

Long-lived Particle Searches at Colliders

Jia Liu

刘佳 (Jia Liu) Peking University

27th Mini-workshop on the frontier of LHC 2024-01-20@珠海 北京大学高能物理研究中心和中山大学物理与天文学院

The motivation for long-lived particles

- Displaced searches for LLP
- Timing searches for delayed LLP
- Motivated long-lived candidates
- Summary

Long-lived particle in SM

Credit: B. Shuve

- Why being long-lived?
 - Feeble couplings: Dark sector models, R-parity violating Supersymmetry, sterile neutrinos
 - Suppression from heavy mass scale: muon/charged pion, gauge mediated spontaneous breaking Supersymmetry
 - Near degenerate state: higgsino-like chargino/neutralino, or anomaly-mediated spontaneous breaking Supersymmetry
 - Approximate symmetry: K_L to three pions (accidental PS suppression)

Neutron beta-decay: $\propto m_{\mu}^{5}/m_{W}^{4}$

The target for the Intensity Frontier

- 1. It fits well with intensity frontier programs: beam dump, high-Lumi searches from tau/charm factory, b factory, Z factory, Higgs factory
- 2. The low energy experiment hints
 - Lepton mu (e?) g-2 (light particles at ~ 100 MeV, coupling << 1)
 - Atomki: Be8/He4 decay into a 17 MeV ee resonance
 - KOTO: neutral K decay into pi0 + MET (light scalar < 200 MeV)
 - MiniBooNE: (dark neutrino/boson at 10~100MeV)
- 3. Secluded DM annihilation: light mediator $m_X < m_{DM}$, with small coupling

The target for the Intensity Frontier

- It fits well with intensity frontier programs: beam dump, high-Lumi searches from tau/charm factory, b factory, Z factory, Higgs factory
- 2. The low energy experiment hints
 - Lepton mu (e?) g-2 (light particles at ~ 100 MeV, coupling << 1)
 - Atomki: Be8/He4 decay into a 17 MeV ee resonance
 - KOTO: neutral K decay into pi0 + MET (light scalar < 200 MeV)
 - MiniBooNE: (dark neutrino/boson at 10~100MeV)
- 3. Secluded DM annihilation: light mediator m_X < m_{DM}, with small coupling

Exotic interactions: Various BSM portals

- Vector Portal: Kinetic Mixing Dark Photon $B_{\mu\nu}F^{\prime\mu\nu}$
- Pseudoscalar Portal: Axion, Axion-Like Particles $\frac{a}{\Lambda}\tilde{F}F$, $\frac{a}{\Lambda}\tilde{G}G$
- Scalar Portal (Higgs Portal): SM Higgs $(H^{\dagger}H)(\phi \text{ or } \phi^2)$
- Fermion Portal: Sterile neutrino, Vector-like Fermions $(\bar{L}H)N_R, \bar{L}\Phi\Psi, \bar{Q}\Phi\Psi$
- Millicharged Particles, Leptoquarks etc ...

Long-lived particles are less explored

CMS Exotica results

Exotica Publications

Exotica Publications

- Leptoquarks
 - First-Generation Leptoquarks
 - Second-Generation Leptoquarks
 - Third-Generation Leptoquarks
- Randall--Sundrum Gravitons
- Heavy Gauge Bosons
 - Sequential Standard Model
 - <u>Superstring-Inspired Models</u>
- Long-Lived Particles
- Dark Matter
- Large Extra Dimensions
 - Arkani-Hamed--Dimopoulos--Dvali Model
 - Semiclassical and Quantum Black Holes
- <u>Compositness</u>
- <u>Contact Interactions</u>
- Excited Fermions
- Heavy Fermions, Heavy Righ-Handed Neutrinos
- <u>Colorons, Axigluons, Diquarks</u>
- <u>Supersymmetry</u>
- Resonances
 - Multijets
 - <u>Dijets</u>
 - <u>Dileptons</u>
 - ∘ tī
 - Dibosons, VV and VH
 - Boosted Topologies
- Publications per Center-of-Mass Energy Datasets
 - $\circ \sqrt{s} = \underline{7 \text{ TeV}}$
 - $\circ \sqrt{s} = 8 \text{ TeV}$
 - $\circ \sqrt{s} = 13 \text{ TeV}$

Additional Material from Exotica Physics Group

Exotica Summary plots for 13 TeV data

Recent Preliminary Results in the Exotica Group

Publications in the Beyond 2 Generations Group

Exotica Publications in CDS

Overview of CMS long-lived particle searches

- The motivation for long-lived particles
- Displaced searches for LLP
- Timing searches for delayed LLP
- Motivated long-lived candidates
- Summary

The spatial feature of long-lived particles

- Charged or Neutral LLP

- charged

••••• neutral

- Charged particle is easier to search
 - Trackers > trajectories
- Neutral particles relies on displaced vertices feature

disappearing track

> displaced dijet

Hidden Sector Charged Particle exotic example

- ATLAS search for HSCP with high ionization $dE/dx > 2.4 \text{MeV g}^{-1} \text{ cm}^2$
- Expected 0.7 ± 0.4 , observed 7 events (3.6 σ)

Target	Mass window [GeV]	Signal region bin										
mass [GeV]		SR-Inclusive_Low						SR-Inclusive_High				
		Exp.	Obs.	p 0	Zlocal	S ⁹⁵ _{exp.}	$S_{\rm obs.}^{95}$	Exp.	Obs.	p 0	Zlocal	S ⁹⁵ _{exp.}
1200	[950, 2100]	6.7 ± 1.3	10	1.38×10^{-1}	1.1	$7.0^{+2.5}_{-2.3}$	10.2	0.9 ± 0.5	6	1.65×10^{-3}	2.9	$3.7^{+1.3}_{-0.6}$
1300	[1000, 2200]	6.1 ± 1.2	9	1.48×10^{-1}	1.0	$6.5^{+2.9}_{-1.4}$	9.7	0.8 ± 0.4	6	5.47×10^{-4}	3.3	$3.5^{+1.2}_{-0.5}$
1400	[1100, 2800]	5.2 ± 1.7	8	1.76×10^{-1}	0.9	$6.5^{+2.6}_{-2.0}$	9.6	0.7 ± 0.4	7	1.46×10^{-4}	3.6	$3.2^{+1.1}_{-0.1}$
1500	[1150, 2900]	4.9 ± 2.4	7	2.41×10^{-1}	0.7	$6.6^{+2.8}_{-1.9}$	9.3	0.6 ± 0.4	6	6.09×10^{-4}	3.2	$3.2^{+1.2}_{-0.1}$
1600	[1250, 3400]	4.2 ± 3.4	5	3.24×10^{-1}	0.5	$7.0^{+2.9}_{-2.2}$	8.4	0.54 ± 0.35	5	1.19×10^{-3}	3.0	$3.1^{+1.2}_{-0.1}$

ATLAS JHEP 06 (2023) 158

 $S_{\rm obs.}^{95}$ 10.4 10.3 11.9 10.7 9.5

11

Hidden Sector Charged Particle exotic example

- ATLAS search for HSCP with high ionization $dE/dx > 2.4 \text{MeV g}^{-1} \text{ cm}^2$
- Expected 0.7 ± 0.4 , observed 7 events (3.6 σ)
- R-hadron with 2 TeV mass and 10 ns lifetime

ATLAS JHEP 06 (2023) 158

12

Hidden Sector Charged Particle exotic example

- ATLAS search for HSCP with high ionization $dE/dx/\rho > 2.4 \text{MeV g}^{-1} \text{ cm}^2$
- **ATLAS JHEP 06 (2023) 158** • Expected 0.7 ± 0.4 , observed 7 events (3.6 σ)
- R-hadron with 2 TeV mass and 10 ns lifetime
- Puzzle: Time of flight: $\beta = 1$ v.s. Ionization data $\beta \approx 0.7$

Q=2 BSM particles from heavy resonance?

New trigger development for charged LLP

- Old triggers: large MET trigger
- New triggers:
 - High-pT isolated track $p_T > 120 \text{ GeV} + \text{quality check}$
 - High dE/dx > 1.7 MeV/cm
 - Disappearing track trigger low-pT particles not reconstructed
- Dedicated trigger study expands the search range of LLP

14

- The motivation for long-lived particles
- Displaced searches for LLP
- Timing searches for delayed LLP
- Motivated long-lived candidates
- Summary

Far detector proposals

• Mathusla, CODEX-b, FASER etc

Experiment setup considerations

- Far detectors are expensive
 - Why not existing ones? ATLAS/CMS?
- i.e., ATLAS and CMS.
 - Larger geometrical acceptance, but also large background.
 - Ample room for new ideas.

• We focus here on new approaches for searches at existing detectors,

• P_{in}: Geometrical acceptance

$$P_{\rm in} = \frac{1}{4\pi} \int_{\Delta\Omega} d\Omega \int_{L_1}^{L_2} dL \frac{1}{d} e^{-L/d}$$
$$\approx \frac{\Delta\Omega}{4\pi} e^{-L_1/d} \frac{L_2 - L_1}{d}$$

- The detector length L₂ L₁
 - d: expected decay length of LLP in lab frame

$$d = c\tau\gamma\beta$$

• P_{in}: Geometrical acceptance

- The detector length L₂ L₁
 - d: expected decay length of LLP in lab frame

 $d = c\tau\gamma\beta$

• P_{in}: Geometrical acceptance

- The detector length L₂ L₁
- d: expected decay length of LLP in lab frame

We need

• Closer to IP (for smaller lifetime)

Longer detector (for larger lifetime),

• The larger solid angle (any lifetime)

- Closer to IP (for smaller lifetime)
- Longer detector (for larger lifetime)
- The larger solid angle (any lifetime)

- Inner detector, DV searches
- ~ meter(s)

geometrical acceptance

LHC already maximizes *P*_{in} in all aspects except longer detector length

Optimizing the efficiency factors to realize the full power of LHC

Timing upgrade proposals at LHC

LHCC-P-009

 CMS: MIP Timing Detector (MTD) in central region, High Granularity Calorimeter (HGCAL) in endcap region.

30 ps resolution!

- ATLAS: High Granularity Timing Detector (HGTD) 1804.00622
- LHCb: Vertex Locator (VELO), high granularity ECAL and Torch detector

LHCb: 1808.08865, B0->pi+ pi-

 Good potential to benefit new physics searches! (Rest of this talk)

Long-lived particle X decay, X-> a b

Signal arrival time - SM bkg ref time

- $\beta_X \leq O(1) \quad \beta_a \simeq \beta_{\rm SM} \simeq 1$
- Lower bound from slow X

$$\Delta t \ge \frac{\ell_X}{\beta_X} - \frac{\ell_X}{1} = \ell_X(\beta_X^{-1} - 1)$$

Time delay from LLP and detection proposal

Time delay from LLP and detection proposal

Long-lived particle X decay, X-> a b

Signal arrival time - SM bkg ref time

- $\beta_X \leq O(1) \quad \beta_a \simeq \beta_{\rm SM} \simeq 1$
- Lower bound from slow X

$$\Delta t \ge \frac{\ell_X}{\beta_X} - \frac{\ell_X}{1} = \ell_X(\beta_X^{-1} - 1)$$

• For CMS MTD size, $I_X \sim 1.2 \text{ m} \sim 4 \text{ ns}$

LLPs (mass > 10 GeV) typically move much slower than c

• SM bkg time delay: Phase-2 time resolution 30 ps, Pile-up intrinsic resolution 190 ps

LLPs are significantly delayed comparing with SM backgrounds!!!

Performance of timing detection of LLP

SigA: $pp \to h + j$, $h \to X + X$, $X \to SM$,

Z. Liu, JL, L.T. Wang, PRL 122 (2019) 131801

- The method works well in real CMS analysis
 - Good for long-lifetime LLP
 - Better sensitivity

CMS: PLB 797 (2019) 134876

CMS High Granularity Calorimeter (HGCAL)

- Motivation
 - Upgrade for radiation tolerance and pile-up
 - Tracker, calorimeter and timing integrated in one detector
 - Will provide much more information than any previous calorimeters

CMS High Granularity Calorimeter (HGCAL)

- Own triggers
- Tracker with silicon cell 0.5~1 cm² for EM and most HA calos
- Angular resolution of 5x10⁻³ rad stand-alone from high granularity (EM shower, improvement by combining with ID trackers)
- Timing resolution ~ 25 ps from silicon sensor
- Semi-central coverage good for forward LLP Collinear enhancement Pt PS suppression

What is the HGCAL sensitivity for LLP?

QCD background and LLP signal

Both spatial and timing difference

JL, Z. Liu, L.T. Wang, X.P. Wang, JHEP 11 (2020) 066

QCD background and LLP signal

Both spatial and timing difference

• Fake track backgrounds

- wrong connection of the hitting points in the tracker system
- Very distinct features comparing with QCD backgrounds
 - Easy to have large impact parameter

Poorly fit to the same origin

QCD background and LLP signal

Both spatial and timing difference

- QCD backgrounds
 - Most of them are prompt

- Large impact parameter dominantly from $K_{\rm S}$ (ct ~ 2.7 cm)
 - B ($c\tau \sim 0.045$ cm) and D meson ($c\tau \sim 0.03$ cm) too small

Signal

HGCAL search for $h \rightarrow XX$

- ggF result: with/without high H_T trigger requirement
- VBF result: standard VBF trigger
- Combined Displaced Vertex + Delayed Timing leads to good sensitivity
 - More ambitious: timing trigger?

- The motivation for long-lived particles
- Displaced searches for LLP
- Timing searches for delayed LLP
- Motivated long-lived candidates
 - Freeze-in DM, Vector-like Fermion
- Summary

Friendly Freeze-in Dark Matter at Collider

- Freeze-in dark matter
 - Scattering: $a + b \rightarrow \chi \chi$
 - Decaying: $Y \rightarrow \chi + X_{sm}$
- Interaction: fermion portal

$$y_{\chi} Y X_{\rm SM} \chi$$

Z₂ -1 +1 -1 **F** ℓ/q s

Belanger et al. JHEP 02 (2019) 186

Friendly Freeze-in Dark Matter at Collider

 The thermal relic and the lifetime of Father particle

• **Relic:**
$$Y_s \approx \frac{45 \,\xi \, M_{\rm Pl}}{8\pi^4 \cdot 1.66} \frac{g_F}{m_F^2} \Gamma \int_{m_F/T_R}^{m_F/T_0} dx \; x^3 \frac{K_1(x)}{g_*^s(m_F/x) \sqrt{g_*(m_F/x)}},$$

$$c\tau[\mathbf{m}] \approx 4.5 \ \xi \ g_F \ \left(\frac{0.12}{\Omega_s h^2}\right) \left(\frac{m_s}{100 \text{ keV}}\right) \left(\frac{200 \text{ GeV}}{m_F}\right)^2 \\ \left(\frac{102}{g_*(m_F/3)}\right)^{3/2} \left[\frac{\int_{m_F/T_R}^{m_F/T_0} dx \ x^3 K_1(x)}{3\pi/2}\right],$$

ifetime:

Friendly Freeze-in Dark Matter at Collider

 10^{0}

 10^{-1}

 m_s =12keV, T_R = 50GeV m_s =12keV, T_R = 100GeV m_s =12keV, T_R = 160GeV m_s =12keV, T_R = 10¹⁰GeV m_s =1 MeV, T_R = 10¹⁰GeV m_s =10 MeV, T_R = 10¹⁰GeV HSCP

- The motivation for long-lived particles
- Displaced searches for LLP
- Timing searches for delayed LLP
- Motivated long-lived candidates
 - Freeze-in DM, Vector-like Fermion
- Summary

Vector-like fermion as natural LLP

- Only VLF is added
- E.g. F has right-handed lepton charges $\mathcal{L}_{eff}^{F} \supset \bar{F}^{0} i D_{\mu} \gamma^{\mu} F^{0} + \bar{L}^{0} i D_{\mu} \gamma^{\mu} L^{0} + \bar{\ell}_{R}^{0} i L^{0}$
- The mass eigenstates and mixing angles

$$\begin{split} m_F &\simeq m_F^0 + \frac{\delta^2}{2m_F^0} \simeq m_F^0 \\ m_\ell &\simeq m_\ell^0 \left(1 - \frac{1}{2} \left(\frac{\delta}{m_F^0} \right)^2 \right). \end{split} \qquad \begin{aligned} \tan \theta_R &= -\frac{2m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 - \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \simeq -\frac{\delta}{m_F^0}, \\ \tan \theta_L &= -\frac{2m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \simeq -\frac{m_\ell^0 \delta}{(m_F^0)^2} \simeq \frac{m_\ell^0}{m_F^0} \\ \tan \theta_L &= -\frac{2m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \simeq -\frac{m_\ell^0 \delta}{(m_F^0)^2} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{((m_F^0)^2 - (m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{(m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{(m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \sqrt{(m_\ell^0)^2 + \delta^2)^2 + 4(m_\ell^0)^2 \delta^2}} \\ = -\frac{m_\ell^0 \delta}{(m_F^0)^2 - (m_\ell^0)^2 + \delta^2 + \delta^2$$

Q.H. Cao, J. Guo, J. L, Y. Luo, X.P. Wang, 2311.12934

$$\delta D_{\mu} \gamma^{\mu} \ell_R^0 - m_F^0 \bar{F}^0 F^0 - m_\ell^0 \bar{\ell}^0 \ell^0 - (\delta \bar{F}_L^0 \ell_R^0 + \text{h.c.}),$$

 $\theta_I \ll \theta_R$! Because of right-handed lepton charge

Vector-like fermion as natural LLP

Off-diagonal interactions are left-handed!

$$\supset \bar{F}(i\partial_{\mu} - eA_{\mu} + e \tan \theta_{W}Z_{\mu})\gamma^{\mu}F + \frac{1}{2} \frac{e}{\sin \theta_{W} \cos \theta_{W}} \theta_{L}Z_{\mu}(\bar{F}_{L}\gamma^{\mu}\ell_{L})$$

• Decay width are suppressed by θ_I^2

$$\Gamma(F^{\pm} \to \nu_{\ell} W^{\pm}) = \frac{\theta_L^2 g_W^2}{64\pi} \frac{(m_F^2 - m_W^2)^2 (m_F^2 + 2\pi)^2}{m_F^3 m_W^2}$$
$$\Gamma(F^{\pm} \to \ell^{\pm} Z) = \frac{\theta_L^2 g_Z^2}{64\pi} \frac{(m_F^2 - m_Z^2)^2 (m_F^2 + 2\pi)^2}{m_F^3 m_Z^2}$$

Therefore, F is the natural charged LLP

- $-m_F\bar{F}F-m_\ell\bar{\ell}\ell$
- $(+ \text{ h.c.}) \frac{e}{\sqrt{2}\sin\theta_W} \theta_L(W^+_\mu \bar{\nu}_L \gamma^\mu F_L + \text{ h.c.}),$

Vector-like fermion as natural LLP

• Ballpark: $\theta_L \approx \frac{\delta m_\ell}{m_F^2} \sim 10^{-9}$

- For electron or light quark: $\delta \sim 0.1 \; {\rm GeV}$
- For muon lepton: $\delta \sim 1~{\rm MeV}$

Vector-like fermion with light LLP scalar

New interactions

 $\mathcal{L}_{Int}^{\phi} \supset -y\phi \bar{F}_{L}^{0}\ell_{R}^{0} + h.c.$

- Prompt decay of F: $F \rightarrow \phi + \ell$, with $y \sim O(1)$
- Naturally, long-lived ϕ

$$\Gamma(\phi \to \ell^+ \ell^-) = \frac{(y \theta_L)^2 m_\phi (1 - 4m_\ell^2/m_\phi)}{8\pi}$$

$$\tau(\phi) \simeq \left(\frac{3 \times 10^{-9}}{y \theta_L}\right)^2 \left(\frac{50 \text{ GeV}}{m_{\phi}}\right) \text{ns.}$$

- $\simeq -y\phi\left(\bar{F}_L\ell_R + \bar{\ell}_RF_L + \theta_R\bar{F}F \theta_L\bar{\ell}\ell\right),$

 $\frac{m_{\phi}^2)^{3/2}}{8\pi}, \qquad \propto \frac{\theta_L^2 y^2}{8\pi} m_{\phi} \approx \frac{y^2}{8\pi} \frac{\delta^2 m_{\ell}^2}{m_{\phi}^4}$

Q.H. Cao, J. Guo, JL, Y. Luo, X.P. Wang, 2311.12934

Vector-like fermion with light scalar

• If coupling to muons @ HL-LHC

Vector-like fermion with light scalar

Summary

- The long-lived particle could naturally exist as in SM
- Displaced searches and time delay searches are both useful
 - Dedicated triggers are developed by experiments
- Some motivated LLP candidates can be naturally generated
 - Related to freeze-in dark matter
 - Vector-like fermion related suppressions
- A joint search program from intensity/energy/cosmic frontiers is necessary to hunt for long-lived particles.

Backup slides

