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Introduction to Hamiltonian
Effective Field Theory



Hadron Physics

mainly focused on hadron scatterings, spectra, structures,
interactions, etc.

traditional perturbation
expansion in series of (αs)n?

• constituent quark model

• effective field theory

• lattice QCD

• QCD sum rule
• large Nc
• ...
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Lattice QCD

• LQCD starts from the first principle of QCD
• model independent, reliable
• LQCD gives hadron spectra and quark distribution functions

at finite volumes, large quark masses, discrete spaces
• not directly related to physical observables
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Connection between Scattering Data and Lattice QCD Data

Lattice QCD

• large pion mass: extrapolation
• finite volume
• discrete space

Lattice QCD Data → Physical Data

• Lüscher Formalisms and extensions:
Model independent; efficient in single-channel problems

Spectrum → Phaseshifts;
• Effective Field Theory (EFT), Models, etc

with low-energy constants fitted by Lattice QCD data

Physical Data → Lattice QCD Data

• EFT: discretization, analytic extension, Lagrangian modification
• various discretization: eg. discretize the momentum in the loop
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Lattice QCD and Effective Field Theory

Effective field theory deals with extrapolation powerfully.

Finite-volume effect can be studied by discretizing the EFT.

Discrete spacing effects can also be studied with EFT.
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Scattering Data and Lattice QCD data are two important sources for studying resonances.

We should try to analyse them both at the same time.
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Hamiltonian Effective Field Theory

Hamiltonian Effective Field Theory (HEFT)
analyses both experimental data at infinite volume
and lattice QCD results at finite volume at the same time.

• at infinite volume
Lagrangian (via 2-particle irreducible diagrams) →

potentials (via Betha-Salpeter Equation) →
phaseshifts and inelasticities

• at finite volume
potentials discretized (via Hamiltonian Equation)→ spectra
wavefunctions: analyse the structure of the eigenstates on the lattice

• finite-volume and infinite-volume results are connected by the coupling constants etc.
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Odd-parity low-lying nucleon
excitations with pion
photoproduction



N∗(1535) with πN Scattering

N∗(1535) is the lowest resonance with I(JP) = 1
2 (

1
2
−
).

• One needs to consider the interactions
among the bare baryon N∗

0 , πN channel, and ηN channel.

G2
πN;N∗

0
(k) =

3g2
πN;N∗

0

4π2f2 ωπ(k)

VS
πN,πN(k, k′) =

3gS
πN

4π2f2
mπ + ωπ(k)

ωπ(k)
mπ + ωπ(k′)

ωπ(k′)
• Phase shifts and inelasticities

are obtained by solving Bethe-Salpeter equation with the interactions.

Tα,β(k, k′;E) = Vα,β(k, k′) +
∑
γ

∫
q2dq

Vα,γ(k, q)
1

E −
√

m2
γ1 + q2 −

√
m2

γ2 + q2 + iϵ
Tγ,β(q, k′;E)

8



N∗(1535) with πN scattering at infinite volume
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Our Pole: 1531 ± 29 − i 88 ± 2 MeV. Particle Data Group: 1510±20 − i 85 ± 40 MeV.

Z. W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas and J. J. Wu,
Phys. Rev. Lett. 116 (2016) no.8, 082004
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Discretization in finite volume

H0 = diag{m0
N1 , ωπN(k0), ωηN(k0), ωπN(k1), ωηN(k1), ...},

HI =



0 G̃πN(k0) G̃ηN(k0) G̃πN(k1) G̃ηN(k1) . . .

G̃πN(k0) ṼS
πN,πN(k0, k0) 0 ṼS

πN,πN(k0, k1) 0 . . .

G̃ηN(k0) 0 0 0 0 . . .

G̃πN(k1) ṼS
πN,πN(k1, k0) 0 ṼS

πN,πN(k1, k1) 0 . . .

G̃ηN(k1) 0 0 0 0 . . .
...

...
...

...
... . . .


,

where

G̃i(kn) =

√
C3(n)

4π (
2π
L )3/2Gi(kn),

ṼS
i,j(kn, km) =

√
C3(n)C3(m)

4π (
2π
L )3VS

i,j(kn, km).

C3(n) represents the number of summing the squares of three integers to equal n.
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels
Eigenenergies of Hamiltonian effective field theory

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1200

1400

1600

1800

2000

E
/M

eV

non-int. π-N energy

non-int. η-N energy

matrix Hamiltonian model

CSSM

Cyprus

L ≈ 3 fm

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1200

1400

1600

1800

2000

E
/M

eV

non-int. π-N energy

non-int. η-N energy

matrix Hamiltonian model

Lang & Verduci

JLab

L ≈ 2 fm

N∗ Spectra with I(JP) = 1
2 (

1
2
−
) at finite volumes 11



Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory
Coloured lines indicating most probable states observed in LQCD
We not only provide the mass but also analyze why some states are observed on the lattice
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Components of Eigenstates with L ≈ 3 fm
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• The 1st eigenstate at light quark masses is mainly πN scattering states.
• The most probable state at physical quark mass is the 4th eigenstate.

It contains about 60% bare N∗(1535), 20% πN and 20% ηN.
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Components of Eigenstates with L ≈ 3 fm
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Pion Photoproduction off Nucleon with Hamiltonian EFT

• combining
• πN → πN
• lattice QCD data
• γ + N → π + N

• γ + N → π + N
• γNN etc. couplings are not adjusted

EM

γ π

N N

+ EM FSI

γ π

N N

M(γN → πN) ∼ MEM(γN → πN)

+MEM(γN → πN)⊗MFSI(πN → πN)

+MEM(γN → ηN)⊗MFSI(ηN → πN)

• Finite State Interaction (FSI) part has been determined previously
• understand the structure of N(1535) and the interactions of πN/ηN at low energies and near

the resonance
• necessities for the photon-nucleus investigation
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Electromagnetic Multipoles

• |γN⟩ → |ϕ (⃗k), N(−k⃗, s′Nz )⟩, kx, ky, kz, s′Nz
• |γN⟩ → |ϕN; k, J, Jz, L⟩ , k, J, Jz, L
• |γN⟩ → |ϕN; k, J, Jz, λ′

N⟩ , k, J, Jz, λ′
N

Vα,γN(J, λ′
N, λγ , λN; k, q) = 2π

∫ 1

−1
d(cos θ)

∑
s′Nz

dJ
λγ−λN,−λ′

N
(θ)d1/2

s′Nz ,−λ′
N
(θ)∗Mα,γN(s′Nz , λN, λγ ; k⃗, q⃗),

VJLS;λγλN
α,γN (k, q) =

√
2L + 1
2J + 1

∑
λ′

N

⟨L,S, 0,−λ′
N|J,−λ′

N⟩

×Vα,γN(J, λ′
N, λγ , λN; k, q).

D. Guo and Z. W. Liu, Phys. Rev. D 105 (2022) no.11, 11
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Electric dipole amplitudes E0+
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Estimation of the N∗(1650) contribution
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Couplings for the effective vertices are
extracted from the decay widths of
N∗(1650).
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Therefore, we updated our results by

Explicitly including N∗(1650) as well as N∗(1535)
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Explicitly including N∗(1650) as well as N∗(1535)

In Phys. Rev. D 108 (2023) 9, 094519, we consider

• two bare baryon states N1 and N2;
• πN, ηN, and KΛ;
• more experimental data with larger energies (1.60, 1.75) GeV.
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Pole positions for N∗(1535) and N∗(1650)

In the Particle Data Group (PDG) tables,
the poles for the two low-lying odd-parity
nucleon resonances are given as

EN∗(1535) = 1510 ± 10 − (65 ± 10)i MeV ,

EN∗(1650) = 1655 ± 15 − (67 ± 18)i MeV .

Using HEFT, two poles for N∗(1535)
and N∗(1650) in the second Riemann
sheet are found at energies

E1 = 1500 − 50i MeV ,

E2 = 1658 − 56i MeV .

Our results are in excellent agreement with the PDG pole positions.
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Finite-volume spectrum
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Electric dipole amplitudes E0+ with two bare states
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The bare core in N∗(1535)
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γ π

N N

+ EM FSI

γ π
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• If N∗(1535) has no bare core, it would play roles ONLY in finite state interaction
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• If with bare core, N∗(1535) also plays roles in electromagnetic potential
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The bare core in N∗(1535) cannot be absent in pion photoproduction
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Yu Zhuge, Zhan-Wei Liu, Derek B. Leinweber, Anthony W. Thomas, arXiv: 2407.05334.
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Low-lying Baryons

Much more scattering data on low-lying baryons, N∗(1440), N∗(1535), Λ(1405) compared to
those for large-mass resonances or charmed hadrons.

Naive quark model predicts wrong mass order for N∗(1440) & N∗(1535).

IF: harmonic oscillator form for confinement potential
Then: E = (2nr + L + 3/2)ω
N∗(1440): nr = 1, L = 0 =⇒ E = 7/2ω
N∗(1535): nr = 0, L = 1 =⇒ E = 5/2ω

Λ(1405) is with smaller mass than N∗(1535) in JP = 1/2− octet even if it contains an s quark.

Triquark or pentaquark state?

...
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Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

vI =
∑
α,β

∫
d3k⃗ d3k⃗′ |α(⃗k)⟩VI

α,β(k, k′) ⟨β(⃗k′)| ,

Vα,β(k, k′) = gα,β
ωαM(k) + ωβM(k′)

8π2f2
√

2ωαM(k)
√
ωβM(k′)

|α⟩=|πΣ⟩, |K̄N⟩, |ηΛ⟩, |KΞ⟩, |πΛ⟩
• two scenarios: with or without a bare baryon

gI =
∑
α,B0

∫
d3k⃗

{
|α(⃗k)⟩GI†

α,B0
(k) ⟨B0| + |B0⟩GI

α,B0(k) ⟨α(⃗k)|
}
,

where
GI
α,B0(k) =

√
3 gI

α,B0

2πf
√

ωπ(k) u(k).

HI
int = gI + vI.
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Λ(1405) with K−p scattering

We can fit the cross sections of K−p well both with and without a bare baryon.
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experimental data

Two-pole structure of Λ(1405): 1424 − i 67 MeV, 1428 − i 24 MeV ;

Pole for Λ(1670): 1674 − i 11 MeV.
J.-J. Liu, Z.-W. Liu, K. Chen, D. Guo, D. B. Leinweber, X. Liu, A. W. Thomas, Phys. Rev. D 109 (2024) 5, 054025. 26



Spectrum on the Lattice
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Λ Spectra with S = −1, I(JP) = 0( 1

2
−
) in the finite volume.

• The bare baryon is important for interpreting the lattice QCD data at large pion masses.
• The bare triquark core is important for Λ(1670).
• Λ(1405) is mainly a K̄N molecular state.

containing very little of bare baryon at physical pion mass.

J.-J. Liu, Z.-W. Liu, K. Chen, D. Guo, D. B. Leinweber, X. Liu, A. W. Thomas, Phys. Rev. D 109 (2024) 5, 054025.
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Comparison with recent BaSc lattice simulations

Λ Spectra with S = −1, I(JP) = 0( 1
2
−
)

in the finite volume
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• The BaSc lattice collaboration
obtained all HEFT states with
multiquark interpolating operators;

• The right HEFT results with bare Λ

fit the lattice simulations better;

• The left HEFT results without bare
triquark core lose the 1σ consistence
with the lattice simulations.

Baryon Scattering (BaSc) Collaboration, Phys.Rev.Lett. 132 (2024) 5, 051901; Phys.Rev.D 109 (2024) 1, 014511

J.-J. Liu, Z.-W. Liu, K. Chen, D. Guo, D. B. Leinweber, X. Liu, A. W. Thomas, Phys. Rev. D 109 (2024) 5, 054025. 28



Even-parity low-lying nucleon
excitations with pion
photoproduction



N∗(1440) Resonance

• N∗(1440), usually called Roper , is the excited state I(JP) = 1
2 (

1
2
+
)

• Naive quark model predicts mN∗(1440) > mN∗(1535)
if they are both dominated by 3-quark core. But contrary to experiment.

To check whether a 3-quark core largely exists in Roper, we consider models

• with a bare Roper

• without any bare baryons

• including the effect of the bare nucleon

Z. W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas and J. J. Wu, Phys. Rev. D 95 (2017) no.3, 034034.
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N∗(1440) Resonance
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πN scattering with I(JP) = 1
2 (

1
2
+
)

• with a bare Roper
• without any bare baryons
• including the effect of the bare nucleon

Z. W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas and J. J. Wu, Phys. Rev. D 95 (2017) no.3, 034034. 29



An original figure from later lattice QCD work
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from Lang, Leskovec, Padmanath, Prelovsek, PRD95 (2017) no.1, 014510. 30



Extension of the Roper work

In Phys. Rev. D 97 (2018) no.9, 094509, we extended our Roper work.

• We considered effects of a resonance with bare mass/pole around 2 GeV;

• Constituent quark model with harmonic oscillator potential predicts
mass of first radially excited nucleon is approximately 2 GeV.
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The M1− multipole amplitudes
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Yu Zhuge, Zhan-Wei Liu, Derek B. Leinweber, Anthony W. Thomas, arXiv: 2407.05334.
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The bare core is not important for the M1+ in the low-energy region
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Summary



Summary

• Combined with pion photoproduction data, lattice QCD simulations, and so on,
• N∗(1535) contains a 3-quark core;
• N∗(1440) and Λ(1405) contain little of 3-quark constituents;

but the 3-quark cores should also exist and contribute to heavier resonances.

• Of course there are other interpretations for these low-lying resonances,
and we have not considered all available data,
such as electroproduction measurements and associated helicity amplitudes.
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Thank you for your attention!
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