

Short-Range Correlations Study at HIAF

Zhihong Ye (叶志鸿)

Department of Physics, Tsinghua University

12th Hadron Workshop, Dalian, 08/05-08/09, 2024

Nucleons in Nuclei

- Strong Force vs Nuclear Force
 - Nuclear force is a "weak" strong force, but too complicated for QCD in description of Nuclei
 - □ Suprisedly, shell-models work very well
 - ✓ Sum of nucleon-nucleon(NN) Interactions → mean field
 - ✓ Modern NN potentials, e.g. AV18

$$V = \sum_{i} \bar{V}(i) + \sum_{i < j} V^{(2)}(i, j) + \sum_{i < j < k} V^{(3)}(i, j, k) + \dots$$

- NN terms fitted from data
- Too hard for NNN and beyond
- Short range part (non-nucleonic)?

TABLE I. Argonne V18 spin-isospin operators in coordinate space.

Term	Spin-isospin operator in r space
$\overline{O_1}$	I
O_2	$(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_3	$(\boldsymbol{\sigma}_1\cdot\boldsymbol{\sigma}_2),$
O_4	$(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_5	$S_{12} = 3(\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{r}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{r}}) - \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$
O_6	$S_{12}(\boldsymbol{ au}_1\cdot\boldsymbol{ au}_2),$
O_7	$(\mathbf{L} \cdot \mathbf{S})$
O_8	$(\mathbf{L} \cdot \mathbf{S})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_9	$(\mathbf{L} \cdot \mathbf{L})$
O_{10}	$(\mathbf{L} \cdot \mathbf{L})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_{11}	$(\mathbf{L} \cdot \mathbf{L})(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$
O_{12}	$(\mathbf{L} \cdot \mathbf{L})(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
<i>O</i> ₁₃	$(\mathbf{L} \cdot \mathbf{S})^2$
O_{14}	$(\mathbf{L} \cdot \mathbf{S})^2 (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
<i>O</i> ₁₅	$T_{12} = (3\tau_{1z}\tau_{2z} - \boldsymbol{\tau}\cdot\boldsymbol{\tau})$
<i>O</i> ₁₆	$(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)T_{12}$
<i>O</i> ₁₇	$S_{12}T_{12}$
O_{18}	$(au_{1z}+ au_{2z})$

Nucleons in Nuclei

Momentum Distribution

- Short Range Correlations (SRC)
 - □ 2 or more nucleons highly overlapped \rightarrow high-density but <u>cold</u>!
 - □ SRC nucleons carry high relative momenta (A-independent)
 - **Experimental signals:**
 - ✓ Look for back-to-back nucleons after breaking up SRC

- Studying SRC is important
 - □ Short-Range forces are the extreme cases of NN & NNN forces
 - □ SRC could be important in forming neutron-rich nuclei

□ SRC in the mass matrix for neutrino-less double beta decay?

Wang, Zhao, Meng, arXiv: 2304.12009, Song, Yao, Ring, Meng, Phys. Rev. C 95, 024305

Exclusive SRC Results

□ Exclusively count np-/pp-/nn-SRC pairs \rightarrow np make up 90% of SRC pairs

proton "speed up" with neutron excess

C Similar np-dominances in heavy nuclei \rightarrow universality?

O. Hen et al., Science (2014), M. Duer et. al., Nature (2018), B. Schmookler et. al. Nature (2019), A. Schmidt et. al Nature (2020) + many others

Cautions:

- Exclusive results are statistics limited
- Mixed with mean-field and long-range NN signals
- Complicated FSI corrections
- Limited stable nuclei

□ Heavy to light nuclei have similar high-P tails

 \rightarrow look for a plateau

✓ 2N-SRC (1.3<_{xbj}<2):
$$a_2(A, D) = \frac{2}{A} \frac{\sigma_A(x, Q^2)}{\sigma_D(x, Q^2)}$$
,
✓ 3N-SRC (2<_{xbj}<3): $a_3(A, {}^{3}He) = \frac{3\sigma_A}{A\sigma_{{}^{3}He}}$

□ Inclusive vs Exclusive:

- High precision, small FSI
- Not direct probing np-SRC internal info

►2N-SRC

Frankfurt, Strikman, Day, Sargsian, PRC48, 2451 (1993)

Compared with exclusive SRC Korover and Denniston et al.,CLAS, PRC 107, L061301 (2023) 27

□ Non-Universal in light nuclei?

S. Li, R. Cruz-Torres, N. Santiesteban, Z. Ye, et. al, Nature, 2022, 609: 41

SRC vs EMC

- □ EMC: Inclusive DIS A/D XS ratio drops linearly in 0.3<x<0.7
 - 40 years after discovery, still unknown!
- □ Connection with SRC?
 - Modification in all nucleons or partially?

□ C12-21-004 w/ new Tritium target (+ 2nd Tritium-SRC)

SIDIS Measurement of A=3 Nuclei with CLAS12 in Hall-B

Conditionally approved in PAC49

On behalf of the spokespeople:

D. Dutta, D. Gaskell, O. Hen, D. Meekins, D. Nguyen, L. Weinstein*, J. R. West, Z. Ye,

and the CLAS Collaboration

► 3N-SRC

□ Much higher relative momenta

□ Much denser cluster (Neutron-Star, Nuclear Matter)

Bi-neutron-stars merger: neutron star > 2.4 solar mass \rightarrow Short-Range 3-body force?

□ Inclusive Measurement: XS links to the 3N-SRC tails SN-SRC (2<x<3) $a_3(A, {}^{3}He) = K \cdot \frac{3\sigma_A}{A\sigma_{_{3}He}}$ New E08014 (23, 25, 1.5<Q²<1.9 GeV²) E02019 (18, $Q^2=2.7 \text{ GeV}^2$) $(\sigma_{^4\mathrm{He}}/4)/(\sigma_{^3\mathrm{He}}/3)$ CLAS Ο Ye, Phys. Rev. C 97, 065204 (2018) 2.0 2.5 1.5 Х

Missing 3N-SRC?

• CLAS result has big background

Higinbotham & Hen, PRL 114,169201 2015)

- Q^2 too low to see 3N-SRC?
- Much bigger FSI?

"Muti-messenger" era

Measuring SRC w/ Inverse-pA

- ➤ Advantage vs eA Scattering
 - \Box Bigger cross-sections \rightarrow Precision and discovery
 - \Box Easier detection of fragments \rightarrow Suppress mean field contribution
 - \Box Better controlled FSI \rightarrow Reduce theoretical systematic errors
 - \square Secondary ion beams \rightarrow Large asymmetric nuclei, radioactive isotopes

12/28

Measuring SRC w/ Inverse-pA

□ Pioneer experiment at BM@N

- Test run in 2018, results publised ٠
- 12 C beam, 3.5 4 GeV/c/nucleon ٠
- Identify fragments:

- Detection of two outgoing nucleons ٠
- Reconstruct initial nucleon momentum: ٠ $P_{\text{miss}} = P_1 + P_2 - P_{\text{beam}}$

M. Patsyuk et al. Nature Physics 17, 693 (2021)

► JINR BM@N SRC Experiments

- □ Single nucleon quasi-free knock-out
 - •
 - ٠

□ Selection of 2N-SRC Pairs

M. Patsyuk et al. Nature Physics 17, 693 (2021)

Measuring SRC w/ Inverse-pA

JINR BM@N SRC Experiments

□ 2018 run firstly demonstrated advantage of inverse-pA reaction in SRC study

M. Patsyuk et al. Nature Physics 17, 693 (2021)

□ 2022 run completed

- ✓ JINR, GSI, MIT, Tel Aviv, Tsinghua ...
- ✓ Improve statics x100
- ✓ Detection of n & p recoils
- ✓ Multi-fragment reconstruction
- \checkmark Absolute cross-section (in preparing)

15/28

Measuring SRC w/ Inverse-pA

Vasilisa

Lenivenko

(JINR)

> JINR BM@N SRC Experiments

Timur

Atovuallev

□ Preliminary results of 2022 run, under analysis by:

Sergey

Nepochatykh

(JINR)

Yaopeng

Zhang

(Tsinghua U)

Maria Patsyuk (JINR)

✓ X10 more statistics vs 2018 run ✓ First extraction of absolute XS

Measuring SRC w/ CEE@HIRFL

P: 2.8 GeV

\succ CEE(*a*)HIRFL-CSR

17/28

- □ HIRFL-CSR comparable with GSI:
 - \checkmark 1.0GeV/u @10⁵pps vs 1.25GeV/u@1x10⁵pps
- **CSR** External-Target Experiment (CEE):
 - ✓ Physics Goals: QCD phase boundary at low T, nuclear E.O.S. at $\rho > 2\rho_0$ regime, Interplay with Neutron Star Physics
 - \checkmark Expected to commission in early 2025

- $\Delta p/p: \leq 5\%, \Delta t/t: \leq 50 ps$
- Max. Rate: 10 kHz
- Proton acceptance: ~ 85%

ZDC

eTOF

CEE

Measuring SRC w/ CEE@HIRFL

HIRFL-CSR beam

P: 2.8 GeV

•

 $^{12}C^{+}$: 1 GeV/u

 $^{238}U^+$: 0.5 GeV/u

≻ CEE@HIRFL-CSR

18/28

- □ HIRFL-CSR comparable with GSI:
 - ✓ 1.0GeV/u @10⁵pps vs 1.25GeV/u@1x10⁵pps
- Using CEE w/ additional changes:
 - ✓ Liquid hydrogen (LH2) target
 - ✓ Replace ZDC w/ a new detectors for A-2 fragments
 - ✓ Possibly a new dipole

Measuring SRC w/ CEE@HIRFL

➤ CEE@HIRFL-CSR

Goals:

- \checkmark Precision nuclear wave functions
- ✓ Define MF & SRC transition regions
- ✓ Check FSI corrections
- \checkmark Other quasi-free knockout & pickup reactions

PRC 92 (2015), PLB 780 (2018), PLB 791 (2019), PLB 792 (2019), JPG 47 (2020), Nature Physics 17 (2021), PRC 104 (2021), PRC 53 (1996), PRL 119 (2017)

p_{miss} (MeV/c)

Korover PRC 107, L061301 (2023)

 $(\sigma^{12}C/12) / (\sigma_d/2)$

0.8

1.0

XB

Measuring SRC w/ CEE@HIRFL

≻ LH2 Target:

20/28

Under development by Hongna Liu, Beijing Normal University (BNU)

()) 济華大学 Tsinghua University

Measuring SRC w/ CEE@HIRFL

≻ CEE@HIRFL-CSR

21/28

□ Monte-Carlo simulation of SRC w/ CEE@HIRFL

 $^{12}C^{+} (p,ppn)^{10}B^{+}$

Measuring SRC w/ CEE@HIRFL

≻ CEE@HIRFL-CSR

□ Fragment detection w/ standard CEE setup

- ✓ Fragment-Detector at 4m downstream
- ✓ Same magnetic field as 0.5T

□ Not yet considered:

- Detector resolution & efficiencies
- Background

≻ CEE@HIRFL-CSR

□ Fragment detection w/ standard CEE setup

- ✓ Fragment-Detector at 4m downstream
- ✓ Increase magnetic field to 1.0T

Measuring SRC @HIAF

➢ HIAF-High-Energy Station

- HIAF construction to be completed in 2025 (see Dr. He Zhao's talk on Aug. 5th) :
 - C12, E=51 GeV/c (4.25GeV/c/u) \rightarrow similar to NICA
 - 1.8×10^{12} pps (fast extr.), 4.5×10^{11} pps (slow extr.) vs. 3.5×10^{4} pps at JINR
 - LH2 = 0.073 g/cm3 x 15 cm
 - Total Luminosity = 3×10^{35} cm⁻² s⁻¹ (slow ext)

Measuring SRC @HIAF

- HIAF-High-Energy Station
 - □ Precision frontier for SRC in HES:
 - Mapping 2N-SRC at all kinematic
 - Search 3N-SRC

Measuring SRC @HIAF

- HIAF-High-Energy Station
 - □ Precision frontier for SRC in HES:
 - Mapping 2N-SRC at all kinematic
 - Search 3N-SRC

Challenges:

- CEE@1.0T won't easily separate C12 and fragments
- LH2 Target at high luminosity
- FEE, DAQ

□ A brand new detector?

Measuring SRC @HIAF

factor

enhancement

np/pp SRC

20

10

5

101

≻ HIAF-HFRS

□ Radioactive ion beams are produced at HFRS

□ Study 2N-SRC w/ radioactive isotopes from HFRS

 $\checkmark\,$ Neutron-rich nuclei vs fixed "isoscaler" nuclei

Maximum rigidity	25 Tm
Resolving power	800, 700, 1100
Momentum acceptance	± 2.0%
Angular acceptance	± 30 mrad (x) ± 15 mrad (y)
Beam size	± 1 mm (x) ± 2 mm (y)
Total length	192 m

Summary

- SRC allows fully studies of nuclear force, quark & gluon in nuclei, neutron stars, etc.
- > 2N-SRC well studied (np-dominate); 3N-SRC remains unseen
- > Inverse kinematic pA reaction \rightarrow Precisely study SRC
- ▶ Initial exploration with JINR & GSI & CEE@HIRFL,
- \succ Precision frontier SRC study with HIAF \rightarrow more simulation and optimization on ongoing!
- □ Most of simulation works done by TMEG undergraduate <u>Haocen Zhao</u>, & also graduate: Haojie Zhang, Yaopeng Zhang
- In close collaboration with: Eli Piasetzky (Telv Aviv), Maria Patsyuk (Dubna), Hongna Liu (BNU), Or Hen&Julian

Kahlbow & Hang Qi (MIT), Xionghong He & Hao Qiu & Yapeng Zhang (IMP), ...

✓ Supported by NSFC "Joint NSFC-ISF Research Grant" under funding#12361141822

Backup Slides

Nucleus-scattering with high momenta

Quasi-Elastic Scattering (QES): Knock out a nucleon but not breaking it

Beam Particle:

• Electron

- Pro: Precise, low background
- Con: small cross-section (EM)

• Proton:

- Pro: large cross-section (Strong)
- Con: Less precise, high background

"Target":

- Fixed (Gas, Liquid, Solid)
 - Pro: Luminosity=Density, most of stable nuclei (atoms) available
 - Con: Knocked-out nucleon, residuals hard to escape
- Ion Beam:
 - Pro: detector final state particles w/ high momenta
 - Con: Luminosity=current, limited ion beams

- Two Types of Detector Systems
 - SRC has small reaction rates → Precision vs. Coverage

Hall-A HRS / Hall-C HMS (High-Precision, Limited Acceptance);

Add third-arm to detector p/n

• SRC Event Selection

□ Conditions: Knock-out nucleons, initial and final nuclear systems both in ground state → QES tail on the low-E side

Quantities:

Momentum Fractions: $x = \frac{Q^2}{2m_p v}$ Four Momentum Transfer: $Q^2 = 4E_0 E' \sin^2(\theta/2)$

 \Box Remove mean-field contribution \rightarrow k>k_{Fermi}

- Directly measure high-P knock-out nucleons \rightarrow strong FSI
- $1 < x < A \rightarrow$ "quark" takes addition momenta from nucleon-motion
- □ Control FSI in semi-(exclusive) measurements (very hard!):
 - High-Q² to minimum the time of escaping \rightarrow less re-scattering
 - Measure knocked out nucleons at special kinematics with min/max FSI
 - Combine with theories models for additional corrections

Isospin Dependence

Tensor force favor neutron-proton pairs

Proton \rightarrow T= 1/2, Neutron \rightarrow T= -1/2

Isospin Singlet: T = 0, n-p pairs ✓ Stable! due to Pauli Principle

Isospin Triplet: T = 1, p-p (T_z =1), n-p (T_z =0), and n-n (T_z =-1)

 $\overline{p_1}$

 $\vec{p_3}$

□ Many final-state combinations after breaking up 3N-SRC

□ Impossible w/ eA exclusive measurement → need detect 3 high-P nucleons at all possible momenta

□ Inclusive Measurement: XS links to the 3N-SRC tails

3N-SRC (2<x<3)

 $a_3(A,{}^{3}He) = K \cdot \frac{3\sigma_A}{A\sigma_{_{3}He}}$

• 2nd plateau?

Measuring SRC w/ Inverse-pA

> Other ongoing/future Experiments

35/28

□ 3rd Gen experiment in HyperNIS@JINR: non-nucleonic d.o.f in Deutron

$$A_{zz} = \frac{(\sigma_{-} + \sigma_{+} - 2\sigma_{0})}{\sigma_{unpol}}$$

□ SRC w/ rare radioactive isotope at R³B@GSI

- ¹⁶C(p,2pN)A-2* in 2022.
- Future: 110,120,132 Sn (N/Z = 1.20, 1.40, 1.64)

SRC at HADES@GSI

- 4.5GeV p on fixed nuclear targets
- Search for 3N-SRC signals in A(p,2pNN)

by Hooi-Jin Ong

SBC Workshop 20

light-ion

Image: RIKEN-SAMURAI spectrometer

heavy-ion detectors

Bremsstrahlung γ generated from SRC (Y.H. Qin & Z.G. Xiao, Physics Letters B 850, 138514 (2024))

Tensor-force project @IMF

 $\theta_{c.m.}$ (deg)

K. Sekiguchi et al., PRL95, 162301(2004)

SRC Workshop 2023