12th Workshop on Hadron Physics and Opportunities Worldwide

4-9 Aug, 2024 @ Dalian, China

Photon-photon fusion to three mesons

Xiu-Lei Ren (任修磊)

In collaboration with:

Igor Danilkin & Marc Vanderhaeghen (JGU Mainz)

OUTLINE

Introduction

• Muon g-2 in the standard model

Photon-photon fusion to three mesons

- $\gamma\gamma \to \pi^+\pi^-\pi^0$
- $\gamma\gamma^* \to K\bar{K}^* \to K\bar{K}\pi$
- $\gamma\gamma^* \to \eta\pi^+\pi^-$

Summary & outlook

Experiment vs. SM prediction

• Muon anomaly $a_{\mu} = (g_{\mu} - 2)/2$

- measured with unprecedented precision (0.19 ppm)
- calculated precisely in Standard Model (0.37 ppm)

Decrease the theoretical error of the SM value

 $a_{\mu}^{\text{SM}} = \frac{a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}}}{99.994\%} + \frac{a_{\mu}^{\text{had}}}{4} \sim \text{Non-perturbative regime of QCD} + \frac{1}{98,2\%}$

3

Hadronic contribution to a_{μ}

Hadronic vacuum polarization

- Current tensions in HVP
 - ✓ WP data-driven (before CMD-3)
 - ✓ Lattice QCD: e.g. BMWc
 - ✓ Experiments: CMD-3 vs. CMD-2/others

Hadronic light-by-light scattering

- HLbL: more complicated than HVP
 - ✓ Consistent: WP / LQCD/phenomenology

✓ Reduce uncertainty up to 10 % to match FNAL precision

HLbL scattering from white paper

$\Box a_{\mu}^{\text{HLbL}} = 92(19) \cdot 10^{-11}$ in data-driven approach

G. Colangelo, et al. (2014–2017)

• (p.w.) amplitudes

Detailed contributions

hadronic state	$a_{\mu}^{ m HLbL} \left[10^{-11} \right]$
pseudoscalar poles	$93.8^{+4.0}_{-3.6}$
pion box	-15.9(2)
S-wave $\pi\pi$ rescatt.	-8(1)
kaon box	-0.5(1)

hadronic state	$a_{\mu}^{\mathrm{HLbL}} \left[10^{-11} \right]$
scalars+tensors $\gtrsim 1{ m GeV}$	$^{\prime}~\sim -1(3)$
axial vectors	$\sim 6(6)$
short distance	$\sim 15(10)$
heavy quarks	$\sim 3(1)$

Well determined!

Major source of uncertainty!

Photon-photon fusion to three mesons

Most relevant axial vectors and tensors

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	πππ	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$Kar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$K\bar{K}~(5\%)$

To better control the uncertainties from those contributions

- Photon-photon fusion to three mesons ⇒ TFFs
- First priority listed in White Paper Phys. Rept. 887, 1 (2020)

Table 14Priorities for new experimental input a	and cross-checks.
issue	experimental input [I] or cross-checks [C]
axials, tensors, higher pseudoscalars	$\gamma^{(*)}\gamma^* \rightarrow 3\pi, \ 4\pi, \ K\bar{K}\pi, \ \eta\pi\pi, \ \eta'\pi\pi$ [I]
missing states	inclusive $\gamma^{(*)}\gamma^* \rightarrow$ hadrons at 1–3 GeV [I]
dispersive analysis of $\eta^{(\prime)}$ TFFs	$e^+e^- \rightarrow \eta \pi^+\pi^-$ [I]

$\gamma^{(*)}\gamma^{(*)} \rightarrow 3$ mesons: experimental status

• $e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-K_S^0K^{\pm}\pi^{\mp}$

- ✓ TPC/Two-Gamma Collaboration PRL57, 2500(1986)
- ✓ Mark II Collaboration PRL 59, 2016(1987)
- ✓ CELLO Collaboration Z. Phys. C 42, 367-376 (1989)
- ✓ L3 Collaboration JHEP 03 (2007) 018
- $e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-\eta\pi^+\pi^-$
 - ✓ Mark II Collaboration PRL59,2012(1987)
 - ✓ TPC/Two-Gamma Collaboration PRD38,1(1988)
 - ✓ L3 Collaboration *PLB* 526 (2002) 269–277
- $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-\pi^+\pi^-\pi^0$
 - ✓ L3 Collaboration *PLB* 413, 147(1997)
 ✓ ARGUS Collaboration *Z. Phys. C* 74, 469 (1997)

•
$$e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-\pi^+\pi^-\pi^0\pi^0$$

✓ TPC/Two-Gamma Collaboration PRD 48 (1993) 3976-3987

$\gamma^{(*)}\gamma^{(*)} \rightarrow 3$ mesons: experimental status

Existing experimental data are rather old and low-statistic

BESIII Collaboration is working on those processes

- $\gamma\gamma^* \to \eta\pi^+\pi^-$ On-going analysis, PhD project @ Mainz
- $\gamma\gamma^* \to K^\pm K^\mp \pi^0$ Feasibility study by M. Sc. @ Mainz
- $\gamma\gamma^* o \pi^+\pi^-\pi^0$ Planned

In this work

Coordinate with the ongoing/planned BESIII measurements

We focus on the photon-photon fusion to three mesons

- $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$ to disentangle the $a_2(1320)$ contribution
- $\gamma\gamma^* \to K\bar{K}^* \to K\bar{K}\pi$ to disentangle the $f_1(1420)$ contribution
- $\gamma\gamma^* \rightarrow \eta\pi^+\pi^-$ to disentangle the $f_1(1285)$ contribution

We propose the phenomenological models

- Employ the effective Lagrangian approach
- Include the necessary interference among the different amplitudes
- Describe the available experimental data: L3, ARUGUS ...
- Investigate the possibilities to extract the TFFs model-independently
- Could serve as the Monte Carlo generator for the data analysis of BESIII

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)XLR, I. Danilkin, M. Vanderhaeghen, arXiv: 2403.05091, PRD in pressXLR, I. Danilkin, M. Vanderhaeghen, in preparation

 $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi^+\pi^-\pi^0$ process

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	πππ	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$K\bar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$Kar{K}~(5\%)$

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)

Resonances in $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi^+\pi^-\pi^0$

 \square $a_1(1260)$ production is only from $\gamma^{(*)}\gamma^* \to \pi^+\pi^-\pi^0$

• $a_1(1260)$ is not a well-established resonance

a₁(1260) [*i*]

$$G(J^{PC}) = 1^{-}(1^{++})$$

T-Matrix Pole $\sqrt{s} = (1209^{+13}_{-10}) - i(288^{+45}_{-12})$ MeV Mass (Breit-Wigner) = 1230 ± 40 MeV ^[i] Full width (Breit-Wigner) = 250 to 600 MeV ^[i]

$\Box a_2(1320)$ production is dominant in $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi^+\pi^-\pi^0$

• $a_2(1320)$ is a well-defined resonance

 $a_2(1320)$

 $I^{G}(J^{PC}) = 1^{-}(2^{++})$

T-Matrix Pole $\sqrt{s} = (1305-1321)-i(52-58)$ MeV Mass (Breit-Wigner) = 1318.2 \pm 0.6 MeV (S = 1.2) Full width Γ = 107 \pm 5 MeV

• Complicated mechanism involved in the $\pi^+\pi^-\pi^0$ final states

• $\rho(770), \sigma/f_0(500), f_2(1270)$ resonances

As a first step, we focus on the real photon-photon fusion case

•
$$\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$$

Current status of $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$

D Experimental data of $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

- Data are rather old and have low statistics
 - ✓ ARGUS collab. Z. Phys. C 74, 469 (1997)
 - ✓ L3 collab. PLB 413, 147(1997) updated analysis EPJA27,199(2006).
- Cross section data shows a significant difference in the low-energy region

Theoretical studies (very limited)

- Current Algebra & Linear sigma model
 S. L. Adler, et al., PRD(1971); T.F.Wong, PRL(1971); R. Aviv, PRD(1972)
- Chiral perturbation theory up to NLO J.W. Bos, PLB337, 152(1994); P. Talavera, et al., PLB376, 186(1996)
- Those studies focused on the very low energies
 ✓ nearby the 3π threshold of the two-photon fusion
 ✓ 0.41 < W < 0.7 GeV

Phenomenological model for $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$

Cover the low and the intermediate energy region

Include all relevant channels within effective Lagrangian method

• $a_2(1320)$ in s-channel (dominant)

• $\sigma/f_0(500)$ and $f_2(1270)$ in t/u-channel

- Vertices: described by effective Lagrangians
- Couplings: fixed by the decay widths
- Resonances: Breit-Wigner form
 - Employ the energy dependent width
 - Consider the Blatt-Weisskopf barrier factors
 - $\sigma/f_0(500)$: S-wave Omnes function (I=0)

$$\Omega(x) = \exp\left\{\frac{x}{\pi}\int_{4m_{\pi}^2}^{\infty}\frac{dx'}{x'}\frac{\delta(x')}{x'-x}\right\}$$

- Exchanged- ρ/ω : Regge propagator
 - correct behavior of the amplitude at high energy region
- Charged $\rho(770), \pi$ intermediate channels

Essential at lowenergy region

Phenomenological model for $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$

Cover the low and the intermediate energy region

Include all possible channels within effective Lagrangian method

- ONLY one free parameter in our model
 - ✓ $g_{f_2\rho\gamma}$ is fitted by the total cross section at large energy, e.g. W=1.85 GeV
 - \checkmark Other couplings are fixed via the relevant decay widths

$g_{a_2\gamma\gamma}$	$g_{a_2\rho\pi}$	$g_{ ho\pi\gamma}$	$g_{ ho\pi\pi}$	$g_{f_2\pi\pi}$	$g_{f_2 ho\gamma}$
0.151	4.9	0.102	5.97	23.67	-27.5

Consider the interference among the different amplitudes

Describe the experimental data of ARGUS and L3

Description of ARGUS and L3 data

Total cross section

- ARGUS and L3 data: significant differences in the low-energy region
- Our result: consistent with L3 data
- $a_2(1320)$ production: dominant contribution
- $f_2(1270)\pi^0$ mechanism: needed to achieve the reasonable description of data (W>1.5 GeV)

Invariant mass distribution

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)

15

 $\gamma\gamma^* \to K\bar{K}^* \to K\bar{K}\pi$ process

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	πππ	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$K\bar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$K\bar{K}~(5\%)$

XLR, I. Danilkin, M. Vanderhaeghen, arXiv: 2403.05091, PRD in press

$f_1(1420)$ production in $\gamma\gamma^*$ fusion

D Ideal channel to study the $f_1(1420)$ TFFs

$$\gamma^{(*)}\gamma^* \to f_1(1420) \xrightarrow{96\%} K\bar{K}^*(892) \to K\bar{K}\pi$$

• L3 experimental data JHEP 03(2007) 018

 $\checkmark e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-K^0_S K^\pm\pi^\mp \text{ with } Q^2 \in [0.01 - 7.0] \text{ GeV}^2$

Ongoing analysis of BESIII measurement
 Master Thesis by N. Effenberger @ Mainz

Provide a more realistic MC generator for data analysis

- We focus on the $\gamma\gamma^* \to K\bar{K}^*(892)$ process
- Build up a phenomenological model in the $f_1(1420)$ region
 - ✓ within the effective Lagrangian approach

Pheno. model for $\gamma\gamma^* \rightarrow K^{\pm}K^{*\mp}$

• S-channel: the $f_1(1420)$ production mechanism

 $f_{1}(1420) = \bar{K}^{*} \qquad \text{- Transition amplitude of } \gamma(q_{1},\lambda_{1}) + \gamma^{*}(q_{2},\lambda_{2}) \rightarrow f_{1}(1420)$ $\mathcal{M}_{\gamma\gamma^{*}\rightarrow f_{1}} = ie^{2} \varepsilon_{\mu}(q_{1},\lambda_{1}) \varepsilon_{\nu}(q_{2},\lambda_{2})\varepsilon^{\omega^{*}}(q_{1}+q_{2},\Lambda_{-})$

 $\times \left\{ h_1(q_1, q_2) F_{f_1 \gamma^* \gamma^*}^{TT}(0, Q_2^2) + h_2(q_1, q_2) F_{f_1 \gamma^* \gamma^*}^{TL}(0, Q_2^2) \right\}$

- Two f₁(1420) TFFs estimated by the quark model

 $F_{f_1\gamma^*\gamma^*}^{TL}\left(0,Q_2^2\right) = -F_{f_1\gamma^*\gamma^*}^{TT}\left(0,Q_2^2\right) = \frac{F_{f_1\gamma^*\gamma^*}^{TL}(0,0)}{\left(1+Q_2^2/\Lambda_{f_*}^2\right)^2} \rightarrow \text{Dipole form}$

• S-channel: the $\eta(1475)$ production mechanism

Non-resonant contributions via the K- and K*-exchange channels

$$\begin{array}{c} & & & \\ &$$

- Amplitude is constructed using the Reggeized propagators to obtain the correct high-energy behavior

Pheno. model for $\gamma \gamma^* \to K^{\pm} K^{*\mp}$

Use effective Lagrangian approach to evaluate the amplitudes

Table I. Values of resonance (R) parameters used in our model.

	$m_R [{ m MeV}]$	$\Gamma_R [\text{MeV}]$	coupling	TFF
			$g_{ar\eta KK^*}$	$F_{\bar{\eta}\gamma^*\gamma^*}(0,0)$
$\eta(1475)$	1475	90	2.04	$0.0414 \mathrm{GeV}^{-1}$
			$g_{f_1KK^*}$	$F_{f_1\gamma^*\gamma^*}^{TL}(0,0)$
$f_1(1420)$	1426.3	54.5	1.027	0.401
			$g_{\gamma KK^*}$	
$K^{*}(892)$	893.5	51.4	0.203	

ONLY one free parameter: dipole mass of $f_1(1420)$ TFFs

$$F_{f_1\gamma^*\gamma^*}^{TL}\left(0,Q_2^2\right) = -F_{f_1\gamma^*\gamma^*}^{TT}\left(0,Q_2^2\right) = \frac{F_{f_1\gamma^*\gamma^*}^{TL}(0,0)}{\left(1 + Q_2^2/\Lambda_{f_1}^2\right)^2}$$

- Determined by fitting L3 data of $e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-K_S^0K^{\pm}\pi^{\mp}$
- Consider the $K^{*-} \rightarrow (K\pi)^{-}$ decay effectively

Description of L3 data

□ Reasonable description of L3 events: $e^+e^- \rightarrow e^+e^-K_S^0K^{\pm}\pi^{\mp}$

- Constructive interference among $\eta(1475), f_1(1420)$, and non-res. channels
- Dipole mass scale in $f_1(1420)$ TFFs: $\Lambda_{f_1} = 920 \text{ MeV}$

η(1475) contribution

- dominant at small Q² (quasi-real)
- decreases with Q² increases

f1(1420) contribution

- suppressed at small Q²
- dominant when Q²>0.12 GeV²

Theoretical calculation of the $e^+e^- \rightarrow e^+e^-K_S^0K^{\pm}\pi^{\mp}$ process is sensitive to the f1(1420) TFF

Prediction of cross section $\gamma\gamma^* \to K^{\pm}K^{*\mp}$

Broad peak ~1.45 GeV with Q²=0.25

- Interference of $\eta(1475)$ and f1(1420)
- Consistent with a preliminary analysis of BESIII N. Effenberger Master Thesis
- Large Q², f₁(1420) channel dominant

Transverse-longitude cross section

- No η(1475) contribution to σ_{TL}
- $f_1(1420)$ chanel dominant
- Model-independent to extract f₁(1420) TFFs

 $\gamma\gamma^* \rightarrow \eta\pi\pi$ process

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	$\pi\pi\pi$	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$K\bar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$Kar{K}~(5\%)$

XLR, I. Danilkin, M. Vanderhaeghen, in preparation

$f_1(1285)$ production in $\gamma\gamma^* \rightarrow \eta\pi\pi$

Clean channel to study the $f_1(1285)$ TFFs

- $\eta'(958)$ and $f_1(1285)$ well separated
- $f_1(1285)$ peak vanish (Q²=0), exclude $\eta(1295)$

Existing data: MarkII, TPC/Two-Gamma, L3

- Low-statistic / large background
- No analysis of different helicity states of $f_1(1285)$

□ BESIII on-going analysis @ Mainz group

- Feasibility study M.Sc. thesis of D. Becker
- Ph.D. project (2023-) J. Muskalla
- Data analysis based on the **GaGaRes** Monte Carlo generator
- However, there is no interference among different channels

Pheno. model for $\gamma\gamma^* \rightarrow \eta\pi^+\pi^-$

□ f₁(1285) channel in our phenomenological model

Prediction for the invariant mass distributions

Interference: important to avoid the misinterpretation of the experimental data!

Summary and outlook

Phenomenological study of photon-photon fusion to three mesons

Focus on the lowest-lying axial vectors and tensors

 Proposed models could serve as the Monte Carlo generators for the ongoing/forthcoming analysis of BESIII Collaboration

Next step:

- Improve above studies by using the **Dispersion Relation** if data existing
- Model independently determine the meson TFFs
- Better control the axial vectors and tensors contributions to HLbL scattering

Backup slides