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I. THE PROOF

As I mentioned in.my talk at the Feynman Memorial
Session of the AAAS meeting in San Francisco,' Feynman
showed me in October 1948 a proof of the Maxwell equa-
tions, assuming only Newton’s law of motion and the com-
mutation relation between position and velocity for a single
nonrelativistic particle. In response to many enquiries, I
here publish the proof in a form as close as I can come to
Feynman’s 1948 exposition. Unfortunately, I preserved
neither Feynman’s manuscript nor my original notes.
What follows is a version reconstructed at some unknown
time from notes which I discarded.



Assume a particle exists with position x; (j = 1,2,3) and
velocity x; satisfying Newton’s equation

mx; = F,(x,x,1), (1)
with commutation relations

[xx: ] =0, (2)

m[x;,%, ] = iy 3)

Then there exist fields £ (x,) and H(x,t) satisfying the
Lorentz force equation

Fy=Fk; +€,x.H, (4)

and the Maxwell equations
div H =0, (5)

%JrcurlE:O. (6)



[x,,F, | +m[x,%.] =0. (9)

[x,,F, ] = — (ifi/m)e H,. (13)
3quation (13) is the definition of the field H, which would

The definition (13) of H may be written

H = — (im*/ )€ [%,%, ] (16)

by virtue of (9). Another application of the Jacobi identity
gives |

€t L X1 [ X% ]] = 0. (17)
Equations (16) and (17) imply
[XI,H]] — 0, ' (18)

which 1s equivalent to (5). It remains to prove the second



Next we satisfy (4) by assuming it to be the definition of
the field £. Again, £ will in general depend on x, x, and ¢,

Take the total derivative of Eq. (16) with respect to
time. This gives

OH, . OH,  im* .
-aTl-Fme:{": —t";l‘ffkl[xj’xk]' (19)

Now by (1) and (4), the right side of (19) becomes
~ (im/f)€; [E; + €mp X H X ]
= — (im/f) (€ [ Ejx ] + [ X H X ] — [ X Hix, ])
JE, . O0H, . JH,
+ Xy !
ox;, Ix, O0X),
+ (im/f)H, [ x,,x; ]. (20)

On the right side of Eq. (20), the last term is zero by sym-
metry because of (16), the third term is zero because of
(5), and the second term is equal to the second term on the
left of (19). The remaining terms in Eqs. (19) and (20)

——

= €y

give
oH JE;

which is equivalent to (6). End of proof.
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and the Maxwell equations
div H = 0,

59—{1— + curl E =0.
dt |
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1

Lo =9 {Eg”yﬁﬁqbﬁyqb + %gbﬂfggb} . (13)

Treating g as the external source, the counter-terms at
one-loop level can be extracted from Ref. [11]

2
AL = ﬂ{l (Mr?lR)
€ 4 §

1 1
—l_ﬁ (RMR‘W — gﬂg)} (14)

[11] G.’t Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare
Phys. Theor. A 20, 69-94 (1974)



Ref. [11] has argued that the unrenormalizable term
in Eq. (14), namely the RM? term, can be eliminated
by adding the specific term %Rcﬁ:g to the original La-
grangian of Eq. (13). However the unrenormalizable
terms R? and R, R*" remain. The situation becomes
even worse after including contributions from the gravi-
tons in the loops. It seems 1mpossible to generally elim-
inate all unrenormalizable terms ing the orig-
inal Lagrangian. 1s 1s the key argument that gravity
1s an unrenormalizable theory. As shown in this simple
excise, there exists fundamental difficulty to renormalize
the gravity in this way. Some fundamental aspect of the

gravity has to be changed,




Renormalizability and assoclated infinity are usually
thought as annoying, however it can be treated as the
tool, even a principle to construct a meaningful theory. In
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As the basic requirement of a renormalizable theory,
the new form counter-terms beyond the origin Lagrangian
are not allowed. It seems there is only possible by treat-
ing the metric as the coupling parameter instead of the
Wmmm
Tiot the dynamical field, namely the kinetic term R will
be dropped. Provided that the metric acts only as the
parameter, the form of counter-terms in Eq. (14) is the
same with original Lagrangian in Eq. (13). All the pre-
vious unrenormalizable terms RM?, R? and R, R are
the functions of the g,,,,, which is the building block of the
original Lagrangian. From this point of view, the model
must be renormalizable as it should be. The renormal-
izability of toy model of Eq. (13) is guaranteed by the
properties of the dynamical quantum field ¢. The metric
only becomes the dynamical field after the electro-weak

symmetry breaking, as shown in last section.
“
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The Lagrangian of proposed model can be written as

L=Ly+ L.
Here the general coordinate invariant pure gravity and ‘\W’r—
matter Lagrangians with the metric field g and the weak ¢\ b ‘
doublet Higgs field @ are \< _ i E‘\‘f‘%‘\*‘:
L, = \/G{—rR) 9) {0 M

Lo = VGi=g0,870,® + X (21®)
— w?) 4+ Ao} (10)
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The electro-weak symmetry breaking is realized
through Higgs field acquiring the vacuum expectation
value (v)

< P>=v+H

and the H is the physical Higgs field. Here

1 2
2= =K @ (11)
¢
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should be O(107%) ~ O(10~*). Can the contribution
from £R be so large? Basically £ is an arbitrary dimen-
sionless parameter, and which can be determined empir-
ically. We will argue theoretically that the contribution
can be large. Due to the renormalizable criteria, as dis-
cussed in next section, we will drop R-term in Eq. (9).
In order to reproduce the usual Hilert-Einstein gravity, &
is fixed to be O(m3% /v?). Such value is much larger than
the usual assumption, for example for the case of Higgs
inflation models. Usually the range with the sizable grav-
ity effect is estimated as

where F is the effective collider energy. Due to the &
enhancement, the range becomes

“@f m2% E E
r ~ S
2 2 2 2
P ()] mP (3




After the electro-weak symmetry breaking with v? =
p?/(22),

—k + &v? = —1

which is empirically required by the Newtonian gravity.
And

At — 2+ Ayp = A

which is the cosmological constant. After symmetry break-
ing, the induced Lagrangian becomes

L=g{-R+A+--}. (12)
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Overview of m,, Measurements

LEP Gombmation | ATLAS Preliminary ™
o : ol |F :
B. : S V§ =7TeV, 46fb1 . T
DO (Run 2) == @ mm
arXiv:1203.0293 ! X
£ CDF (Run2
% FERM!L(AB-PUB-gQ-ZSI“-PPD R . o
S S B . DR
Ia_rgvcz?oggﬁgs — e m
ATLAS 2017 : I
arXiv:1701.07240 ® Measurement == o
|:]Stat. Unc. '
ATLAS 2023 .Total Unc. : el
oo " 'SM Prediction O —
5 : !

i i i
80200 80300 80400
m,, [MeV]
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In fact, there are similar declining tendency for top
quark mass measurement. The latest top quark mass.

combined CDF and DO data, is [7]
my = 174.30 + 0.35 + 0.54GeV (5)

by direct measurement at Tevatron with v/S = 1.96T€V.
At higher energy LHC, top quark mass is

m; = 172.69 +0.25 + 0.41GeV (6)
my = 172.44 +0.13 + 0.47GeV (7)

at ATLAS [8] and CMS [9] respectively with /S =
7,8TeV data. The latest CMS result using V.S = 13TeV
data is [10]

m; = 171.77 + 0.37GeV. (8)



ATLAS+CMS Preliminary
LHCtopWG

LHC combined :

{s=7.,8 TeV

total

5. J J

o Stat uncertalnty
total uncertainty

ATLAS
dilepton 7 TeV
lepton+jets 7 TeV
all-jets 7 TeV
dilepton 8 TeV
lepton+jets 8 TeV
all-jets 8 TeV
combined

CMS
dilepton 7 TeV
lepton+jets 7 TeV
all-jets 7 TeV
dilepton 8 TeV
lepton+jets 8 TeV
all-jets 8 TeV
single top 8 TeV
Jhy 8 TeV
secondary vertex 8 TeV
combined

LHC combination

A
L

i
mn

| 1

stat

m, * total (+ stat + syst)
173.79 + 1.42 (+0.54+1.31)
172.33+ 1.28 (£0.75+1.04)
175.06 + 1.82 (+1.35+1.21)
172.99 + 0.84 (+0.41+0.74)
172.08 + 0.91 (+0.39+0.82)
173.72+ 1.15 (£0.55+1.02)
172.71+ 0.48 (+0.25+0.41)

172.50 + 1.58 (+0.43+1.52)
173.49 + 1.06 (+0.43+0.97)
173.49+ 1.41 (+0.69+1.23)
172.22+ 0.95 (+0.18+0.94)
172.35+ 0.48 (+0.16+0.45)
172.32 + 0.62 (+0.25+0.57)
172.95+ 1.20 (+0.77+0.93)
173.50 + 3.14 (+3.00+0.94)
173.68+ 1.12 (+0.20+1.11)
172.52 + 0.42 (+0.14+0.39)

dilepton 172.30+ 0.59 (+0.29+0.51)
lepton+jets 172.45+ 0.36 (+0.17+0.32)
all-jets 172.60 + 0.45 (+0.26+0.36)
other 173.53 + 0.77 (+0.43+0.64)
combined _ 172.52 + 0.33 (+0.14+0.30)
| | I | | | | I | 18| | | | | | | | | | | |

165 170 175 180 185

m, [GeV]
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ATLAS

e Total

Stat. [ Syst.

| Combination

Run1: /s=7-8TeV,25fb ', Run2: /s =13 TeV, 140 fb '

Run 1 /1 — 5 F—*—1 126.02+ 051 GeV
Runt H -4 F—e— 124,51 + 0.52 GeV
Run2 // — 44 125.17 + 0.14 GeV
Run2 /1 — A/ 124.99 £ 0.19 GeV
Run 142 1/ —» %9 125.22 + 0.14 GeV
Run 142 1/ - A1 e 124.94 1 0.18 GeV
Run 1 Combined He 125.38 + 0.41 GeV
Run 2 Combined 125.10 £ 0.11 GeV
Run 1+2 Combined 125.11 £ 0.11 GeV
rETT VAL W o BT S0 VA PP R TR | PYAPWITISS T ER IR W EPES TR T FOT
123 124 125 126 127 128

my [GeV]
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HIHC EM&EZHA&E
T Mg/ e
VALUE (GeV) EVTS

01.187 OUR FIT

01.18524-0.0030 4 57M

01.18634+0.0028 4.08M

01.1898+0.0031 3.96M

01.1885+4+0.0031 4 57M

e o o We do not use the following data for averages, fits, limits, etc.

91.084 =+0.107
91.1872+£0.0033

91.272 £0.032 £0.033
91.187540.0039 3.97M

91.151 +0.008

91.74 +£0.28 40.93 156
90.9 £0.3 £0.2 1

91.14 =0.12 4380
931 +1.0 +3.0 24

DOCUMENT ID TECN COMMENT
1 ABBIENDI  01A OPAL EEE = 88-94 GeV
2 ABREU 00F DLPH EEE,= 88-94 GeV
3 ACCIARRI 00C L3 EEE, = 88-94 GeV
4 BARATE 00C ALEP EE& = 88-94 GeV
o o0
> ANDREEV ~ 18A H1 e* p
O ABBIENDI 046 OPAL EEE,—= LEP1 +
130-209 GeV
7 ACHARD 04c L3 EEE, = 183-209 GeV
8 ACCIARRI  00Q L3 EEE,= LEP1 +
130-189 GeV
9 MIYABAYASHI 95 TOPZ EEE,= 57.8 GeV
10 ALITTI 928 UA2 EPP_ 630 GeVv
11 ABE 89c CDF EPP_ 18 Tev
12 ABRAMS 808 MRK2 EEE = 89-93 GeV
I3 ALBAJAR 89 UA1  EPP— 546,630 Gev



_ﬁl

N\

L
\\N\

For the general case, the quantum behavior can be
written as the path integral of dynamical field ¢

Z = /Dc;bexp {iS}. (15)

Note that the metric field g is not a priori assumed as
dynamic field. The action S can be divided as metric
and other (matter) parts

S = S5(g) +S(g,9) +S(9). (16)

As such, exp{iS(g)} is independent on the quantum
field (¢) and can be dropped and the path integral can



be simplified as

Z - / Déexp {iS(g, 8) +i5(6)} (17)

The metric, as the dynamical field after electro-weak sym-
metry breaking, manifests itself only classically. Eq. (10)
is only the specific realization of the general case.
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