12th Workshop on Hadron Physics and Opportunities Worldwide

4-9 Aug, 2024 @ Dalian, China

Photon-photon fusion to three mesons

Xiu-Lei Ren (任修磊)

In collaboration with:

Igor Danilkin & Marc Vanderhaeghen (JGU Mainz) **Research Unit (FOR 5327)**

OUTLINE

\Box Introduction

• Muon g-2 in the standard model

□ Photon-photon fusion to three mesons

- \rightarrow $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$
- $\gamma \gamma^* \to K \bar{K}^* \to K \bar{K} \pi$
- $\gamma \gamma^* \to \eta \pi^+ \pi^-$

□ Summary & outlook

Experiment vs. SM prediction

Muon anomaly $a_{\mu} = (g_{\mu} - 2)/2$

- measured with unprecedented precision (0.19 ppm)
- calculated precisely in Standard Model (0.37 ppm)

Had 98,2 %

99.994% $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}}$ Non-perturbative regime of QCD **‣** Largest source of uncertainty

Hadronic contribution to *a^μ*

- Current tensions in HVP
	- ✓ WP data-driven (before CMD-3)
	- ✓ Lattice QCD: e.g. BMWc
	- ✓ Experiments: CMD-3 vs. CMD-2/others

Hadronic vacuum polarization **Hadronic light-by-light scattering**

- HLbL: more complicated than HVP
	- ✓ Consistent: WP / LQCD/phenomenology

✓ Reduce uncertainty up to 10 % to match FNAL precision

HLbL scattering from white paper

$a_\mu^{\mathrm{HLbL}} = 92(19) \cdot 10^{-11}$ in data-driven approach

G. Colangelo, et al. (2014–2017)

□ Detailed contributions

Well determined! Major source of uncertainty!

Photon-photon fusion to three mesons

□ Most relevant axial vectors and tensors

 \Box To better control the uncertainties from those contributions

- Photon-photon fusion to three mesons \Rightarrow TFFs
- First priority listed in White Paper *Phys. Rept. 887, 1 (2020)*

$γ^{(*)}γ^{(*)} \rightarrow 3$ mesons: experimental status

• $e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-K_S^0K^{\pm}\pi^{\mp}$

- ✓ TPC/Two-Gamma Collaboration *PRL57, 2500(1986)*
- ✓ Mark II Collaboration *PRL 59, 2016(1987)*
- ✓ CELLO Collaboration *Z. Phys. C 42, 367-376 (1989)*
- ✓ L3 Collaboration *JHEP 03 (2007) 018*
- $e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-\eta\pi^+\pi^-$
	- ✓ Mark II Collaboration *PRL59,2012(1987)*
	- ✓ TPC/Two-Gamma Collaboration *PRD38,1(1988)*
	- ✓ L3 Collaboration *PLB 526 (2002) 269–277*
- $e^+e^- \to e^+e^-\gamma\gamma \to e^+e^-\pi^+\pi^-\pi^0$
	- ✓ L3 Collaboration *PLB 413, 147(1997)*
	- ✓ ARGUS Collaboration *Z. Phys. C 74, 469 (1997)*

$$
e^+e^- \to e^+e^-\gamma\gamma^* \to e^+e^-\pi^+\pi^-\pi^0\pi^0
$$

✓ TPC/Two-Gamma Collaboration *PRD 48 (1993) 3976-3987*

7

$γ^{(*)}γ^{(*)} \rightarrow 3$ mesons: experimental status

\Box Existing experimental data are rather old and low-statistic

BESIII Collaboration is working on those processes

- *γγ** → *ηπ*+*π*[−] *On-going analysis, PhD project @ Mainz*
- \rightarrow $K^{\pm}K^{\mp}\pi^{0}$ *Feasibility study by M. Sc. @ Mainz*
- \rightarrow $\gamma\gamma^*$ \rightarrow $\pi^+\pi^-\pi^0$ *Planned*

In this work

□ Coordinate with the ongoing/planned BESIII measurements

 \Box We focus on the photon-photon fusion to three mesons

- $\gamma\gamma \to \pi^+\pi^-\pi^0$ to disentangle the $a_2(1320)$ contribution
- $\gamma \gamma^* \to K \bar{K}^* \to K \bar{K} \pi$ to disentangle the $f_1(1420)$ contribution
- $\gamma \gamma^* \to \eta \pi^+ \pi^-$ to disentangle the $f_1(1285)$ contribution

■ We propose the phenomenological models

- Employ the effective Lagrangian approach
- Include the necessary interference among the different amplitudes
- Describe the available experimental data: L3, ARUGUS ...
- Investigate the possibilities to extract the TFFs model-independently
- Could serve as the Monte Carlo generator for the data analysis of BESIII

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023) XLR, I. Danilkin, M. Vanderhaeghen, arXiv: 2403.05091, PRD in press XLR, I. Danilkin, M. Vanderhaeghen, in preparation

 $\gamma^{(*)}\gamma^{(*)}\rightarrow \pi^{+}\pi^{-}\pi^{0}$ process

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)

$\textbf{Resonances in }\gamma^{(*)}\gamma^{(*)}\rightarrow \pi^{+}\pi^{-}\pi^{0}$

*a*₁(1260) production is only from $γ^{(*)}γ^* → π^+π^-π^0$

• $a_1(1260)$ is not a well-established resonance

 $a_1(1260)$ [*i*]

$$
^{\shortmid }G_{\left(J^{PC}\right) }=1^{-}(1^{++})
$$

T-Matrix Pole $\sqrt{s} = (1209^{+13}_{-10}) - i(288^{+45}_{-12})$ MeV Mass (Breit-Wigner) = 1230 ± 40 MeV [i] Full width (Breit-Wigner) = 250 to 600 MeV $[i]$

a ₂(1320) production is dominant in $\gamma^{(*)}\gamma^{(*)} \to \pi^+\pi^-\pi^0$

• $a_2(1320)$ is a well-defined resonance

 $a_2(1320)$

 $I^G(J^{PC}) = 1^-(2^{++})$

T-Matrix Pole $\sqrt{s} = (1305 - 1321) - i(52 - 58)$ MeV Mass (Breit-Wigner) = 1318.2 ± 0.6 MeV (S = 1.2) Full width $\Gamma = 107 \pm 5$ MeV

Complicated mechanism involved in the $\pi^+\pi^-\pi^0$ final states

• $\rho(770)$, σ /*f*₀(500), *f*₂(1270) resonances

 \Box As a first step, we focus on the real photon-photon fusion case

$$
\bullet\ \ \gamma\gamma\rightarrow\pi^{+}\pi^{-}\pi^{0}
$$

Current status of $\gamma\gamma \to \pi^+\pi^-\pi^0$

Experimental data of $\gamma \gamma \to \pi^+ \pi^- \pi^0$

- Data are rather old and have low statistics
	- ✓ ARGUS collab. *Z. Phys. C 74, 469 (1997)*
	- ✓ L3 collab. *PLB 413, 147(1997) updated analysis EPJA27,199(2006).*
- Cross section data shows a significant difference in the low-energy region

\Box Theoretical studies (very limited)

- Current Algebra & Linear sigma model *S. L. Adler, et al.,PRD(1971); T.F.Wong,PRL(1971); R. Aviv,PRD(1972)*
- Chiral perturbation theory up to NLO *J.W. Bos, PLB337, 152(1994); P. Talavera, et al., PLB376, 186(1996)*
- Those studies focused on the very low energies \checkmark nearby the 3π threshold of the two-photon fusion

 $\sqrt{0.41} < W < 0.7$ GeV

Phenomenological model for $\gamma\gamma \to \pi^+\pi^-\pi^0$

□ Cover the low and the intermediate energy region

\Box Include all relevant channels within effective Lagrangian method

• $a_2(1320)$ in s-channel (dominant)

• σ / f_0 (500) and f_2 (1270) in t/u-channel

- ‣ Vertices: described by effective Lagrangians
- ‣ Couplings: fixed by the decay widths
- ‣ Resonances: Breit-Wigner form
	- Employ the energy dependent width
	- Consider the Blatt-Weisskopf barrier factors
		- \cdot *σ*/ $f_0(500)$: S-wave **Omnes function** (I=0)

$$
\Omega(x) = \exp\left\{\frac{x}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{dx'}{x'} \frac{\delta(x')}{x' - x}\right\}
$$

- **Exchanged-** ρ/ω : **Regge propagator**
	- correct behavior of the amplitude at high energy region
- Charged *ρ*(770), *π* intermediate channels

‣Essential at lowenergy region

Phenomenological model for $\gamma\gamma \to \pi^+\pi^-\pi^0$

□ Cover the low and the intermediate energy region

Include all possible channels within effective Lagrangian method

- ONLY one free parameter in our model
	- *√* $g_{f_2ργ}$ is fitted by the total cross section at large energy, e.g. W=1.85 GeV
	- ✓ Other couplings are fixed via the relevant decay widths

Consider the interference among the different amplitudes

Describe the experimental data of ARGUS and L3

Description of ARGUS and L3 data

□ Total cross section

- ARGUS and L3 data: significant differences in the low-energy region
- **• Our result: consistent with L3 data**
- $a_2(1320)$ production: dominant contribution
- $f_2(1270)\pi^0$ mechanism: needed to achieve the reasonable description of data (W>1.5 GeV)

Invariant mass distribution

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)

 $\gamma \gamma^* \to K \bar{K}^* \to K \bar{K} \pi$ process

XLR, I. Danilkin, M. Vanderhaeghen, arXiv: [2403.05091,](https://arxiv.org/abs/2403.05091) PRD in press

f 1(1420) **production in** *γγ** **fusion**

Ideal channel to study the $f_1(1420)$ TFFs

$$
\gamma^{(*)}\gamma^* \to f_1(1420) \stackrel{96\%}{\to} K\bar{K}^*(892) \to K\bar{K}\pi
$$

• L3 experimental data *JHEP 03(2007) 018*

 $\sim e^+e^-$ → $e^+e^-\gamma\gamma^*$ → $e^+e^-K_S^0K^{\pm}\pi^{\mp}$ with $Q^2 \in [0.01 - 7.0]$ GeV²

• Ongoing analysis of BESIII measurement *Master Thesis by N. Effenberger @ Mainz*

\Box Provide a more realistic MC generator for data analysis

- We focus on the $\gamma\gamma^*\to K\bar K^*(892)$ process
- Build up a phenomenological model in the $f_1(1420)$ region
	- ✓ within the effective Lagrangian approach

Pheno. model for *γγ** → *K*±*K**[∓]

• S-channel: the $f_1(1420)$ production mechanism

- Transition amplitude of $γ(q_1, λ_1) + γ*(q_2, λ_2) \rightarrow f_1(1420)$

 $\times \left\{ h_1(q_1,q_2) F_{f_1\gamma^*\gamma^*}^{TT}(0,Q_2^2) + h_2(q_1,q_2) F_{f_1\gamma^*\gamma^*}^{TL}(0,Q_2^2) \right\}$

- Two $f_1(1420)$ TFFs estimated by the quark model

‣ Dipole form \rightarrow ~1/Q⁴ asymptotic behavior

• S-channel: the $η(1475)$ production mechanism

‣ Monopole form ‣ Consistent with pion/eta TFF - Transition amplitude of $γ(q_1, λ_1) + γ*(q_2, λ_2) \rightarrow η(1475)$ - *η*(1475) TFF:

Non-resonant contributions via the K- and K^{*}-exchange channels

$$
\gamma \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{X}}}}} \gamma_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}}}}} \gamma
$$

- Amplitude is constructed using the Reggeized propagators to obtain the correct high-energy behavior

Pheno. model for $\gamma\gamma^* \rightarrow K^{\pm}K^{\mp}$

□ Use effective Lagrangian approach to evaluate the amplitudes

ONLY one free parameter: dipole mass of $f_1(1420)$ TFFs

$$
F_{f_1\gamma^*\gamma^*}^{TL}(0,Q_2^2) = -F_{f_1\gamma^*\gamma^*}^{TT}(0,Q_2^2) = \frac{F_{f_1\gamma^*\gamma^*}^{TL}(0,0)}{\left(1+Q_2^2/\Lambda_{f_1}^2\right)^2}
$$

- Determined by fitting L3 data of e^+e^- → $e^+e^- \gamma \gamma^*$ → $e^+e^- K_S^0 K^{\pm} \pi^{\mp}$
- Consider the $K^{*-} \to (K\pi)^-$ decay effectively

Description of L3 data

Reasonable description of L3 events: $e^+e^- \rightarrow e^+e^-K^0_S K^{\pm} \pi^{\mp}$

- **Constructive interference** among $\eta(1475)$, $f_1(1420)$, and non-res. channels
- Dipole mass scale in $f_1(1420)$ TFFs: $\Lambda_{f_1} = 920$ MeV

η(1475) contribution

- dominant at small Q^2 (quasi-real)
- decreases with Q^2 increases

• f1(1420) contribution

- suppressed at small Q^2
- dominant when Q^2 >0.12 GeV²

Theoretical calculation of $e^+e^- \rightarrow e^+e^-K^0_S K^\pm \pi^\mp$ process **is sensitive to the f1(1420) TFF**

Prediction of cross section *γγ** → *K*±*K**[∓]

Broad peak $~1.45$ GeV with $Q^2=0.25$

- Interference of $n(1475)$ and f1(1420)
- Consistent with a preliminary analysis of BESIII *N. Effenberger Master Thesis*
- Large \mathbb{Q}^2 , f₁(1420) channel dominant

Transverse-longitude cross section

- No η(1475) contribution to σ_{TL}
- $f_1(1420)$ chanel dominant
- Model-independent to extract $f_1(1420)$ TFFs

*γγ** → *ηππ* **process**

XLR, I. Danilkin, M. Vanderhaeghen, in preparation

*f*₁(1285) production in γγ

Clean channel to study the $f_1(1285)$ TFFs

- η ['](958) and f_1 (1285) well separated
- $f_1(1285)$ peak vanish (Q²=0), exclude $\eta(1295)$

Existing data: MarkII, TPC/Two-Gamma, L3

- Low-statistic / large background
- No analysis of different helicity states of $f_1(1285)$

□ BESIII on-going analysis @ Mainz group

- Feasibility study M.Sc. thesis of D. Becker
- Ph.D. project (2023-) J. Muskalla
- Data analysis based on the GaGaRes Monte Carlo generator
- However, there is no interference among different channels

Pheno. model for *γγ** → *ηπ*+*π*[−]

\Box f₁(1285) channel in our phenomenological model

\Box Prediction for the invariant mass distributions

Interference: important to avoid the misinterpretation of the experimental data!

Summary and outlook

\Box Phenomenological study of photon-photon fusion to three mesons

• Focus on the lowest-lying axial vectors and tensors

• Proposed models could serve as the Monte Carlo generators for the ongoing/forthcoming analysis of BESIII Collaboration

□ Next step:

- Improve above studies by using the **Dispersion Relation** if data existing
- Model independently determine the **meson TFFs**
- Better control the axial vectors and tensors contributions to HLbL scattering

Thank you for your attention!

Backup slides