ray photons** E_q (keV)

at CHAPEL HILI

Cryogenic Target for Liquid H, D and ⁴He

- 1. Cryocooler
- 2. Room-temperature gas inlet
- 3. Vent line with pressure gauge
- 4. Condenser
- 5. Target cell
- 6. Outlet valve
- 7. Kapton window
- 8. Aluminum can
- 9. Thermal shield

D. P. Kendellen *et al.*, Nucl. Instrum. and Meth. A 840, 174–180 (2016)

l I I

ROLINA at CHAPEL HILL

Photon Detectors for Compton Scattering

TUN

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Photon Detectors for Compton Scattering

UNIVERSITY

at CHAPEL HILL

LOLINA

NC STATE

UNIVERSITY

IVERSITY

Pb Collimato

 $MalAn$

Compton Scattering Runs at HIGS

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

(a)

Compton Scattering from the Proton

at CHAPEL HILL

PHYSICAL REVIEW LETTERS 128, 132502 (2022)

Proton Compton Scattering from Linearly Polarized Gamma Rays

NC STATE UNIVERSITY

 $= 55^{\circ}$

Compton Scattering from the Proton

at CHAPEL HILL

PHYSICAL REVIEW LETTERS 128, 132502 (2022)

Proton Compton Scattering from Linearly Polarized Gamma Rays

X. Li \bullet , ^{1,2,*} M. W. Ahmed,^{2,3} A. Banu,⁴ C. Bartram,^{2,5} B. Crowe,^{2,3} E. J. Downie,⁶ M. Emamian,² G. Feldman,⁶ H. Gao,^{1,2} D. Godagama,⁷ H. W. Grießhammer,^{6,1} C. R. Howell,^{1,2} H. J. Karwowski,^{2,5} D. P. Kendellen,^{1,2} M. A. Kovash,⁷ K. K. H. Leung,^{1,2,8} D. M. Markoff,^{2,3} J. A. McGovern,⁹ S. Mikhailov,² R. E. Pywell,¹⁰ M.

UNIVERSITY

Compton Scattering from 4He

PHYSICAL REVIEW C 96, 055209 (2017) Compton scattering from ⁴He at 61 MeV

M. H. Sikora,^{1,2,*} M. W. Ahmed,^{1,2,3} A. Banu,⁴ C. Bartram,^{2,5} B. Crowe,^{2,3} E. J. Downie,⁶ G. Feldman,⁶ H. Gao,^{1,2}
H. W. Grießhammer,⁶ H. Hao,² C. R. Howell,² H. J. Karwowski,^{2,5} D. P. Kendellen,^{1,}

PHYSICAL REVIEW C 101, 034618 (2020)
Compton scattering from ⁴He at the TUNL HI₂S facility

X. Li^{(0,1,2,*} M. W. Ahmed,^{1,2,3} A. Banu,⁴ C. Bartram,^{2,5} B. Crowe,^{2,3} E. J. Downie,⁶ M. Emamian,² G. Feldman,⁶ H. Gao,^{1,2} D. Godagama,⁷ H. W. Grießhammer,^{6,1} C. R. Howell,^{1,2} H. J. Karwowski,^{2,5} D. P. Kendellen,^{1,2} M. A. Kovash,⁷ K. K. H. Leung, 2,8 D. Markoff, 2,3 S. Mikhailov, 2 R. E. Pywell, 9 M. H. Sikora, 6,2 J. A. Silano, 2,5 R. S. Sosa, 3 M. C. Spraker, ¹⁰ G. Swift, ² P. Wallace, ² H. R. Weller, ^{1, 2} C. S. Whisnant, ⁴ Y. K. Wu, ^{1, 2} and Z. W. Zhao^{1, 2}

• **Fore-aft asymmetry at higher energies** indicates a strong sensitivity to subnuclear effects

> **NC STATE UNIVERSITY**

• *α* **and** *β* **for the neutron** to be extracted from the high precision ⁴He data with upcoming new χEFT calculation

Compton Scattering from Deuteron

THE UNIVERSITY

at CHAPEL HILL

Elastic and Inelastic Compton Scattering from Deuterium at 65 and 85 MeV

Mohammad Ahmed (Spokesperson) Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, 919-530-6100, ahmed2@nccu.edu

Compton@HI γ S Collaboration

NC STATE UNIVERSITY

Deuteron measurement: need high-resolution detectors to separate elastic and inelastic scattering channels (2.2 MeV apart)

Compton Scattering from Deuteron

Elastic and Inelastic Compton Scattering from Deuterium at 61 MeV

Ph.D Thesis

TUN

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Compton Scattering from ³He

- New gas handling system for 1.7 K liquid ³He target
- Circularly polarized photon beam
	- 60 MeV data taking completed
	- 100 MeV data taking ongoing

TUN

• χ EFT calculation availabel for 3 He Compton scattering

NC STATE UNIVERSITY

• Aim to extract neutron EM polarizabilities from the 100 MeV data with uncertainties < 0.7×10^{-4} $\rm fm^3$

Spin Polarizabilities

$$
\frac{d\sigma}{d\Omega} = \Phi^2 |T|^2
$$

Spin polarizabilities

$$
\gamma_{E1E1} = -\gamma_1 - \gamma_3,
$$

 $\gamma_{M1E2} = \gamma_2 + \gamma_4,$

 $\gamma_{M1M1} = \gamma_4,$

 $\gamma_{E1M2} = \gamma_3.$

UNIVERSITY

Spin-dependent scattering amplitude

$$
= \Phi^{2} |T|^{2}
$$
\n
$$
+ A_{2}(\omega, z) (\vec{\epsilon}^{\prime*} \cdot \vec{\epsilon})
$$
\n
$$
+ i A_{3}(\omega, z) (\vec{\epsilon}^{\prime*} \cdot \vec{\epsilon})
$$
\n
$$
+ i A_{4}(\omega, z) \vec{\sigma} \cdot (\vec{\epsilon}^{\prime*} \times \vec{\epsilon})
$$
\n
$$
+ i A_{4}(\omega, z) \vec{\sigma} \cdot (\vec{\epsilon}^{\prime*} \times \vec{\epsilon})
$$
\n
$$
+ i A_{5}(\omega, z) \vec{\sigma} \cdot (\vec{\epsilon}^{\prime*} \times \vec{\epsilon}) (\vec{\epsilon}^{\prime*} \cdot \vec{\epsilon})
$$
\n
$$
+ i A_{5}(\omega, z) \vec{\sigma} \cdot [(\vec{\epsilon}^{\prime*} \times \hat{k}) (\vec{\epsilon} \cdot \hat{k}^{\prime}) - (\vec{\epsilon} \times \hat{k}^{\prime}) (\vec{\epsilon}^{\prime*} \cdot \hat{k})]
$$
\n
$$
= \gamma_{4},
$$
\n
$$
= \gamma_{5},
$$
\n
$$
= \gamma_{6},
$$
\n
$$
\text{Varizabilities}
$$
\n
$$
+ i A_{6}(\omega, z) \vec{\sigma} \cdot [(\vec{\epsilon}^{\prime*} \times \hat{k}) (\vec{\epsilon} \cdot \hat{k}^{\prime}) - (\vec{\epsilon} \times \hat{k}) (\vec{\epsilon}^{\prime*} \cdot \hat{k})]
$$

$$
A_1(\omega, z) = -\frac{Z^2 e^2}{M} + \frac{e^2 \omega^2}{4M^3} \Big((Z + \kappa)^2 (1 + z) - Z^2 \Big) (1 - z) + 4\pi \omega^2 (\alpha_{E1} + z \beta_{M1}) + \mathcal{O}(\omega^4),
$$

\n
$$
A_2(\omega, z) = \frac{e^2 \omega^2}{4M^3} \kappa (2Z + \kappa) z - 4\pi \omega^2 \beta_{M1} + \mathcal{O}(\omega^4),
$$

\n
$$
A_3(\omega, z) = \frac{e^2 \omega}{2M^2} \Big(Z(Z + 2\kappa) - (Z + \kappa)^2 z \Big) + A_3^{\pi^0} + 4\pi \omega^3 \Big(\gamma_1 - (\gamma_2 + 2\gamma_4) z \Big) + \mathcal{O}(\omega^5),
$$

\n
$$
A_4(\omega, z) = -\frac{e^2 \omega}{2M^2} (Z + \kappa)^2 + 4\pi \omega^3 \gamma_2 + \mathcal{O}(\omega^5),
$$

\n
$$
A_5(\omega, z) = \frac{e^2 \omega}{2M^2} (Z + \kappa)^2 + A_5^{\pi^0} + 4\pi \omega^3 \gamma_4 + \mathcal{O}(\omega^5),
$$

\n
$$
A_6(\omega, z) = -\frac{e^2 \omega}{2M^2} Z(Z + \kappa) + A_6^{\pi^0} + 4\pi \omega^3 \gamma_3 + \mathcal{O}(\omega^5),
$$

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

 $\widehat{\mathbb{H}}$

Future Plan on Compton Scattering at HIGS

HIGS Scientific Program: Determination of the spin-dependent polarizabilities

Outlook

- **Reduce uncertainty in the neutron scalar polarizabilities**
	- The goal is to reduce the uncertainties to be on par with the proton
	- **•** Perform high-precision cross-section and Σ_3 Compton-scattering measurements on ²H, ³He and ⁴He at E_y = 100 to 130 MeV (e.g., map out $\alpha^n(\omega)$ over the π production threshold cusp)

Clearate The *Click to to 130 MeV* **(e.g., map out αⁿ(ω) over the π production threshold cusp)
• Map out proton scalar polarizabilities over the unitary cusp**

• Perform cross-section and Σ_3 Compton-scattering cross-section measurements on the proton at E_y = 100 to 150 MeV

style 150 MeV
• Determine proton spin polarizabilities up to pion-production threshold

- \blacktriangleright Measure asymmetry data (Σ_3 , $\Sigma_{2{\sf z}}$ and $\Sigma_{2{\sf x}}$) at energies E $_{\gamma}$ = 100 to 130 MeV; complement data from Mainz
- **Use several** χ **EFT calculations for reliable assessment of model dependence**

• **Determine the neutron spin polarizabilities**

 \blacktriangleright Measure asymmetry data (Σ_{2z} and Σ_{2x}) at energies E $_{\gamma}$ = 100 to 300 MeV for Compton-scattering on polarized ²H and ³He targets; E_y = 100 – 150 MeV at HIGS and E_y = 250 – 300 MeV at Mainz

Courtecy of Calvin R. Howell

Outlook

- **Reduce uncertainty in the neutron scalar polarizabilities**
	- The goal is to reduce the uncertainties to be on par with the proton
	- **•** Perform high-precision cross-section and Σ_3 Compton-scattering measurements on ²H, ³He and ⁴He at E_v = 100 to 130 MeV (e.g., map out $\alpha^n(\omega)$ over the π production threshold cusp)

Clearate The *Click to to 130 MeV* **(e.g., map out αⁿ(ω) over the π production threshold cusp)
• Map out proton scalar polarizabilities over the unitary cusp**

Perform cross-section and Σ_3 Compton-scattering cross-section measurements on the proton at E_y = 100 to 150 MeV

style • **Establish a Cryogenic Polarized Proton Program**

- Obtain funding for a TUNL staff position in low-temperature physics to lead polarized target R&D program
- Obtain funding to build polarized target technical infrastructure

• **Improve determination of proton spin polarizabilities**

l I zi l

- Measure asymmetry data (Σ_{2z} and Σ_{2x}) at energies E_y = 100 to 130 MeV; complement data from Mainz at E_y = 260 - 310 MeV
- **Use several** χ **EFT calculations for reliable assessment of model dependence**

• **Determine the neutron spin polarizabilities**

■ Measure asymmetry data (S_{2z} and S_{2x}) at energies E_y = 100 to 130 MeV for Compton-scattering on polarized ²H at E_y = 100 – 130 MeV

Acknowledgements

HIGS Compton Collaboration

Groups from 13 institutions: 10 USA + 3 international

- **1) Duke Univ.:** H. Gao, C.R. Howell
- **2) GWU:** E. Downie, J. Feldman, H. Griesshammer
- **3) James Madison Univ.:** A. Banu and S. Whisant
- **4) Montclair State University:** K. Leung
- **5) Mount Alison Univ.**, David Hornidge
- **6) NC Central Univ.:** M.W. Ahmed, B. Crowe, D. Markoff
- **7) North Georgia State Univ.:** M. Spraker
- **8) Ohio Univ.:** D. Phillips
- **9) Univ. Kentucky:** M. Kovash
- **10) Univ. Manchester:** J.A. McGovern
- **11) UNC-Chapel Hill:** H. Karwowski
- **12) Univ. Mass. - Amherst:** R. Miskimen
- **13) Univ. Saskatchewan:** R. Pywell

Blue font = TUNL consortium institution Red font = Theorist

Work supported in part by:

- **Click to edit Master title U.S. Department of Energy grants:** DE-FG02-03ER41231, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-FG02- 97ER41046, DE-FG02-97ER41042, DESC0005367, DE-SC0015393, DE-SC0016581, DE-SC0016656
	- **U.S. National Science Foundation grants:** NSF-PHY-0619183, NSF-PHY-1309130, NSF-PHY-1714833
	- ff
ff
Style
Style UK Science and Technology Facilities Council

grants: ST/L005794/1, ST/P004423/1

The George Washington University: Dean of the Columbian College of Arts and Sciences and Vice President for Research

Natural Sciences and Engineering Research Council of Canada

The Eugen Merzbacher Fellowship

Thanks for your attention!

THE UNIVERSITY at CHAPEL HILL