With Zhi-Cheng Hu, Bo-Lun Hu, Ji-Hao Wang, Hai-Yang Du, and et.al., For CLQCD

Quark and hadron masses from CLQCD ensembles

Yi-Bo Yang

Outline

• LQCD background and CLQCD ensembles

• Hadron masses and decay constants

• Quark mass determinations

Lattice QCD

175

Most recent HYP prediction for muon g-2

 $BMW/DMZ24$, 2407.10913 adds 0.048fm ensemble, reduces finite L/T error. Uses data-driven for large-t tail. **Blinded** analysis.

BMW '20 4.0σ WP20 data-White paper driven: 5.2σ $693.1(4.0)$ **BMW20**: $10^{10} a_{\mu}^{\text{LOHVP}} = 707.5(5.5)$

180

185

190

195

- Continuum extrapolation;
- Physical quark masses
- Infinite volume extrapolation;
- QED correction (QCD+QED) and isospin breaking effect $\mathcal{O}(m_d - m_u)$;

Accurate LQCD predictions require:

Discretization error

- Lattice calculation will suffer from the discretization error, which is usually $\mathcal{O}(a^2\Lambda_{QCD}^2)$.
	- If we reduce the lattice spacing a by a factor of 2, the cost of calculation will increase by a factor of at least
- The current FLAG "green star" requires at least three lattice spacings and at least two points below 0.1 fm and a range of lattice spacings satisfying

BMWc, Nature 593(2021)51

- The cost to simulate light quark can be an order of magnitude larger than that of the strange quark.
- Non-trivial algorithm likes multigrid can speed up the calculation of the light quark for certain fermion
	- The current FLAG "green star" requires $m_{\pi,\text{min}} < 200$ MeV with at least three m_{π} in the chiral extrapolation, or $m_{\pi,\;\mathrm{case1}} = 135 \pm 10$ MeV and $m_{\pi,\;\mathrm{case2}} <$ 200 MeV.

Chiral extrapolation

 \circ

The finite volume chiral perturbative theory suggest an correction when $m_{\pi}L \geq 3$, it means that the volume required by $m_{\pi}^{} \sim$ 135 MeV is ~ 11 times of that $e^{-m_{\pi}L}$ correction when $m_{\pi}L \geq 3$

The current FLAG "green star" requires $m_\pi L \sim 3.2$ for $m_{\pi} \sim$ 135 MeV, or at least three volumes.

Finite volume effect

Hadron mass can have very strong dependence on spatial size L , especially when $L \le \Lambda_{\rm OCD}^{-1};$ QCD

Lattice QCD

QED and iso-spin breaking effects

- Both the QED and iso-spin breaking effects
- continuum and infinite volume limits, physical (iso-symmetric) light, strange and charm quark masses;
- And then add the QED and iso-spin breaking effects at the leading order.

$$
m_H(m_u, m_d, m_s, m_c, 0, 0, \alpha_{\text{QED}}) = m_H(m_l = \frac{m_u + m_d}{2}, m_l, m_s, m_c, a, 1/L, 0)
$$

+
$$
\sum_i c_{i,a} a^{2i} + \sum_j c_{j,L} f(m_{\pi}) L^{-j} e^{-m_{\pi}L} + ...
$$

+
$$
(c_{\text{ISO}} + c_{\text{ISO},a} a^2 + ...)(m_d - m_u) + (c_{\text{QED}} + c_{\text{QED},a} a^2 + ...)\alpha_{\text{QED}} ...
$$

are the order of
$$
\alpha \sim \frac{m_d - m_u}{\Lambda_{\text{QCD}}} \sim 1\%
$$
.

• It is more practical to calculate the results of iso-symmetric pure QCD and extrapolated to

Lattice QCD

CLQCD ensembles

Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, 2310.00814

- gauge;
- Tadpole improved Clover fermion;
- Tadpole improvement
- $0.001~\%$ level, as the

$$
S_{g}(g_{0}) = \frac{1}{N_{c}} \text{Re} \sum_{x, \mu < \nu} \text{Tr} \left[1 - 10/(g_{0}^{2} u_{0}^{4}) \left(\mathcal{P}_{\mu, \nu}^{U}(x) + \frac{1}{20u_{0}^{2}} \mathcal{R}_{\mu, \nu}^{U}(x) \right) \right]
$$

$$
S_{q}(m) = \sum_{x, \mu = 1, \dots, 4, \eta = \pm} \bar{\psi}(x) \sum \frac{1 + \eta \gamma_{\mu}}{2} V_{\eta\mu}(x) \psi(x + \eta \hat{\mu} a) + \sum_{x} \psi(x) \left[-(4 + ma)\delta_{y,x} + \frac{1}{v_{0}^{3}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{2}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{2}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{2}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{3}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{2}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{2}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{2}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{3}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{3}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{3}} \sigma_{y,x}^{2} + \frac{1}{v_{0}^{3}} \sigma_{y,x}^{2} +
$$

requires fine-tuning of the tadpole factors u_0 and u_I ;

• We tune those factors to the mistuning effect can be (100) enhanced in the hadron and quark masses.

• Tadpole improved Symanzik

Outline

• LQCD background and CLQCD ensembles

• Hadron masses and decay constants

Quark mass

- The RI/MOM renormalization targets to cancel the $\alpha_s \text{log}(a)$ divergences using the off-shell quark matrix element;
- Up to the $O(a^2p^2)$ correction which can be eliminated by the $a^2p^2\rightarrow 0$ extrapolation.

Renormalization through intermediate scheme

G. Martinelli, et.al, NPB445(1995)81, arXiv: hep-lat/9411010

$$
m_q^{\overline{\text{MS}}}(\mu) = \frac{Z_m^{\text{MOM},\text{Lat}}(Q,1/a)}{Z_m^{\text{MOM},\text{Dim}}(Q,\mu,\epsilon)} Z_m^{\overline{\text{MS}},\text{Dim}}(\epsilon) m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^m,\alpha_s^n)
$$

Quark mass

Perturbative renormalization

The RI/MOM renormalization constant of the quark mass under the lattice regularization

The RI/MOM and MS renormalization constants under the dimensional regularization are:

 $\alpha_{_S}C_F$ 4*π* $[-3\log(a^2\mu^2) - 5 + b_s]$ $m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^{2m}Q^{2m}, \alpha_s^n)$.

is:

$$
Z_m^{\text{MOM,Lat}}(Q,1/a,\xi) = (Z_S^{\text{MOM,Lat}}(Q,1/a,\xi))^{-1} = \langle q \, | \, \mathcal{O} \, | \, q \rangle^{\text{Lat}} = 1 + \frac{\alpha_s C_F}{4\pi} [-3\log(a^2 Q^2) - \xi + b_S] + \mathcal{O}(\alpha_s^2, a^2 Q^2);
$$

$$
Z_m^{\text{MOM,Dim}}(Q,\mu,\epsilon,\xi) = \langle q \, | \, \mathcal{O} \, | \, q \rangle^{\text{Dim}} = 1 + \frac{\alpha_s C_F}{4\pi} \left[\frac{3}{\tilde{\epsilon}} - 3\log\left(\frac{Q^2}{\mu^2}\right) - \xi + 5 \right] + \mathcal{O}(\alpha_s^2);
$$

$$
Z_m^{\overline{\text{MS}},\text{Dim}}(Q,\mu) = 1 + \frac{\alpha_s C_F}{4\pi} \frac{3}{\tilde{\epsilon}} + \mathcal{O}(\alpha_s^2);
$$

Thus the renormalized quark mass under the $\overline{\mathrm{MS}}$ scheme can be defined by: \overline{O}

$$
m_q^{\overline{\text{MS}}}(\mu) = \frac{Z_m^{\text{MOM,Lat}}(Q,1/a,\xi)}{Z_m^{\text{MOM,Dim}}(Q,\mu,\epsilon,\xi)} Z_m^{\overline{\text{MS}},\text{Dim}}(\epsilon) m_q^{\text{Lat}}(1/a) = (1 +
$$

- Obtain the regularization independent renormalization constant non-perturbatively: $Z^{\rm MOM}_{\rm S}$ $\frac{\alpha_s C_F}{S}$ (*Q*, *a*) = 1 – $\frac{\alpha_s C_F}{4\pi}$ 4*π* $[-3\log(a^2Q^2) - \xi + b_s] + \mathcal{O}(\alpha_s^2, a^2Q^2)$
- Calculate the matching coefficient perturbatively and obtain the result at $\overline{\mathsf{MS}}$ scale \mathcal{Q} : *Z*MS $\frac{\text{MS}}{\text{S}}(Q, a) = 1 - \frac{\alpha_s C_F}{4\pi}$ 4*π* $[-3\log(a^2Q^2) - 5 + b_s] + \mathcal{O}(\alpha_s^2, a^2Q^2)$
- Obtain the result at $\overline{\text{MS}}$ scale μ with the scale evolution:

$$
Z_S^{\overline{\text{MS}}}(\mu, a) = 1 - \frac{\alpha_s C_F}{4\pi} [-3\log(a^2 \mu^2) - 5 + b_S] + \mathcal{O}(\alpha_s^2)
$$

Quark mass

Non-Perturbative renormalization

Non-perturbative renormalization Restore the additive chiral symmetry breaking of Clover fermion

• Clover fermion also shows additional chiral symmetry breaking between Z_S and Z_P ;

 $Z_{S}\!\left\langle \pi\!\mid\!\bar{q}q\!\mid\!\pi\right\rangle$

• Light quark scalar matrix element (ME) from the direct calculation and Feynman-Hellman (FH) theorem $Z_P/Z_A \frac{\sigma H \pi}{\sigma R}$ are Z_P/Z_A ∂*m^π* $\partial m_q^{\rm PC}$

Hai-Yang Du, B.L. Hu, et. al., CLQCD, in preparation

consistent after the renormalization;

Renormalized quark masses Impact of the renormalization

- $m_{\pi}^2/m_q \sim \Sigma/F^2$ which is insensitive to the quark mass, with the partially quenching effect subtracted;
- The PCAC mass $m_q^{\rm PC} = \frac{\langle 0 | O_4 A_4 | PS \rangle}{2 \langle 0 | P | PS \rangle}$ has obvious 1/a and action dependences: ⟨0|∂4*A*⁴ |PS⟩ 2⟨0|*P*|PS⟩
- 1. Smaller with large intrinsic scale 1/a;
- 2. Very sensitive to the fermion action.
- RI/MOM renormalization eliminates both the dependences and makes m_π^2/m_q^MS of all the ensembles on a similar curve.

Determine the pure QCD quark masses

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

• $m_p = 938.27 \text{ MeV} = m_{p, QCD} + 1.00(16) \text{ MeV} + ...;$

• $m_n = 939.57 \text{ MeV};$

• $m_{\pi}^0 = 134.98 \text{ MeV};$

• $m_{\pi}^+ = 139.57 \text{ MeV} = m_{\pi}^0 + 4.53(6) \text{ MeV} + ...$ X. Feng, et,al. Phys.Rev.Lett.128(2022)062003

• $m_K^0 = 497.61(1) \text{ MeV} = m_{K,QCD}^0 + 0.17(02) \text{ MeV} + ...;$

 $m_K^+ = 493.68(2) \text{ MeV} = m_{K, \text{QCD}}^+ + 2.24(15) \text{ MeV} + \dots$

D. Giusti, et,al. PRD95(2017)114504

Quark mass

Z.-H. Hu, B.-L. Hu, J.-H. Wang, et. al., CLQCD, PRD109(2024) 054507

• Significantly suppress the strange quark mass dependence on each ensemble.

Use QED-subtracted m_{D_s} mass to determine the pure QCD valence charm quark mass; • $\Delta^{\rm QED}m_{D_s}$ is determined to be 2.3(4) MeV under the $m_{q,{\rm QCD+QED}}^{\rm MS}(2{\rm GeV})=m_{q,{\rm QCD}}^{\rm MS}(2{\rm GeV})$

-
-
- scheme.
- \bigcirc

Z.C. Hu, B.L. Hu, J.H. Wang, et. al. CLQCD, Phys.Rev.D109 (2024) 054507

Eliminate the effects from unphysical light and strange sea quark masses using the joint fit.

Quark mass

$$
m_{\eta_s} = 687.4(2.2) \text{ MeV}
$$

$$
m_{\eta_s} = 689.89(49) \text{ MeV}
$$

BMWc, Nature 593(2021)51

$$
m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.
$$

RM123, Phys.Rev.D100 (2019) 1904.08731

Use etas to determine the valence strange quark mass; \circ

Renormalized quark masses

Charm quark mass

Based on the extrapolation: $a^2 + a^4$

- The prediction based on the Overlap fermion (*χ*QCD) and also Clover fermion (CLQCD) agrees within 1-2%.
- Such a value is similar to the current lattice averages within $~1\%$.

Outline

• LQCD background and CLQCD ensembles

• Hadron masses and decay constants

• Quark mass determinations

• Additional input is required to determine $|V_{ud(s)}|$ separately and verify the unitarity of CKM.

Charmed meson spectrum

Open charm cases

$$
m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.
$$

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass

- m_D is almost constant at different lattice spacing, with $m_D^{\pm} - m_D^0 = 2.9(3)_{QCD} + 2.4(5)_{QED} = 5.3(3)(5)$ MeV; RM123, Phys.Rev.D95(2017) 114504
- Agree with the PDG value 4.8(1) MeV well.
- Both m_D^* and $m_{D_s}^*$ have obvious lattice *p* $\sum_{i=1}^s$ spacing dependence and the continuum extrapolated values agree with PDG well.

Charmed meson spectrum

 $m_D^{\rm QCD}$ *Ds* $= m_D^{\text{phys}}$ $\Delta_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$

charmonium cases

- $m_{J/\psi}$ agrees with PDG well but m_{η_c} is a few MeV lower;
- $m_{J/\psi} m_{n} = 118(3)$ MeV agree with previous HPQCD pure QCD prediction 119(1) MeV. $m_{J/\psi} - m_{\eta_c} = 118(3)$ MeV
- P-wave charmonium masses also agree with PDG well, with . $m_{1P} - m_{1S} = 451(11)$ MeV

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass

$m_{\pi^0} = 134.98 \text{ MeV}$ $w_0 = 0.1736(9)$ fm \longrightarrow $(m_u + m_d)^{\overline{\text{MS}}(2 \text{ GeV})} / 2 = 3.60(19)$ MeV $m_{\scriptscriptstyle K0}^{\rm QCD}$ *K*⁰ $= 497.44(02)$ MeV $m_{K^{\pm}}^{\textrm{QCD}}$ *K*[±] $= 491.44(15)$ MeV $m_u^{\text{MS}(2 \text{ GeV})} = 2.45(30) \text{ MeV}$ $m_d^{\overline{\text{MS}}(2\text{ GeV})}$ *d* $= 4.74(14)$ MeV $m_s^{\rm MS(2~GeV)} = 98.8(5.5)$ MeV $m_{D_s}^{\text{QCD}} = 1966.7(1.5) \text{ MeV} \longrightarrow m_c^{\overline{\text{MS}}(m_c)} = 1289(17)(01) \text{ MeV}$ *Ds* $= 1966.7(1.5)$ MeV $m_{\pi^{\pm}}(m_u, m_d)$ $\longleftarrow m_K(m_u^v)$ $m_{D_s}\!\!\left(m_c^{val},m_s^{val},m_l^{sea},m_s^{sea}\right)$ **Summary on SM para**

If $\frac{f_K}{f_\pi} = 1.1905(70)_{\text{lat}}$	
$\frac{ V_{us} }{ V_{ud} } \frac{f_K}{f_\pi} = 0.27683(29)_{\text{exp}}(20)_{\text{th}}$	
$ V_{ud} = 0.9740(03)_{\text{lat}}(01)$	
$ V_{ud} = 0.2265(13)_{\text{lat}}(03)$	
$ V_{ud} = 0.2265(13)_{\text{lat}}(03)$	
$ V_{ud} = 0.2102(33)_{\text{lat}}(03)$	
$ V_{ud} = 0.2102(33)_{\text{lat}}$ MeV	
$f_{D^+} V_{cd} = 45.8(1.1)_{\text{exp}}$ MeV	
$ V_{cd} = 0.2179(33)_{\text{lat}}(52)_{\text{exp}}$	
$f_{D^+} V_{cs} = 243.5(2.7)_{\text{exp}}$ MeV	
$ V_{cs} = 0.979(11)_{\text{lat}}(11)_{\text{exp}}$	
$f_{D_s^+} = 0.2487(28)_{\text{lat}}$ MeV	

Baryon spectrum

Nucleon case

o Sigma term based on FH theorem:

- o Previous Overlap result based on FH theorem: $\sigma_{\pi N}$ = 52(8) MeV;
- o Previous Overlap result based on direct ME calculation:

$$
\sigma_{\pi N} \equiv m_l \langle p | \bar{u}u + \bar{d}d | p \rangle = m_l
$$

 $=48.8(6.4)$ MeV;

$$
\sigma_{\pi N} = 46(7) \text{ MeV.}
$$

Baryon spectrum

of four light flavors

- Generally agree with the PDG values at 1% level;
- Mass difference of the light Octet and decuplet baryons comes majorly the trace anomaly which is ~300 MeV;
- Trace anomaly contribution to the charmed baryon is under investigation.
- The missing QED effect will be investigated in the near future.

Open charm cases

- Verified the unitarity of CKM matrix elements involving the charm quark: . $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2$ $= 1.008(23)(23)$
- Also provide the most precise f_{D^*} and $f_{D_s^*}$ so far.

$$
f_{D^{+}} = 0.2102(33)_{\text{lat}} \text{ MeV}
$$
\n
$$
\downarrow
$$
\n
$$
f_{D^{+}}|V_{cd}| = 45.8(1.1)_{\text{exp}} \text{ MeV} \longrightarrow |V_{cd}| = 0.2179(33)_{\text{lat}}(5)
$$
\n
$$
f_{D^{+}}|V_{cs}| = 243.5(2.7)_{\text{exp}} \text{ MeV} \longrightarrow |V_{cs}| = 0.979(11)_{\text{lat}}(1)
$$
\n
$$
\uparrow
$$
\n
$$
f_{D^{+}} = 0.2487(28)_{\text{lat}} \text{ MeV}
$$

S-wave charmonium

- Our prediction $f_{J/\psi} = 405.9(5.7)$ MeV is consistent with the experimental value 406.5(3.7)(0.5) MeV and also HPQCD prediction 409.6(1.6) MeV;
- We also predict $f_{\eta_c} = 398.1(4.6)$ MeV which is consistent with the HPQCD prediction 397.5(1.0) MeV. *ηc* $= 398.1(4.6)$

Other decay constants

• We also predict the transverse decay constant of the charmed vector mesons and also the decay constant of the P-wave charmonium, which can be verified

by the future experiments.

Summary

- The state-of-the-arts Lattice QCD ensemble should have enough ensembles to approach the continuum, infinite volume and physical quark masses reliably; and the present CLQCD ensembles have been close to this goal.
- Up, down, strange and charm quark masses have been determined at a few percent level;
- The charmed meson and baryon masses are predicted at ~0.3% uncertainty and agree with the experimental values at 1% level.
- More predictions are in progress.

