12th Workshop on Hadron Physics and Opportunities Worldwide

Probing Nuclear Structure at the Ultra-Relativistic Heavy-Ion Collisions

Zhiyong Lu

China Institute of Atomic Energy, Beijing, China

Nuclear structure at low energies

Atomic nuclei have rich phenomenology. Rooted in the strong nuclear force. Nuclear structure is a very old field. Many different approaches.

Modern ab-initio methods have successfully described light nuclei with A \leq 50

For heavy nuclei, computational complexity rapidly arises due to the increasing number of nucleons

Nuclear structure at high energies

From final state to nuclear structure

nucleon density described by Woods-Saxon profile

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{[r-R(\theta,\phi)]/a_0}},$$

$$R(\theta,\phi) = R_0(1+\beta_2[\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}]),$$

 β_2 : overall deformation parameter a_0 : diffuseness parameter

From final state to nuclear structure

nucleon density described by Woods-Saxon profile

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{[r-R(\theta,\phi)]/a_0}},$$
$$R(\theta,\phi) = R_0(1+\beta_2[\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}]),$$

 γ : traxiality parameter

overlap

overlap

overlap

From final state to nuclear structure

Most of nuclear structure studies on GeV energies are inplemented in the isobar runs of ${}^{96}Ru+{}^{96}Ru$ and ${}^{96}Zr+{}^{96}Zr$ in RHIC

B. Bally et al., Phys.Rev.Lett. 128 (2022) 8, 082301

129Xe

¹²⁹Xe is predicted to have deformed and triaxial structure ($r_1 \neq r_2 \neq r_3$).

J. Jia, Phys. Rev. Lett. 131 no. 2, (2023) 022301
J. Jia, Chin. Phys. Lett. 40 no. 4, (2023) 042501
S. Zhao, Phys. Lett. B 839 (2023) 137838
etc...

 $\beta_2 = 0.2, \gamma = 30^{\circ}$

J. Jia, Phys.Rev.C 105 (2022) 4, 044905

At the LHC,

129Xe

Centrality determination

A very important value in NS at high energies

Centrality: a percentage of the hadronic cross section corresponding to a particle multiplicity, directly related to the impact parameter

0% centrality: almost fully overlap 90% centrality: peripheral collisions

ALICE detector and data sample

1. Inner Tracking System (ITS)

• Tracking and triggering

2. V0 detector

- Triggering and event
- centrality determination

3. Time Projection Chamber (TPC)

• Tracking

Kinematic region: $0.2 < p_T < 3.0 \text{ GeV/c}$ $|\eta| < 0.8$

Anisotropic flow

10

Sensitivity in model

stronger initial geometric anisotropy (more elliptical)

larger β_2

stronger azimuthal anisotropy larger v_2

AMP1: Z. Lu et al., Eur. Phys. J. A (2023) 279, arXiv:2309.09663

Sensitivity in model

AMPT: Z. Lu et al., Eur. Phys. J. A 59 (2023) 279, arXiv:2309.09663

60

Centrality percentile

different azimuthal distributions of final-state particles

Probe nuclear deformation of ¹²⁹Xe with flow

- Significant v₂ enhancements in central Xe-Xe collisions
- LHC data clearly suggests a non-zero β_2 (deformation of ¹²⁹Xe)

Probe nuclear deformation of ¹²⁹**Xe with differential flow**

Probe deformation of ¹²⁹Xe with $\Psi_n - \Psi_m$ correlation

 $\rho_{422} \approx \langle \cos(4\Psi_4 - 4\Psi_2) \rangle$

ψ4

For Pb–Pb

Central collisions:

- Initial ϕ_2 , ϕ_4 randomly fluctuate, weak correlations
- $<\cos 4(\psi_2 \psi_4) > \text{ is small}$

Peripheral collisions:

- Initial φ_2 , φ_4 tend to align, strong correlations
- $<\cos 4(\psi_2 \psi_4) > \text{ is large}$

• A stronger correlation is observed in the Xe-Xe collisions because of deformation

Probe nuclear shape of ¹²⁹Xe with systematic flow studies

- Promising sensitivities to the nuclear deformation β_2 in central Xe-Xe collisions and nuclear skin a_0 in the mid-central collisions
- Insensitive to triaxial structure

Radial flow and [p_T] correlation

system expansion leads to an additional overall boost in momentum

Size of the QGP: radial flow, [p_T]

Radial flow and [p_T] correlation

ALICE, PRC88 (2013) 044910, PRL111 (2013) 222301

[G. Giacalone et al., PRC103 (2021) 2, 024909]

8-Aug-2024

Radial flow and [p_T] correlation

Multi-particle [p_T] correlations:

[p_T] and its event-by-event fluctuations measured in heavy-ion collisions at the LHC -> probe initial size and size fluctuations

Probe NS of ¹²⁹Xe with 2-particle [p_T] correlation

$$[p_{\mathrm{T}}^{(m)}] = rac{\displaystyle\sum_{k_1
eq \ldots
eq k_m}^M w_{k_1}\cdot\ldots\cdot w_{k_m} p_{\mathrm{T},k_1}\cdot\ldots\cdot p_{\mathrm{T},k_m}}{\displaystyle\sum_{k_1
eq \ldots
eq k_m}^M w_{k_1}\cdot\ldots\cdot w_{k_m}},$$

[p_T] cumulants in recursion formula:

$$\kappa_m = \langle [p_{\mathrm{T}}^{(m)}] \rangle - \sum_{k=1}^{m-1} \binom{m-1}{k-1} \langle [p_{\mathrm{T}}^{(m-k)}] \rangle \kappa_k$$

Final state cumulant	Initial state cumulant	Liquid-drop model
κ_2	$\left< \left(rac{\delta d_\perp}{d_\perp} ight)^2 \right>$	$rac{1}{32\pi}\langleeta_2^2 angle$
κ_3	$\left< \left(rac{\delta d_\perp}{d_\perp} ight)^3 \right>$	$rac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)eta_2^3 angle$

$$d_{\perp} = \sqrt{N_{\mathrm{part}}/\langle r_{\perp}^2
angle},$$

These two-particle p_T correlations provide a new way to probe deformation structures of ¹²⁹Xe

Probe NS of ¹²⁹Xe with multi-particle [p_T] correlation

$$[p_{\mathrm{T}}^{(m)}] = rac{\displaystyle\sum_{k_1
eq \dots
eq k_m}^M w_{k_1} \cdot \dots \cdot w_{k_m} p_{\mathrm{T},k_1} \cdot \dots \cdot p_{\mathrm{T},k_m}}{\displaystyle\sum_{k_1
eq \dots
eq k_m}^M w_{k_1} \cdot \dots \cdot w_{k_m}},$$
 $\kappa_m = \langle [p_{\mathrm{T}}^{(m)}]
angle - \sum_{k=1}^{m-1} inom{m-1}{k-1} \langle [p_{\mathrm{T}}^{(m-k)}]
angle \kappa_k.$
Final state Initial state Liquid-drop model
 $rac{1}{\kappa_2} \left\langle \left(rac{\delta d_{\perp}}{d_{\perp}}
ight)^2
ight
angle rac{1}{32\pi} \langle eta_2^2
angle}{\displaystyle\kappa_3} \left\langle \left(rac{\delta d_{\perp}}{d_{\perp}}
ight)^3
ight
angle rac{\sqrt{5}}{896\pi^{3/2}} \langle \cos(3\gamma) eta_2^3,$

• Multi-particle [p_T] correlation reflects the initial size fluctuations, also bring new information on the triaxial structure.

v_n-[p_T] correlations

23

Probe triaxial structure of ¹²⁹Xe

- "Standard" flow observables fail to probe γ (EPJA 59 (2023) 279)
- v_n -[p_T] correlations have significant sensitivities to γ
- Better agreement between LHC data and calculations with $\gamma = 26.93^{\circ}$

Neutron skin of ²⁰⁸Pb

PRL 131, 202302

Extracting neutron skin of ²⁰⁸Pb

CERN

Thick-skinned: Using heavy-ion collisions at the LHC, scientists determine the thickness of neutron "skin" in lead-208 nuclei

This is the first measurement of the neutron skin of lead-208 using exchanges predominantly involving gluons and it can provide insight into the structure of nuclei and neutron stars

15 NOVEMBER, 2023 | By Naomi Dinmore

more applications at HIC

More than just flow and [pT]

PHYSI covering nucle	CAL R	REVIEW	С						
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Editorial Tean
Open Access									
Effect of initial nuclear deformation on dielectron photoproduction in hadronic heavy-ion collisions									
Jiaxuan Luo, Xinbai Li, Zebo Tang, Xin Wu, and Wangmei Zha Phys. Rev. C 108 , 054906 – Published 27 November 2023									

 Experimental measurements at the RHIC/LHC enable a novel tool to probe the nuclear structure, complementary to the lowenergy studies

- NS at low energies covers much wider range in the nuclide chart
- NS at high energies enables novel opportunity to resolve some challenging questions (many-body, shape etc) with a few selected nuclei

Thanks for your attention! 28

Zhiyong Lu(CIAE)

Final state cancellation

Theorist:

- the cancellation can be seen in the PCC correlation between the initial state and final state
- Basically, the two systems have the same linear correlation between initial and final, which suggests the same final state effects.

 $Q_n = \frac{\langle v_n \varepsilon_n \cos n \left(\psi_n - \phi_n \right) \rangle}{\sqrt{\langle v_n^2 \rangle \langle \varepsilon_n^2 \rangle}}$

Zhiyong Lu(CIAE)

multi-particle [pT] correlation

$$\frac{\delta d_{\perp}}{d_{\perp}} = \sqrt{\frac{5}{16\pi}} \beta_2 \left(\cos(\gamma) D_{0,0}^2(\Omega) + \frac{\sin(\gamma)}{\sqrt{2}} [D_{0,2}^2(\Omega) + D_{0,-2}^2(\Omega)] \right)$$

$$d_{\perp} = \sqrt{N_{\rm part}/\langle r_{\perp}^2 \rangle}$$

Final state cumulant	Initial state cumulant	Liquid-drop model			
κ_2	$\left< \left(rac{\delta d_\perp}{d_\perp} ight)^2 \right>$	$\frac{1}{32\pi}\langle eta_2^2 angle$			
κ_3	$\left< \left(\frac{\delta d_\perp}{d_\perp} \right)^3 \right>$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$			
κ_4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right\rangle^2$	$-rac{3}{14336\pi^2}(7\langleeta_2^2 angle-5\langleeta_2^4 angle)$			
κ_5	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\frac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$			
κ_6	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle - 15 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{918412504\pi^3} (42042\langle\beta_2^2\rangle^3 - 5720\langle\cos(3\gamma)\beta_2^3\rangle^2$			
	$+30 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^3 - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle^2$	$-45045\langle\beta_2^2\rangle\langle\beta_2^4\rangle+8575\langle\beta_2^6\rangle+700\langle\cos(6\gamma)\beta_2^6\rangle)$			
κ_7	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^7 \right\rangle - 21 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\frac{15\sqrt{5}}{524812288}(2002\langle\beta_{2}^{2}\rangle^{2}\langle\cos(3\gamma)\beta_{2}^{3}\rangle$			
	$+210 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$			
	$-35 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$			
κ8	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8} \right\rangle - 28 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{142748942336\pi^4} (2144142 \langle \beta_2^2 \rangle^4 - 3063060 \langle \beta_2^2 \rangle^2 \langle \beta_2^4 \rangle$			
	$+420 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-340\langle\beta_2^2\rangle \bigg(2288\langle\cos(3\gamma)\beta_2^3\rangle^2 - 35\bigl(49\langle\beta_2^6\rangle$			
	$-35\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle^2 - 630 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^4$	$+4\langle\cos(6\gamma)\beta_2^6\rangle)\Big)+25\Big(21879\langle\beta_2^4\rangle^2$			
	$+560 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle^2 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$+14144\langle\cos(3\gamma)\beta_2^3\rangle\langle\cos(3\gamma)\beta_2^5\rangle$			
	$-56 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$-35(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle))$			

8-Aug-2024

31

Enhanced yn correlations in models

A stronger correlation is well explained by the transport model using deformed ¹²⁹Xe nuclei using transport model

Status of vn-[pT] studies

Zhiyong Lu(CIAE)

